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Introduccion

Los modelos de decisién secuencial son abstracciones matemati-
cas de situaciones en las que se toman decisiones en varias etapas.
En cada una de estas etapas se incurre en un cierto costo. Cada
decisién puede influir en las circunstancias bajo las que se tomaran
decisiones futuras, de modo que, si se quiere minimizar un costo
total, se debe equilibrar el deseo de minimizar el costo de la de-
cision presente con el deseo de evitar situaciones futuras donde el
alto costo es inevitable. Entre la variedad de problemas de decisién
secuenciales se tienen Problemas de Control ()ptimo Determinis-
ta (PCOD) y Problemas de Control Optimo Estocéstico (PCOE),
problemas de decisiéon de Markov y semi-Markoviano, problemas
de control minimax y juegos secuenciales [7].

Como uno de los principales métodos para el andlisis de proble-
mas de decisiones secuenciales se tiene la Programacién Dinami-
ca (PD) [6,24]. Aunque la naturaleza de estos problemas varia
de manera considerable, sus estructuras subyacentes resultan ser
muy similares. En todos los casos, el costo correspondiente a una
politica y la iteracion basica del algoritmo PD pueden describirse
mediante un determinado mapeo que difiere de un problema a otro
en detalles que en gran medida no son esenciales. Normalmente,
tal mapeo resume los datos del problema y determina las cantida-
des de interés para el analista. Si se toma este mapeo como punto
de partida se pueden proporcionar resultados analiticos poderosos
que son aplicables a una gran coleccién de problemas de decisién
secuencial.

El trabajo estd enfocado a Procesos de Decision de Markov
(PDMs) a tiempo discreto [7,37,38,51]. En los tres capitulos que
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componen este escrito, se proponen algunos resultados que involu-
cran convergencia en PDMs. En el Capitulo 1, la atencién se centra
en PDMs donde la ley de transicion es inducida por un sistema de
dos ecuaciones en diferencias acopladas que son perturbadas por
un ruido pequeinio que depende de pardmetros numéricos € y 0, ver
Seccién 1.1. La primera ecuacién representa la evolucién de esta-
dos x, mientras que la segunda representa la evolucién de estados
a, que se relacionan directamente con pardametros del modelo. En
este contexto, estamos interesados en los siguientes problemas:

= Estudiar aproximaciones de PDMs por procesos de control
deterministas. En particular, estamos interesados en asegu-
rar que la politica de un sistema determinista es asintdtica-
mente 6ptima para el sistema aleatorio, ver Teorema 1.3.7.

» Analizar la convergencia de la funcién de valor 6ptimo y
la politica 6ptima del sistema estocastico cuando € — 0 y
6 — 0, ver Teorema 1.3.10.

La metodologia para resolver estos problemas es imponer restric-
ciones de continuidad de Lipschitz [39,46] sobre las componentes
del modelo de control y aplicar técnicas de PD. Nuestro enfoque
asegura los siguientes tres aspectos importantes:

= La existencia de una cota superior para el indice de estabili-
dad [29-31] cuando aplicamos la politica 6ptima del sistema
determinista. En consecuencia, resulta que la politica 6pti-
ma del sistema determinista es asintéticamente optima para
el sistema estocastico.

= Una tasa de convergencia de la funcién de costo 6ptimo para
el sistema aleatorio con respecto al sistema determinista.

= La convergencia uniforme de las politicas estocasticas opti-
mas para la politica determinista cuando ¢ — 0y § — 0,
sobre subconjuntos compactos del espacio de estados.

En el Capitulo 2, se aborda un problema de crecimiento econémi-
co que se ha estudiado ampliamente en [58]. Tal problema se con-
forma de produccién, acumulacién de capital y crecimiento es-
tocastico de la productividad. La variante presentada en este tra-
bajo es a través la perturbacién por un ruido pequeno de la tasa

VI



con la que evoluciona la depreciacién del capital. Esta idea, permi-
te identificar el problema perturbado con un Proceso de Decisién
de Markov, que se desarrolla por dos ecuaciones en diferencias aco-
pladas (Capitulo 1), cada una perturbada por un ruido pequeno.
En este contexto, se presenta un teorema del limite funcional para
una transformacion de los logaritmos del capital y de los logarit-
mos de la tasa con la que evoluciona la depreciacién del capital,
tanto del sistema estocastico como el sistema determinista. Esta
conclusién se establece en el Teorema 2.3.1.

Adicionalmente, presentamos experimentos numéricos desarro-
llados con técnicas de Aprendizaje por Refuerzo, especificamente
utilizando @-learning, para presentar la solucién del problema de
crecimiento econémico perturbado y para mostrar la convergencia
al estado estable determinista. Finalmente, se muestra evidencia
de la normalidad dada en el teorema principal a través de histo-
gramas y de pruebas estadisticas. Esto se logré gracias a la imple-
mentacion de los Algoritmos 1-3, que fueron implementados en el
software R [52].

En el Capitulo 3, se aborda un tema independiente a los que
se presentaron en los capitulos 1 y 2. De manera precisa se tra-
baja con cadenas de decisién de Markov sobre espacio de estados
numerable, donde la funciéon de costo en un paso es acotada y
el rendimiento se mide por el criterio promedio asociado con un
controlador de decisiones propenso al riesgo (risk-seeking). Las
condiciones estructurales sobre la ley de transiciéon aseguran que
el costo promedio es constante, pero no garantizan que la ecuacién
de optimalidad admite solucién. En este contexto, se aborda el si-
guiente problema: Obtener aproximaciones convergentes al costo
promedio 6ptimo, y para determinar aproximadamente las politi-
cas estacionarias optimas usando los puntos fijos de una familia
de operadores contractivos. Las conclusiones principales sobre es-
te problema se establecen en el Teorema 3.2.1 y representan una
extensién del cldsico “enfoque descontado” en el caso neutral al
riesgo [1,35]. En este contexto, se extienden los resultados esta-
blecidos en [53], donde una versién del caso averso al riesgo (risk-
averse) de este problema fue analizado.

El estudio de cadenas de decision de Markov dotado con un
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INTRODUCCION

criterio sensible al riesgo se remonta, al menos a los articulos
proporcionados por Howard y Matheson [40], donde fueron ana-
lizadas las cadenas de decision de Markov con espacio de esta-
dos finito y el costo promedio éptimo fue caracterizado via una
ecuacién de optimalidad. El interés sobre este tema ha sido mo-
tivado por las aplicaciones, por ejemplo, en finanzas [4, 5,47, 57,
gestién de ingresos [2], y teoria de las grandes desviaciones [8].
Modelos con espacio de estados finito o infinito son considerados,
por ejemplo, en [11,12], [55,56] mientras que cadenas de decisién
de Markov sobre espacios de estado de Borel fueron analizados
en [20-22], [41,42] y [54]. Juegos estocasticos con criterio sensible
al riesgo son estudiados en [3].
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Capitulo 1

Aproximacion
determinista de PDMs
con dinamica acoplada

En este capitulo se abordan los llamados Procesos de Decisiéon
de Markov discretos con horizonte infinito y costo total desconta-
do [7,24,37,38,51]. La importancia de trabajar con PDMs radica
en el amplio rango de aplicacién en distintas disciplinas, por ejem-
plo: ingenieria, informdtica, comunicaciones y economia [9,36]. El
problema principal en PDMs es determinar una politica 6ptima
y la funcién de valor 6ptimo. Para caracterizar y determinar las
soluciones de los PDMs se tiene disponible el enfoque de Progra-
macién Dindmica [6,24].

En este capitulo, los PDMs de interés son aquellos que evo-
lucionan mediante una dindmica de estados compuesta por dos
ecuaciones en diferencias acopladas como se muestra en (1.1) y
(1.2). La ecuacién (1.1) modela la transiciéon de estados del sis-
tema, donde el conjunto de todos los estados se denota por X,
en este capitulo, tales elementos seran llamados x-estados. Simi-
larmente, la ecuacién (1.2) modela el cambio en los pardmetros
del sistema; el conjunto de todos los pardmetros es denotado por
I', estos estados seran llamados a-estados. Sean €y y §p ntmeros
positivos y sean € € [0,¢6] y & € [0,00], entonces considere las
perturbaciones {&:(€)} v {n:(9)}, que son sucesiones de elementos
aleatorios independientes e idénticamente distribuidos en algunos
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CAPITULO 1. APROXIMACION DETERMINISTA DE PDMS
CON DINAMICA ACOPLADA

espacios de Borel (S1,71) y (S2,72) (espacios métricos de pertur-
bacién [18] o espacios de ruido [30]), respectivamente.

Suponga que existen s; € S y s2 € S tales que s1 = §(0) y
so = m(0), cada elemento de las sucesiones anteriores depende
de pardametros € y 0 tales que Er({(¢),s1) — 0 cuando € — 0
y Era(n(d),s2) — 0 cuando 6 — 0, donde £ y 7 son elementos
genéricos de {&(€)} v {n:(9)}, respectivamente. Bajo el contexto
anterior, estamos interesados en los siguientes problemas:

s Estudiar aproximaciones de PDMs por procesos de control
deterministas. En particular, estamos interesados en asegu-
rar que la politica de un sistema determinista es asintdtica-
mente 6ptima para el sistema aleatorio, ver Teorema 1.3.7.

s Analizar la convergencia de la funcién de valor 6ptimo y
la politica 6ptima del sistema estocastico cuando ¢ — 0 y
6 — 0, ver Teorema 1.3.10.

En lo que sigue, describimos brevemente el trabajo relacionado
con los problemas discutidos en este capitulo.

El estudio en [45], considerd el problema de aproximacién de un
proceso de control estocastico por un proceso determinista en el
caso continuo. En este articulo, los autores demostraron que el
problema estocastico puede ser aproximado por un determinista
cuando el ruido es pequeno y las fluctuaciones se vuelven rapi-
das. En este contexto, se demuestra que el control optimo para
el problema determinista es asintéticamente 6ptimo para proble-
mas estocdsticos. En el caso continuo, [23] aborda un problema
similar, es decir, cuando los efectos del ruido en un sistema fisi-
co son pequenos, estos autores realizaron un analisis asintético de
aproximacion de difusiéon y usaron esto para estimaciones desea-
das del sistema original. Para PDMs a tiempo discreto, esta clase
de problemas fueron estudiados por [17,18], donde la dindmica del
sistema esta descrita por una sola ecuacion en diferencias. La con-
vergencia entre estos modelos también fue estudiada en [44]. Sin
embargo, la convergencia fue estudiada usando sucesiones que per-
tenecen al conjunto de parejas de estado-acciéon admisibles, que se
supone es un subconjunto de un espacio euclidiano. Adema4s, es-
te estudio se lleva a cabo bajo el supuesto de que el espacio de



acciones es un conjunto compacto y que la funcién de costos es
acotada. Ahora, cuando consideramos PDMs que se desarrollan
con respecto a (1.1) y (1.2), los resultados que aparecen en [17] se
generalizan. El enfoque de ecuaciones acopladas puede aplicarse,
por ejemplo, cuando se considera un factor de descuento aleato-
rio [25-28], donde la segunda ecuacién en diferencias se refiere a
la evolucién del factor de descuento aleatorio.

La metodologia para resolver los problemas descritos arriba es im-
poner restricciones de continuidad de Lipschitz [39,46] sobre las
componentes del modelo de control y aplicar técnicas de PD. Es-
pecificamente, suponemos condiciones Lipschitz para las funciones
¢, F y G involucradas en la dindmica del sistema compuesta de dos
ecuaciones en diferencias acopladas (ver ecuaciones (1.1) y (1.2)).
Una consecuencia de esta suposicion es la continuidad de Lipschitz
de la funcién de costo éptimo. Este enfoque asegura los siguientes
tres aspectos importantes:

= La existencia de una cota superior para el indice de estabili-
dad [29-31] cuando aplicamos la politica éptima del sistema
determinista. En consecuencia, resulta que la politica épti-
ma del sistema determinista es asintéticamente éptima para
el sistema estocastico.

= Una tasa de convergencia de la funcién de costo éptimo para
el sistema aleatorio con respecto al sistema determinista.

= La convergencia uniforme de las politicas estocasticas opti-
mas para la politica determinista cuando ¢ — 0y § — 0,
sobre subconjuntos compactos del espacio de estados.

Este capitulo esta organizado como sigue. En la Seccién 1.1, se
presenta la teoria béasica de los PDMs con estados que evolucio-
nan con la dindmica compuesta por dos ecuaciones en diferencias
acopladas. En la Seccion 1.2, se establece el planteamiento del pro-
blema de aproximacién de la funcion de valor y la politica 6ptima.
En la Seccion 1.3, se presenta el resultado que proporciona la cota
para el indice de estabilidad 5575, la tasa de convergencia del costo
6ptimo y la convergencia de la politica éptima sobre subconjuntos
compactos. Finalmente, en la Seccién 1.4, se ilustra la teoria de-
sarrollada con dos ejemplos. El primero es referente al problema
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CAPITULO 1. APROXIMACION DETERMINISTA DE PDMS
CON DINAMICA ACOPLADA

de consumo-inversion. Este ejemplo tiene como antecedentes los
ejemplos desarrollados en [19,25]. El segundo ejemplo es un pro-
blema de control con ruido aditivo pequeno. En ambos problemas
se proporcionan explicitamente la cota para el indice de estabilidad
y la tasa de convergencia de la funciéon de valor éptimo.

1.1. Modelo de control de Markov

Considere el modelo de Markov que sigue:
M= (X xT' A {A(z,0) | (z,a) € X xT'},Q,¢),

donde X x I' y A son espacios de Borel, denominados espacio de
estados y espacio de acciones, respectivamente; { A(z, a) | (z,«a) €
X xT'} es una familia de subconjuntos medibles no vacios A(zx, «)
de A, donde A(x,«) denota el conjunto de acciones admisibles
cuando el sistema se encuentra en el estado (z,a) € X x I'. El
conjunto de estado-accién admisibles esta definido como sigue:

K:={(z,a,a) | (z,a) € X xT';a € A(z,a)},

el cual es un subconjunto medible de X x I' x A; la siguiente
componente es un kernel estocdstico @ sobre X x I' dado K, i.e.,
Q(|z, o, a) es una medida de probabilidad sobre X x I" para cada
(z,a,a) € Ky Q(B]-) es una funcién medible sobre K para cada
B € B(X xT'), donde B(X x I') denota la o-algebra de Borel de
X x I'; ¢ una funciéon medible sobre K que toma valores reales,
llamada funcién de costo por etapa.

Observacién 1.1.1. En el desarrollo posterior, las métricas de
los espacios métricos X, ', y A serdn denotadas por d;, da y da,
respectivamente. En consecuencia, sobre X xI' se define la métrica
di1 como

di((z, @), (2, a/)) = méx{dy(z, 7 ), da(c, ')},

para todo (z, &), (z',a') € X xT. Ademds, sobre K es considerada
la métrica d definida por

d((:z,a, a), (QZ,, a/, a/)) = méx {dl((m, a), (ml, oz/)),dg(a, a/)},

para todo (x,a,a), (xl,o/,a/) e K.

4



1.1. MODELO DE CONTROL DE MARKOV

La dindmica del sistema se describe a continuacién. Suponga que al
tiempo t,t = 0,1, ..., el sistema se encuentra en el estado (z¢, ay) =
(z,a) € X x I". Entonces, el controlador elige un control a; = a €
A(z, ). Como consecuencia de esto, ocurren dos cosas:

a) Se incurre en un costo c(x¢, ¢, ar), y

I ’

b) el sistema se mueve a un nuevo estado (x¢4+1,41) = (x , )
de acuerdo a la ley de transiciéon Q(-|z, «, a), i.e.,

Q(Blz,a,a) = Pr((xiy1, ai41) € Blay = o, 04 = o, a4 = a),
BeB(X xT)y (z,a,a) € K.

Posteriormente, el sistema pasa a un estado (x¢11,a44+1) y se re-
pite el proceso.

En este capitulo, se supone que la ley de transiciéon @) es inducida
por un sistema de ecuaciones en diferencias acopladas, como sigue

Tip1 = F (g, ap,ar, & (€)), (1.1)

a1 = G(ay, me(9)), (1.2)

donde t = 0,1,..., con (xg,p) € X x I' dado, donde F : K x A x
S1 > Xy G : T xSy — I son funciones medibles. Sean ¢q, dg
nimeros fijos positivos y sean € € [0,¢], § € [0, ], las pertur-
baciones {&:(€)} v {n:(0)} son sucesiones de elementos aleatorios
independientes e idénticamente distribuidos (i.i.d.) con valores en
algunos espacios de Borel (S1,71) y (S2,72), respectivamente.

Observacion 1.1.2. Se asume que las variables aleatorias £ :
O = S1 yn: Qo — Se estin definidas sobre espacios de pro-
babilidad (1, F1,P1) y (Q2, F2,P2), donde & y n son elementos
genéricos de {&(€)} y {n:(6)}, respectivamente. Ademds, la terna
(Q1 X Qo, F1 ® F2,P) denota el espacio de probabilidad producto,
donde F1 ® Fo es la o-dlgebra producto y P es la medida producto
inducida por el teorema de Ionescu-Tulcea [37]. El valor esperado
con respecto a la medida de probabilidad P serd denotado por E.



CAPITULO 1. APROXIMACION DETERMINISTA DE PDMS
CON DINAMICA ACOPLADA

En el desarrollo posterior, seréd considerado el espacio S := 51 X So
con la métrica r definida por

r ((€wn) m(wn)), (Ewn), i(wh)))
=mitx {11 (€(w1), £(1)), ra(m(wa) wn) }

para todo (£(w1), n(w2)), (§(w), A(wp)) € S, donde wy,wy € Oy
w2,Wy € QQ.

Ahora, considere x(e,d) = (£(€),1()), entonces las ecuaciones en
diferencias (1.1) y (1.2) pueden ser expresadas como

($t+1, Oét+1) = H(l'ta Qg, ag, Xt(€75))
= (F(x¢, ar, ag, & (€)), Glag, m(6))) -

Supongamos que existen s; € Sy so € Sy tales que s; = £(0) y
s = 1n(0). Cada elemento de las sucesiones anteriores depende de
un pardmetro numérico € y 4, de tal modo que Eri(£(e),s1) — 0
cuando € — 0 y Ery(n(d), s2) — 0 cuando § — 0. Por otro lado,
se considera un PDM determinista cuya dindmica evoluciona de
acuerdo con las ecuaciones en diferencias que se muestran en (1.3)

y (1.4):
Ti41 = F(xtv Oy, G, 81)7 (13)

Opt1 = G(au 52)7 (1.4)
para todo t = 0, 1, .... Observe que x(0,0) = (£(0),1(0)) = (s1, s2),

entonces la dindmica conjunta dada por (1.3) y (1.4) se denota de
la siguiente manera

(@41, 1) = H (e, a, ar, x4(0, 0))
= (F(xg, a,a1,6(0)), G, m6(0))) .

En este contexto, estamos interesados en la aproximacién de Pro-
cesos de Decisién de Markov que evolucionan a través de (1.1)
y (1.2) mediante el proceso de control determinista dado por las
ecuaciones (1.3) y (1.4).



1.1. MODELO DE CONTROL DE MARKOV

Cuando los procesos z-estados y a-estados estén especificados por
el modelo dindmico dado por las ecuaciones (1.1) y (1.2), la ley de
transicion toma la forma

Q(Blz,a,a) : = Pr((zi4+1,at41) € Blzy = x, 04 = o, ap = a

- / 15 (H (2, 0, a, 505)) (ds)
51 XSQ

(1.5)
=pu({s€ S xSy H(zx,a,a,5.5) € B}),

donde B € B(X x TI'), 15(+) denota la funcién indicadora sobre B

y i es la distribucién comun del vector aleatorio x¢(e,d).

Por otro lado, cuando los procesos z-estados y a-estados estan
especificados por el modelo dindmico de las ecuaciones (1.3) y
(1.4), la ley de transicién toma la forma

Qu(Blz,a,a) :=1p (H(m,a,a,x(0,0))), (1.6)

donde B € B(X xTI'), (z,,a) € K. Asi, el modelo de control de
Markov estd dado por (X xI', A, {A(z, @) : (z,a) € X xXT'}, Qn, ).

Una politica de control 7 es una secuencia {m : t = 0,1, ...},
donde para cada t = 0,1,..., m(- | ht) es una probabilidad con-
dicional sobre la o-algebra de Borel B(A), dada la historia h; :=
(0, Oy AQ,y ooy Te—1, 41, Qr—1, Ty, ), tal que my (A(zy, ) | he) =
1. El conjunto de todas las politicas es denotado por II.

Sea F:={¢: X xT — A| ¢ esmedible y ¢(z,a) € A(z,a), (z,a) €
X x I'}. Una sucesién m = {¢; | t = 0,1,...} de funciones ¢, € I es lla-
mada politica de Markov. Una politica de Markov 7 = {¢; | t = 0,1, ...}
es llamada politica estacionaria si ¢; = ¢ € F, para todo t =0, 1, ....

Dados los estados iniciales (z¢g = z, a9 = @) € X x I' y cualquier politi-
ca w € II, existe una medida de probabilidad Pg; @) inducida por la
tripleta (z, o, m) sobre el espacio Q@ = (X x T' x A)*°, con F la o-dlge-
bra producto. La existencia de esta medida de probabilidad se verifica
de manera andloga a la realizada en [28]. El correspondiente operador
esperanza serda denotado por ]E?z,a)‘ La tripleta (z,a,7) determina un
proceso estocastico (1, F, P(, ). { (¢, ax)}) lamado Proceso de Decisién
de Markov. En lo sucesivo se denota y = (z,a) y Y = X x I.



CAPITULO 1. APROXIMACION DETERMINISTA DE PDMS
CON DINAMICA ACOPLADA

1.2. Planteamiento del problema

Considere un modelo de control de Markov determinista (Y, 4, {A(y) :
y € Y},Qm,c) como se presenté en la Seccién 1.1. Ademds, considere
un sistema de control estocastico con el mismo espacio de estados Y,
espacio de controles A, conjuntos admisibles A(y), y € Y y funcién de
costo ¢, pero con el sistema dindmico descrito por

Yt+1 = H(yt7at7xt(€76))a t= 07 17

Observe que cuando el sistema es manejado por una politica determi-
nista, en la ley de transicién estocéstica (1.5), el sistema estocdstico se
convierte en un sistema determinista, con ley de transicién (1.6), cuando
e—0yd—0.

Para cada politica 7 € II y estado inicial A(sc, a) € Y, considere el costo
total esperado descontado, denotado por V. s(m, z, @), y definido como

Ve,é(ﬂﬁma) = E&a) [Z ﬁtC(CUmOénat)] )

t=0

donde 8 € (0,1) es el factor de descuento.

Por lo tanto, el problema de control éptimo es encontrar una politica
m* € II tal que

‘/675(7.[-*71‘7&) = 1/2%{‘76,6(7773% Oé)} = ‘/6,5(xa Oé),

(x,a) € X xT'. A 7* se le conoce como politica éptima, mientras que
Ves(z,a), (z,a) € Y es llamada funcién de valor éptimo. En el caso
determinista cuando e = 0 y 6 = 0, se denotard a V. s por V.

En el resto del capitulo, se establecen condiciones para realizar un analisis
asintdtico de la solucién éptima para el sistema estocéstico.

1.3. Suposiciones y resultados

En esta seccién, introducimos tres bloques de condiciones para estu-
diar la convergencia del sistema estocéstico definido por las ecuaciones
(1.1) ¥ (1.2). Ademds, se proporciona una cota para el indice de estabi-
lidad que depende de un pardmetro de perturbacién de ruido pequeno
be.5. En lo que sigue x(e,d) denota un elemento genérico de {x; (e, d)}.

8
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Suposicién 1.3.1. a) El conjunto A(xz,«) es compacto para cada
(x,a) € Y y el mapeo de valores-conjunto (xz,a) — A(x,a) es
semicontinuo superior con respecto a la métrica de Hausdorff.

b) La funcion de costo c(y,-) es semicontinua inferior sobre A(y)
para cada y €Y.

¢) Para cada funcion continua acotada U : Y — R la funcién

U (y,a) :=EU [H(y,a,x(€,5))] ,

(y,a) € K, es una funcion continua sobre K y E es introducida en
la Observacion 1.1.2.

La Suposicion 1.3.1 es necesaria para asegurar la existencia de minimi-
zadores en la correspondiente ecuacion de optimalidad. La Suposicién
1.3.1 a) es similar a la Suposicién 1 presentada en [30].

Sea Z : X x T' = [1,00) una funcién medible. Si U es una funcién con
valores reales sobre X x I', entonces su norma ponderada estd definida
como Ul a)|
T, Q
[Ullz == sup ———=

(z,0)eX xT Z(JZ, Oé) ’

donde Z denota la funcién de peso. Sea Bz el espacio de Banach de
funciones medibles U : Y — R tales que ||U||z < oc.

Suposicién 1.3.2. Ezisten constantes vy tal que y € (8,1) y una funcion
de peso W sobre Y tal que para cualesquiera € € [0,¢], § € [0,00] se
tiene que

a) le(y,a)l < W(y), (y,a),€ K.
b) EW [H(y,a,x(e,0))] < 3W (), (y.a) EK.

¢) Para cada estado y €'Y, la funcidn
W'(y,a) := EW [H(y,a,x(c,9))],
es continua en a € A(y).

La Suposicién 1.3.2 se usa para garantizar la existencia de soluciones a
la ecuacién de optimalidad [30]. Ademds, bajo las Suposiciones 1.3.1 y
1.3.2, el enfoque de PD es vélido. Por lo tanto, para cada (z,a) € X x T,
la siguiente relacion es valida:

Ves(z,a)= inf {c(z,a,a)+ 8 Ves(y)Q(ylz, a,a)}.
a€A(z,a) S1 %S
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Un procedimiento para aproximar la funcién de valor es por medio de
las funciones de iteracién valor que se definen como:

Vis(z,a)= inf {e(z,a,a)+ 8 Ve ) Qylz, s a) ),
a€A(z,a) S1%Ss ’

donde (z,a) € X xT yn=1,2,..., con V%(-) =0.
Suposicién 1.3.3. Ezisten constantes Lo, L1, La s y Lo o tales que
a) |e(y,a) = c(y',a)| < Loda(y,y'), para cada (y,a), (y',a) € K.

b) dl (H(% a, (51a S?))aH(y,a a, (817 52))) S lel (yv y/>7 para (ya a)a
(y/7a) €K, (s1,82) €51 xSy con L1 <1.
¢) Las funciones F' y G satisfacen:

(i) dx(F(x,a,a,sl),F(x,ma,s/l)) < Loar1(s1,51),
para todo (z,a,a) € K y para todo 51,5/1 € 5.
(’LZ) do (G(av 52)7 G(aa 5/2)) < L270/r2(527 5/2)7
para cualquier o € I' y s9, 5/2 € 5s.

Observacién 1.3.4. Bajo la Suposicion 1.3.3, la funcion de costo y
la funcion H involucrada en la dindmica de los estados son funciones
Lipschitz respecto a la variable y € Y. Ademds, las funciones F' y G son
funciones Lipschitz respecto a & y n, respectivamente.

Si se cumplen las Suposiciones 1.3.1 y 1.3.2 con argumentos similares
a los expuestos en [38] (considerando los respectivos cambios), se ga-
rantiza la existencia de una politica éptima 7. s = {fes, fes,...} donde
feo 1Y = A, ary1 = fes(xi, ), fes € F, t =0,1,... con correspon-
diente funcién de valor 17675(30, a,Tes) = Ves(x,a) € By y la esperanza
EV. s [H(y, a, x(e,0))] existe para cada € € [0,e0] ¥y § € [0, do], (y,a) € K.
Ademais, la politica éptima para el problema de control determinista es
denotado por 7§ = {f*, f*,...} con f* € F.

Sea L la distancia de Kantorovich definida en (S, B;):

L(x, x) = sup{|Ep(x) — Ep(x )| | ¢ tal que
lo(s) — (s )| <7(s,5), 5,5 €S}

Por otra parte, el indice de estabilidad A, s se define como

(1.7)

Ae,(s(yaﬂ-) = Ae,E(y>7r) - Vve,é(y)a Yy S Y7 m e IL

El indice A¢s(y, ) expresa el exceso del costo descontado cuando se
aplica la politica m para el proceso de control estocastico relacionado con

10
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(1.1) y (1.2) parae >0y 6 > 0, y € Y. La calidad de la aproximacién
para el sistema estocéstico por la politica 7§ serd medida por el indice
de estabilidad A, s(y, ng) (ver [17,30]), i.e.,

Ae,é(ya ’/TS) = Vve,é(yaﬂ—(}k) - V;,&(y% RS Y.

Por otra parte, defina un pardmetro perturbacién de ruido pequefio d. 5
como sigue:

0.5 = Emix {r1(£(e),£(0)), 72 (n(8),n(0)) }

para € € [0,¢] v § € [0,dp]. El Teorema 1.3.7 proporciona una cota
superior para A 5(y, 7) que involucra el pardmetro de ruido d 5. Los
siguientes lemas seran utilizados para demostrar los Teoremas 1.3.7 y
1.3.10.

Lema 1.3.5. Bajo las Suposiciones 1.3.1, 1.3.2 y 1.3.3a) yb), para cada
€ € [0,e0] y § € [0,00] fijos se tiene que Vs es una funcion Lipschitz,
para todo n = 1,2,.... En consecuencia, V¢ s es una funcion Lipschitz

con constante Lipschitz 1}%.

Demostracion. Sean € € [0,e] and 6 € [0,p]. La demostracion es por
induccién sobre n > 1. Para n = 1, observe que si (z,a),(x ,a ) €Y se
tiene que (z, ), (z',a/) €Y

[Vis(a,a) = Vil o)

/. _ oz / /
| fnf {e(x @)} — ot {e(a’, o, )}

< sup |C($, «, a) - C(xlaalva)‘
acA

Lody ((x, a), (o, o/)).

IN

Para n > 1, suponga que V!’{l es una funcién Lipschitz con constante

11
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Lo Z?—_OQ (BL1)". Entonces,

VEs(z, o) = V52", o)

érel,fq {c(x,a,a) —&-BEV;‘{l [H(x,oz,a,x(e,é))] }

— inf { (2, ,a) +5IEV:5_1 [H (', a,x(€,0))] H

acA

< sup {\c(m,a,a) —c(2',d,a)|
acA

+ lﬁEVené_l [H(z,a,a,x(€,0))] ,mgv:g—l [H(z', 0/, a, x(€,6))] ’}
< Lody ((z, ), (2", a"))

n—2

+ 8 sug ELg (BL1)"dy (H(x, a, a, x (€, 5)) , H(z’, o a,x(e, 5)))
ac i=0

n—2

< Lody ((z, @), (2', ")) + BLo Z(BLl)ilel ((z, ), (2', "))

=0

(LO + LO z_:(/BLl)Z> dl ((JC, a)v (I/v O‘/))

n—1

= Lo Y _(BL1)'di((z,0), (2',0")).

=0

Por lo tanto, Vs es una funcién Lipschitz con constante de Lipschitz

Ly Zi:O (BL1)%, para n € N.

Para verificar la segunda parte observe que SL; < 1, entonces se
cumple que Y2 (BL1)" = = ﬁL . Ademds, como Vs — V5, cuando
n — 00, se consigue que V. s es una func10n Llpschltz con constante de

Lipschitz 17LB°L1 . O

Lema 1.3.6. Bajo las Suposiciones 1.8.1 y 1.8.2b), para cada € € [0, €]
y 6 €10,00] se cumple que

t—1

E;°  sup {EW [H(yt,l,a,x,g,l(e,é))] } < (7) W(y). (1.8)
a€A(yt—1) ﬂ

Demostracion. Sean € € [0,¢], 6 € [0,00] y y € Y. De la Suposicién

1.3.2 b), se tiene que

EW [H (yi-1,a, xi-1(€,0))] < ZW(ytfl),

=

para cualquier ¢ > 1 fijo. Entonces se consigue que

E;ré sup  {EW [H(yi-1,a, x1-1(€,9))] } < Py]E W (yi—1),
a€A(y,1) B

12
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para cualquier ¢ > 1 fijo. Ahora, considere h; = {y,a1,y1,a2, .., Yt—1, 0t },
la historia del proceso conjunto descrito por las ecuaciones (1.1) y (1.2)
bajo la politica n§ = {f*, f*, ...}, entonces

E;SW(yt_l) = EZSW(H(yt_z, a2, Xt—2(€, 5)))
= E5 [EW (H (g3, 012, xe-2(6,0))) [ 2]

< GET [Weo)lhes)

= %]E;O {W (H(yi—3,ai—3, xt—3(€,9)))

=7
B

i)
Ey° W (H (Y13, a3, xi-3(€,0))).
Por lo tanto,

]E;3 sup  {EW [H (yi—1,a,xi-1(€,0))] }
a€A(yi-1)

2
< <;> E,ZO W(H(ytfiﬁ At—3, Xt*3(67 6))> :

Continuando con este procedimiento iterativo se tiene que

t—1
EF  sup mww@hmmmwm}sﬁ) W ().
a€A(yi—1) ﬁ

O

La demostracién del siguiente teorema estd basada en el Teorema 1
de [30].

Teorema 1.3.7. Bajo las Suposiciones 1.3.1 y 1.3.3 se cumple que
A€>5<y’7r>0k) S é(y)ge,éa AS Y7
donde

A _ 2/BLO méX{LZ;E; L2,oz} 1 ﬁ
) = 1= BLy =8 (11—

para cada € € [0, €] y d € [0, do].

Demostracion. Observe que para € € [0,€9] y 6 € [0, dp] se cumple que
Ves v fe,s satisfacen la siguiente ecuacién de optimalidad

Veoly) = fnf {e(y,a)+PEVes [H(y, a.x(c; )]}

(1.9)
= c(y, fe,é (y)) + BEV;,é [H (y7 fe,é (y)7 X(€7 5))] :

13
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Denote
Res(y,a) == c(y,a) + BEV. s [H(y,a,x(€,9))], (y,a) €K,  (1.10)

y considere iLt ={y,a1,v1, a2, ...,Yt—1, Gt }, como en la demostracién del
Lema 1.3.6. Por la propiedad de Markov se verifica que

B [8Ves(ylhe] =Res(o1,ai) — oy a)

— inf R, _1,a)+ inf R, _
a€A(y:_1) 5(i-1,0) aCA(y_1) 2 (191)1)

Denotando A:"S = Res(ye—1,a¢) — mfaeaqy, o) Res(ye—1,a), por (1.11)
se obtiene que

E™ [5‘4,6(%)%4 = A:’é —c(ye,as) + Ve s(ye—1)- (1.12)

Si tomamos valor esperado en (1.12), obtenemos que
Ey® [BVes ()] = By [Ves (4-1)] =By [c(ye—1, ar)] +Ey° {Aﬂ - (1.13)
Sumando (1.13) sobre t = 1,2, ...,n con pesos 3'~! conseguimos que

n n

> B TER felyer,a0)] =Y B [EF V(i) — BE Ve ()]

t=1 t=1

+ Z Bt_lEZS |:A§’6:|
=1 (1.14)
=Ves(y) — B By Ves(yn) + D B ER AT

t=1

Como V.5 € Bw, im0 B"E;rg‘/;’g(yn) = 0. Por lo tanto, cuando
n — oo, se sigue de (1.14) que

oo oo

Ae,éo (ya ﬂ'é) = ZﬁtilE;O A?é = ZﬁtilEgoc(yt—laat) - ‘/e,ﬁ(y)
t=1 t=1
(1.15)

Ahora, por (1.9) y (1.10), se sigue que

Roo(y, f*(y)) = aeigfy) Roo(y,a),

entonces

AP =R s5(ye—1,a) — Roo(yi1, f*(yi-1))
+ inf ){RO,O(yt—l, a)} —  inf ){Re,é(ytﬂ,a)}v

a€A(Yt—1 a€A(yt—1

14
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esto implica que

AP <Res(ye—1,a) — Roo(yi1, f*(yi-1))

+  sup {Roo(Yi-1,a) — Res(yi—1,0a)}
a€A(yt—1)

Por lo tanto,

IAS° <2 sup  |Res(ye-1,a) — Roo(ye-1,0)]
a€A(ys_1)

< 26 sup ’E‘/ﬁts(H(yt—lvaWX(e? 6))) 7EV(H(yt—1aa‘7X(070)))’a
a€A(ye—1)

donde el valor esperado en el ultimo término es tomado con respecto al
vector aleatorio x(e,0) para t fijo. De la ultima desigualdad se sigue que

‘A§76| Szﬁ jl(-lp ) ’E‘/E,(S (H(ytfla%)((ﬁa‘;))) - E‘/;,(S (H(ytflaavx(070)))|
a€A(Yyt—1

+28 sup |EV.s(H(yi-1,a,x(0,0))) —EV (H(y:-1,a,x(0,0)))]
a€A(yt—1)

<281 (x(€,8), x(0,0)) (1.16)

+2B|[Ves = Vlw  sup  EW(H(yi-1,a,x(0,0))),
a€A(yt—1)

donde
M1 (X(Ev 6)v X(Ov 0)) = Ssup ’E‘/;,é (H(y7 a, X(Ev 6))) —EVes (H(y, a, X(07 0))) ‘

(y,a)€K
De la Proposicién 8.3.9 parte (a) de [38], se puede demostrar que

Tosu(y) = inf {ely, )+ BBu(H (y,0.x(c.9))) }.

es un operador contractivo en By, con mdédulo v, para cada € € [0, €]
y 0 € [0,d0]. Como V5 y V son puntos fijos para el operador T, s se
consigue que

Wes —Vilw < ||Te.sVes — To,0Vesllw + | To,0Ve,s — To,0Vw-
Esta tultima relacién implica que
[Ves = Viiw
< (1 =) TesVes = TooVesllw

_B {SupaeA(y) |EV&5 [H(y7a,x(€7 6))} Bl [H(%Q’X(O’O)M.h}).

sup
— 7 yey W(y)

Combinando la desigualdad (1.8) del Lema 1.3.6 y las expresiones (1.16)
y (1.17), se consigue que

" % (7) . W(yﬂ 11 (x(e,8), X(0,0)).

Eg [AL°] < 28 5
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Finalmente, por (1.15) se obtiene que

Beslyni) <28 | 15 + LW | (e 510,00,

Por el Lema 1.3.5, se tiene que

Ly 1 B

1— 6L, L 5t 1 V)QW(@D} L(x(e,6), x(0,0)).
(1.18)

Considere el caso particular x’ = x(0,0) on (1.7), entonces se sigue que

L(X(67 6)7 X(0= 0)) = ]ET(X(€7 6)7 X(07 0)) = 36,(5'

Por lo tanto, sustituyendo la igualdad anterior en la ecuacién (1.18) el
resultado se sigue. O

Ae,&(y7 WS) S 26

Observacion 1.3.8. Observe que el Teorema 1.3.7 garantiza que la
politica dptima del sistema determinista (ver (1.8) y (1.4)) ny € F es
asintdticamente dptima para el sistema estocdstico (ver(1.1) y (1.2)),
i.e.,

lim |V 5(y, m5) — Ves(y)| = 0.

€,0—0
En el siguiente lema se verifica la continuidad de la funcién f*, bajo
el supuesto de que existe una unica politica éptima 7. La unicidad de
la politica éptima es una condicién restrictiva, pero en [16] se pueden
encontrar tres bloques de condiciones para las componentes del modelo
de decisién para garantizar esta suposicién. En particular, en [16] se
proporcionan condiciones para la unicidad cuando el espacio de estados
es un subconjunto de R”.

Lema 1.3.9. Bajo las Suposiciones 1.58.1, 1.8.2 y si ademdas, la politica
dptima estacionaria para el problema determinista w§ = {f*, f*,...} es
unica, entonces f* es una funcion continua.

Demostracion. Por contradicciéon se demostrard que para e = 0y § =
0, la politica 6ptima f* : ¥ — A es una funcién continua. Bajo las
Suposiciones 1.3.1 y 1.3.2 se tiene que

V(z,a) = auelg {c(x,a,a) _|_5[/(F(x7a,a,g(O)),G(OM?(O)))} (1.19)

c(z,a, f*(z,a)) + B(F(mya, f(x,a), 31),G(oz7 52))7

(z,a) € Y. Suponga que existe (#,&) € Y donde f* no es continua.
Entonces, existe una sucesién {(z,, a,)} tal que (x,, a,) — (&, &) pero
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do (f*(xn,ozn),f*(i,d)) -+ 0, cuando n — o00. Después de tomar una
subsucesién -si es necesario- sin pérdida de generalidad, existe 7 > 0 tal
que ds (f*(xn, an), (2, d)) > 7, paratodon € N. Como A es compacto,
existe una subsucesién {z,, } de {z, = f*(z,, @)} que converge a z € A,
donde z # f*(&,&). Considere (X, , o, ) ¥ f*(Tn,, n,, ) en vez de (z, @)
y f*(z,a) en (1.19), entonces se consigue que

V(xnk I Oénk) :c(mnk I a’l’bk Y f* (xnk I ank))+

ﬂV(F(‘T’ﬂk’ank7f*(xnk7ank)’g(o))’G(ank’n(o)))-

Por la continuidad de las funciones ¢, F, G y V, cuando k — oo, se
obtiene que

V(z,

[

) = (i, 6,2) + BV (P (6,2, £(0)), G(a,0(0)) ),

(#,&) € Y. Por las Suposiciones 1.3.1 y 1.3.2, existe una politica éptima

fconz= f(z,&). Pero f(2,&) # f*(#,&), lo cual contradice la unicidad
de la politica 6ptima. Por lo tanto, f* es continua. O

A continuacién, se enuncia y demuestra el teorema principal.

Teorema 1.3.10. Bajo las Suposiciones 1.5.1, 1.3.2 y 1.5.3, para cada
€ €10,e0] y 6 €[0,00] se cumplen las siguientes afirmaciones

Lo méx{Lz z,L2,o} ¢
(a) |Ves = Vllw < 2 2oniilianlacls

(b) Sea K un subconjunto compacto de Y. Si la politica estacionaria
optima para el problema determinista 7§ = {f*, f*,...} es unica,
entonces fes — f* uniformemente sobre K cuando e -0 yd —
0.

Demostracion. (a) La expresién (1.17) implica que

Ves = Viw < B —7) " sup {W(y)
yey

:};I() ) |E‘/e,5 (H(ya a, X(E, 5))) - Evve,é (H(yv a, X(07 0))) ’}

Ahora, por el Lema 1.3.5 y como W(y) > 1 para y € Y, se tiene que

—1 LO
[Ves = Viw < B(1—7) 1= 3L,
sup sup [Eds (H (y,a,x(e,8)), H (v, a,x(0,0)) ) |

y€Y a€A(y)

Por otro lado, las siguientes expresiones son vélidas:
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‘]Edl (H(% a,x(e,6)), H(y,a, x(0, 0))) \

—|E max {da7 (F(:c,a,a,{(e)),F(x,a,a,f(()))),

da (G(a, 77(5)) }

<|EL2or1(£(€),£(0)) | 1{an <d, }( z, o, a,€(€)), G(a,n(é))),
(F(m,a,a,g( )>+
‘ELQ a?"g( (0),m ‘l{d <d. }< x, o, a,&(e ) G(a,n(é))),

(F(m,a,a,f(o))vG(O"n(o)))>’

donde 174, <g4,}(-) denota la funcién indicadora sobre {d, < d,}, mien-
tras que 1g4, <q,3(-) denota la funcién indicadora sobre {d, < d}. En-
tonces, se concluye que

—1 Lo méX{LZx, LQ@}S s
1—- 8L %

Ves = Viw < (1 =)

(b) Suponga que existen K C Y compacto, un ntmero real 7 > 0y
sucesiones {e, }, {d,} convergentes a 0 tales que

dg(femgn(xn,ozn),f*(xn,an)) > n=12, .., (1.20)

NN

para alguna sucesién convergente {(x,,ay)} C K, tal que (x,,a,) —
(z,a) € K, cuando n — co. Como A es compacto, elija una subsucesién
{(@m,am)} de {(zn, )} tal que fe, 5, (Tm,am) — a € A. Ahora, por
la continuidad de f* que provee el Lema 1.3.5 y por (1.20) se tiene que
da(a, f*(z,a)) > Z. Como f., s, es una politica ptima, andlogamente
a (1.19) se obtiene que param =1,2, ...,

Ve

€7n76m (Im’ Oém) = C(xm7 Oy fﬁmrvém (Im’ Oém))

1.21
+ﬁ]EVvsm,§m (F(xm,amaf*(-rmvam)af(em))vG(amﬂ?(ém)))' ( )
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Por otro lado, note que

EVey i (F (s s £ (@ 0m). E(6n)) . G tm, (6) ) =
V(F(2,0,0,¢0)),G(an(0)) )|

<[EVep (F (@ s £ @y ) Ee)), (am,nwm)))
Verwsson (F (@ms s £ (@ms ), €(0)), G (0ms 1(0)) )|
HVerr o (F (s s [ @y ), £(0)), G (tm, m(0)) ) =

V(F (@ s Fer s (s @), £(0)), G, 1(0)) )|
HV(F (@ s fer i (s @0m), £0)), G (m, m(0)) ) -
V(F(2,0,0,¢(0)),G(an(0)) )]

(1.22)

Por el Lema 1.3.5, el primer término del lado derecho de (1.22) es menor
o igual que 17L7;L15Em15m. Los términos restantes convergen a 0 cuando

m — oo, por la continuidad de las funciones F, G y V. Por lo tanto,
cuando m — oo, (1.21) se convierte en

V(z,a) = c(z,a,a) + BV (F(:U, Q, a,{(O)), G(Oc, 7](0)))

Por argumentos similares a los proporcionados en la demostracién del
Lema 1.3.9, se sabe que existe una politica 6ptima f con a = f(x,q),
pero f(z,a) # f*(x,a). Lo cual contradice la unicidad de la politica
6ptima. Por lo tanto, f., s, converge uniformemente a f*. O

1.4. Ejemplos

En esta seccién, se presentan dos ejemplos que ilustran la teoria
desarrollada y dos ejemplos que no verifican alguna de las suposicio-
nes del Teorema 1.3.7 y que, por tanto, proporcionan conclusiones muy
distintas a las que provee tal resultado. En esta seccién, se consideran
dg,da,do, 71 ¥y 79 como la métrica usual en R.

1.4.1. Problema de consumo-inversién

Sera considerado un problema de consumo-inversién en el que un
inversor debe destinar su riqueza actual, digamos x;, entre inversion a,
y consumo x; — ag, en cada etapa t = 0,1,2,.... Ademds, en cada etapa
t se impone un factor de descuento exp(—a;), que depende de la tasa
de interés bancario actual a;. Los espacios de estados y acciones seran
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X = A = [0,00). Suponiendo que no se permite el endeudamiento, el
conjunto de controles admisibles toma la forma: A(z, a) = [0, z]. Ademds
se supone que el banco recibe al menos una tasa de interés de exp(a*)—1
para a® > 0. De este modo, el espacio de la tasa de descuento es I' =
[a*,00). El proceso de estados {z:} y el proceso de descuentos {a:}
evolucionan de acuerdo con las ecuaciones en diferencias:

w1 = &ie) (2 — ar),

1.23
a1 = o + e (6), ( )

t=0,1,2,..., con (zg, ) fijo dado, {&} vy {m:} son sucesiones de va-
riables aleatorias independientes e idénticamente distribuidas (v.a.i.i.d.)
independientes de (xg,ag) que tienen distribucién discreta con valores

en S; = Sy =10,1].

Observacién 1.4.1. En particular, si n:(0) = s = 0, t = 0,1,..., en
la ecuacidn (1.23) el correspondiente PDM determinista tiene factor de
descuento constante.

El objetivo es maximizar la utilidad de consumo del inversor sobre todo
m e I,

V (TI' xZ, Oé E(x @) [Ze .fEt,OZt,(%)] )

donde S; = ag+a3 +---+ar_1 y ues la funcién de utilidad. Considere
la funcién de utilidad u definida por

b
u(z,a,a) = —a™t,
ga!

(z,0,a) € K, donde b > 0, 71 € (0,1). Ademas, suponga que fiy, =
E[("] < 0o con 0 < fBu,, <1, donde = e~*. Por la definicién de la
funcién de utilidad, de manera inmediata se satisfacen las Suposiciones
1.3.1b) y 1.3.3 a) con Ly := 1.

Note que A(x, o) es compacto para todo (z, ) € X xI'. Ahora, considere
H, la métrica de Haussdorff, entonces para (z,a), (x,a) € X x T se
tiene que

’

H, (A(‘T7a)7 A(x 7a/)) = Ha([ovxL [Ov ‘r,])
=z — ac/|

< mzix{|x—x,|, |a—oz,|}
=d; ((m,a), (x/,a/)) .
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Luego el mapeo de valores-conjunto (z,«) — A(x,«) es continuo res-
pecto a la métrica de Hausdorff, por lo que la Suposicién 1.3.1 a) es
valida. Ademads, por la continuidad de H la funcién U ' (z,a,a) también
es continua, por lo que se cumple 1.3.1 ¢).

Considere W : X x I' — [1, 00) definida por

by,

W(x’ Oé) - st (1 - 6”71)

2t +1, (x,a) € X xT.

En [19] se verifica que la funcién W satisface las Suposiciones 1.3.2 a),
b). Ademads, note que

, b
W (z,a,a) = ’Yl(lﬁizﬂm)(x —a)E(e) +1

es continua sobre K, por lo que la Suposicién 1.3.2 se sigue.

Por otra parte, para (z,a,a), (z, o ,a) € Ky (s1,52) € S; X Sy se tiene
que

dy (H((E,Oé,a, (31,32)),H(a:/7a/,a, (sla32))> :méx{ﬂw - .’E/|, |C¥ - Ck/|}
<max{|z — ' |,|o—a |}

:dl ((l‘, Oé), ('T,v a,))7
con lo que 1.3.3 b) se cumple para L; := 1.

Finalmente, se mostrard la condicién 1.3.3 ¢):

dy (F(2,0,0,6(w1)), F(z, 0,0, (@))))
=|F(z,0,a f(wl)) Fz, 0,0, (w))]
=| (8@ ~€'w) (@~ a)

<wl¢(wr) - e’ (wy)|

=Ly .71 (E(w1),€ (w))),

para todo (z,a,a) € Ky &(w:), € (w)) € Sy, donde Ly, := .
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También, se tiene que

do (G0, n(w2)), Gla, 0 (wy))) =|G(a, (wa)) = Gla,n (wy))]
=la + n(wz) = (@ + 7' (ws))]
=0[n(ws2) — 1 (wy)
<do|n(w2) =7 (wy)]

=L ara(n(w2), 1 (wy)),

para todo a € Ty n(ws), n (wy) € Sz, donde Ly o = do.

Por el Teorema 1.3.7, se obtiene la desigualdad
A6’5((1‘, a)v 7‘—8)
2 max{x, o} 1 Ié; ( by, )] -
< + 2+ 1| R,
1-5 1=5 " (1= \m - Buy)
donde R = Eméx {|€(e) — £(0)],|n(5) — n(0)|}. Por el Teorema 1.3.10
inciso a) la tasa de convergencia de la funcién de valor éptimo es:
Bmax{x, o}
1=y @A-8)

Finalmente, por el Teorema 1.3.10 inciso b) para cualquier subconjunto
K del espacio de estados X x I se tiene que

sup |f€,5(va‘) - f*(xva)l —0,
(z,0)eK

cuando € > 0y & — 0.

1.4.2. Problema de control con ruido aditivo pequeno

Suponga que la dindmica del sistema estda dada por las ecuaciones en
diferencias siguientes:

Tp1 = % (e + ae + & (e))

a1 = hay + mi(9),
t=01,2,..,donde 0 < h <1y {&(€e)},{n(d)} son sucesiones de
v.a.iid. que toman valores en S1 = [0, 2] y S = [0, 1], respectivamente.
El espacio de z-estados es X = [0, B], donde 0 < B < 6 (% — 1), con 3

el factor de descuento y el espacio de a-estados es I' = [0, 1], es decir,
0 < a < 1. El espacio de control es A = [0, %] El conjunto de controles
admisibles en los estados (z, o) es A(z, o) = [0, za] y la funcién de costo
es c(z,a,a) = za — a, (z,a,a) € K.

(1.24)

22



1.4. EJEMPLOS

Observacién 1.4.2. En particular, si 7;(0) = so = 0, t = 0,1,..., y
h =1, el correspondiente PDM determinista tiene pardmetro constante
.

En este ejemplo, la Suposicion 1.3.1 se verifica de manera inmediata. A
continuacion, seran verificadas las Suposiciones 1.3.2 y 1.3.3.

Considere W : X x I" — [1, 00) definida por W(z,a) = = + 1 para todo
(z,a) € X x I'. Entonces se cumple que

le(z, a,a)| = (za — a)

<zr—a

para todo (z,a,a) € K.
También, se tiene que

EW [H (z, o, a, (£(€),n(9)))] =E [; (ax+a+&(e)) + 1]

(ax+a+EE(e)) + 1

B
(2ax+ 3) +1

(2x+2+ g) (1.25)

IN

INA
N — N~ N

A

8

+
—_

+
\

<<1+§>(m+1)

:%W(x,a),

para todo (z,,a) € K donde v = B(l + %) Es claro que v > B.
Ademsds, note que como B < 6 (% — 1) se tiene que v < 1 y por lo
tanto, v € (8, 1).

De la segunda igualdad en (1.25) se observa que la funcién
EW [H(x, a,a, x(€, 5))] ,

es continua sobre K. Por lo tanto, la Suposicién 1.3.2 se cumple.
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Finalmente, se verifica la Suposicién 1.3.3. Note que

le(z, o, a) — c(z, o, a)| =lza—a— (ajlo/ —a) |

’ ’
:\xa—(xa)|
/

<l —a|

Sméx{|x—x/|,|a—a/|}
:LOdl ((I‘,O[), (xl7a/)) )
para todo (z,a,a), (x/,a/,a) € K, donde Lg := 1.

Las siguientes desigualdades se cumplen para la dindmica conjunta de
los estados

, 1 1 . ’
:max{’2asc—2am ,‘h(a—a)}
, 1
< méx {zx—x h|a—a|}
<Lid; <(337a), (a:/,al)) ,

para todo (z,,a) € Ky (s1,s2) € S1 x5z, donde Ly := méx {3,h} < 1.

Finalmente, se verifican las condiciones Lipschitz para las funciones F'y
G respecto a las variables de perturbacién:

do (F(2,00,€(0)), F(r,0,0,€ (6))))
’;(ax+a+§(wl)) ;(O‘x+a+§/(w;))’
=’;5(wl> - 1w
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para todo (z,a,a) € K, £(w1),€ (wy) € S1, donde Ly, =1y
da (G (0 (@2)), Gl (5)) ) =|(ha+ n(w2)) = (ha+1 (@)) |
()

SLQ,(XTQ (’I](WQ), n

= [nw2) = n

’

(@)

para cada @ € T' y n(ws), n (wé) € Sy, donde Ly, := 1. Por lo tanto, la
Suposicién 1.3.3 se cumple.

Por el Teorema 1.3.7 se tiene que

R,

i 28 1 B
Acs((z,a),m) < 1 2\
3((z,a),m0) < 1— f (max {2, A}) {1—ﬁ+ (1-(81+ %)) oy

donde R := Eméx {|¢(e) — £(0)],|n(6) —n(0)|}. Mientras que por el
Teorema 1.3.10 la tasa de convergencia de la funcién de valor es:

p
[1= (B0 + )] [1 =B (méx{3,h})]
Ademas, por el inciso b) del Teorema 1.3.10 se tiene que fes(x, ) —

f*(x, @) sobre cualquier subconjunto K del espacio de estados X x T,
cuando e - 0y 6 — 0.

1.4.3. Importancia de las suposiciones

Finalmente, presentamos dos ejemplos donde no se satisfacen las Su-
posiciones 1.3.2 y 1.3.3 y por lo tanto, no se garantizan las conclusiones
del Teorema 1.3.7.

Ejemplo 1.4.3. Sean X = [0,00), [ =[0,1], A= [1, 5], ¢,6 € [0,1] y
la funcion de costo en una etapa dada por

c(z,a,0) =1, (z,a) € X xT,

B a, {176[071], aEF,
c(r,a,a) = atz—1, x>1,a€(0,%), a€el,
l)_ 07 JL‘E[O,IL CMEF,

g’ \z—1, z>1, ael.

Considere las ecuaciones en diferencias:

ez, a,

Tpp1 = Ty + ey, (1.26)
a1 = kay + 0mg, .
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t = 0,1,..., donde {&} es una sucesion de v.a.i.i.d. con distribucidn

uniforme sobre (0,1), n, = 0, t = 1,2,... y k < 1. La aprozimacion

determinista al proceso (1.26) estd dada por las ecuaciones:
Terl = Ty,

t+1 L (1.27)

Q1 = ko,

t=1,2,... y k< 1. Considere xo =0 y ag = 1, entonces para cualquier

politica de control en (1.27), se tiene que (z¢, c¢) = (0,hY), t = 1,2, ....

Por lo tanto, la politica 7§ = {%, %, ...} proporciona el valor minimo de

V((O,l),ﬂ'é) = V((0,1)) = 0. Ahora, si se aplica la politica 7§ en la
ecuacion (1.26) con estado inicial (0,1) se obtiene que

1
o 5t1§: Bk)" €it1, (1.28)
t=1,2,.... Observe que el primer término del lado derecho de (1.28) es
mayor que 1, por tanto, xy > 1 para t = 1,2, .... Como c(z, a, %) =zr—1

para x > 1 y usando (1.28) se consigue que

Ly 1 o 1
ﬁtE((],l)C(J?nOét,B) ﬂtE(O n |5 ﬂt 12 Bk) €1 — 1

_1+ﬁz k)’

BB (i
agg;wm
_ kB1—(kp)*
9 1k
t = 1,2,.... Ahora, para cada €1 € (0, 2) elija la politica estacionaria
m = {e1,€1,...}, por (1.26) se obtiene que x; € [0,1], t = 0,1,2,....
Observe que

‘7675((())1)7 (0 1)

Zﬁ c ymataat ]
Zﬁt€1‘|

t=0

_E?ol 1)

De esta manera,

0 < Ves((0,1)) < Ves((0,1),m1) — 0,
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cuando €1 — 0. Por otro lado, observe que (kB)t < kB3, para t > 1,
entonces

Ae,&((oa 1)3 71—1) = Ae,é((ov 1)5 7T1) - ‘/;,5((07 1))
=E{ 1) lz ﬂtc(ytvatvat)]

kﬁ 1— (kB)!
Z 1— kB
1— (kB)!
2Z 1— kB
/BOO
S
=0Q.

Por lo tanto, AE,(;((O, 1),771) = 00. En este ejemplo, no se cumplen las
condiciones de la Suposicion 1.8.2, en particular, no existe una funcion
WY — [1,00) continua tal que |c(y,a)| < W(y), para (y,a) € K. En
este caso, ocurre que A¢ 5((0,1),m1) = oo, para cualesquzem €,0 > 0.

Ejemplo 1.4.4. Sean X =R, T = [0,00), A = {0,1}, €,6 € [0,1] y
para i € {0,1} se define la funcidn de costo en una etapa por

oz, a,i) = 1, <0, €T,
Y13, en otro caso.

Ademds, considere las ecuaciones en diferencias:

Tii1 = T —€
t+1 ray (ar — €), (1.29)
at+1 = hOét — (57’],5,
t =0,1,..., donde {&} es una sucesion de variables aleatorias con dis-

tribucion normal estdndar y {n;} es una sucesion de variables aleatorias
con distribucion exponencial con pardmetro 1, h > 0. La aproximacion
determinista al proceso (1.29) estd dada por las ecuaciones:

Tt41 = QpT¢At,

(1.30)

Ayl = haov,
t = 0,1,.... Considere estados iniciales xg = 1 y ag = 1. Se puede
observar que la politica w5 = {O,Q,...} es optima para el proceso de-
terminista (1.80) y para € > 0, Vﬁ,g((l,l),ﬂ(’;) = 1i5- Mientras que
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‘7575((1, 1),71'1) = %, con w1 = {1,1,...}. Por lo tanto,

Acs((1,1),m) =Ves((1,1),m1) — Ves((1,1))
>Ves((1,1),m1) — Ves((1,1),75)
3 1
T1-8 1-8
_ 2
et

En este ejemplo, la Suposicion 1.3.3 no se verifica, en particular la fun-
cion de costo ¢, no es una funcién Lipschitz. En este caso se concluye
que A 5(1,1) > —2_ aunque de,s = 0 cuando e — 0 y 6 — 0.

-«

Tenga en cuenta que si L1 > 1 en la Suposicién 1.3.3 b), no hay ga-
rantia de encontrar una cota superior para A, s(y, 7)) ni encontrar una
tasa de convergencia para la funcién de valor éptimo, cuando ocurre que
BLy > 1.

En el siguiente capitulo se presenta una aplicacién del enfoque de
ecuaciones en diferencias acopladas, en el que se aborda un modelo de
crecimiento econémico [58]. El modelo original estd dado por una ecua-
cién en diferencias que no satisface las condiciones Lipschitz establecidas
en las condiciones del modelo de control que se abordé en este capitulo.
El modelo propuesto es perturbado por dos ruidos pequenos y median-
te un enfoque de ecuaciones en diferencias acopladas, se presenta un
teorema central del limite.
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Capitulo 2

Comportamiento normal
en un modelo de
crecimiento econéomico

En este capitulo, se aborda un problema de crecimiento econémico
que se ha estudiado ampliamente en [58]. En tal articulo, los autores
muestran que las trayectorias de acumulacién de capital convergen a las
trayectorias correspondientes de un modelo determinista. Otra de las
conclusiones es un teorema del limite central funcional que muestra que
a una tasa o, las trayectorias del capital centrado son asintéticamente
normales. Este resultado es valido tanto para el nivel de capital como
para su logaritmo. La convergencia mencionada se logra bajo existencia
de un estado estacionario para el sistema determinista.

Inicialmente se identificé el problema de crecimiento econémico con
un Proceso de Decision de Markov que evolucionan través de dos ecua-
ciones en diferencias acopladas como las planteadas en el Capitulo 1
de este escrito, que se propusieron en [49]. Se abordé este problema de
crecimiento econémico considerando la tasa de depreciacién del capital
como una cantidad aleatoria, suponiendo que la depreciacion del capital
se desarrolla de acuerdo con una tasa que cuenta con una ecuacién en
diferencias para su evolucion. Esto permitié resolver el problema usando
Aprendizaje por Refuerzo (AR), especificamente se utilizé la metodo-
logia de @-learning. Para lograr lo anterior, se discretizo el espacio de
estados y el espacio de acciones asociados al PDM del problema de cre-
cimiento econémico. Se encontré la politica casi-6ptima que proporciona
Q-learning y como consecuencia se presentan las realizaciones de la tra-
yectoria éptima del sistema estocastico cuando el estado estacionario
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del sistema determinista se considera como el estado inicial del sistema
aleatorio. Lo anterior representa una solucién aproximada para el pro-
blema de crecimiento econémico. Ademads, se presenta evidencia de la
convergencia del sistema aleatorio al estado estable determinista, como
el que se define en [15,43]. Por otro lado, se abordé la convergencia de
las trayectorias del capital. Como resultado se obtuvo un teorema limite
en el contexto de dindmicas acopladas que involucra una funcién de los
logaritmos de las dindmicas del capital en el modelo aleatorio y en el
determinista. Este resultado se complementa con experimentos numéri-
cos en donde se fijan los valores de los parametros del modelo, y como
resultado se presentan algunos histogramas y pruebas estadisticas que
garantizan el comportamiento normal de la transformacién de los loga-
ritmos de los capitales de los sistemas determinista y aleatorio.

Lo anterior corresponde a un caso particular del estudio de pequenas
perturbaciones en PDMs, por lo que se resume brevemente el trabajo
relacionado a esta linea. El estudio en [45], se consideré el problema de
aproximaciéon de un proceso de control estocastico por un proceso de-
terminista en el caso continuo. En este articulo, los autores demostraron
que el problema estocastico puede ser aproximado por un determinista
cuando el ruido es pequeno y las fluctuaciones se vuelven rapidas. En
este contexto, se demuestra que el control éptimo para el problema de-
terminista es asintéticamente 6ptimo para problemas estocédsticos. En
el caso continuo, [23] aborda un problema similar, es decir, cuando los
efectos del ruido en un sistema fisico son pequenos, estos autores reali-
zaron un analisis asintético de aproximacion de difusién y usaron esto
para estimaciones deseadas del sistema original. Para PDMs a tiempo
discreto, esta clase de problemas fueron estudiados por [17,18], donde la
dindmica del sistema esta descrita por una sola ecuacién en diferencias.
La convergencia entre estos modelos también fue estudiada en [44]. Sin
embargo, la convergencia fue estudiada usando sucesiones que pertene-
cen al conjunto de parejas de estado-accién admisibles, que se supone es
un subconjunto de un espacio euclidiano. Ademds, este estudio se lleva a
cabo bajo el supuesto de que el espacio de acciones es un conjunto com-
pacto y que la funcion de costos es acotada. Ahora, cuando consideramos
PDMs que se desarrollan con respecto a (1.1) y (1.2), los resultados que
aparecen en [17] son generalizados.

El enfoque de ecuaciones acopladas puede aplicarse, por ejemplo,
cuando se considera un factor de descuento aleatorio [25-28], donde la
segunda ecuacién en diferencias se refiere a la evolucion del factor de
descuento aleatorio. Recientemente, en el contexto de ecuaciones en di-
ferencias con dindmicas acopladas, en [49] se imponen restricciones de
continuidad de Lipschitz [39,46] sobre las componentes del modelo de
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control y se aplican técnicas de PD para obtener las conclusiones si-
guientes: una tasa de convergencia de la funcion de costo éptimo para el
sistema aleatorio con respecto al sistema determinista y la convergencia
uniforme de las politicas estocdsticas éptimas para la politica determi-
nista cuando € — 0 y 6 — 0, sobre subconjuntos compactos del espacio
de estados. Finalmente, aunque consideramos un enfoque de ecuaciones
en diferencias acopladas, no contamos con condiciones Lipschitz para las
componentes del modelo de crecimiento econémico por lo que no pode-
mos asegurar las conclusiones dadas en [49].

El capitulo esta organizado como sigue. En la Seccién 2.1, se establece
la teoria relacionada a @Q-learning que permite proporcionar una solucién
aproximada al problema de crecimiento econdémico. En la Seccién 2.2, se
presenta la formulaciéon del problema de crecimiento econémico a través
de un PDM. En la Seccién 2.3, se presenta un teorema limite en el con-
texto de dindmicas acopladas que involucra una funcién de los logaritmos
de las dinamicas del capital en el modelo aleatorio y determinista. Pos-
teriormente, en la Seccién 2.4 se ilustran los experimentos numéricos en
los que se muestran como resultados la trayectoria éptima del sistema
aleatorio, histogramas y pruebas estadisticas que garantizan el compor-
tamiento normal de la transformacién de los logaritmos de los capitales
del sistema determinista y del aleatorio.

2.1. (Q-learning

En la literatura, es ampliamente reconocido que existen situaciones en
las que los PDMs presentan inconvenientes, por ejemplo, cuando se tra-
baja con altas dimensiones o cuando se tiene problemas con el modelaje,
lo que en conjunto se denomina la doble maldicién de la Programacién
Dindmica [33]. Una salida que se puede proporcionar para evitar la do-
ble maldicién de la PD es la metodologia de Aprendizaje por Refuerzo
(AR). Esto es posible ya que el esfuerzo de modelado en AR es menor
que el de PD. Una cuestion notable es que en PDMs a gran escala, el
enfoque de PD no es factible, mientras que AR sigue siendo factible [33].
Ademads, para resolver problemas cuyas probabilidades de transicién son
dificiles de estimar, AR es un enfoque atractivo que produce soluciones
casi 6ptimas. La principal herramienta empleada por AR es la simula-
cion, la cual se utiliza para evitar el calculo de las probabilidades de
transicién. Sin embargo, si se tiene acceso a las matrices de costos/re-
compensas y probabilidades de transiciones, se debe usar PD porque se
garantiza que serdn generadas soluciones 6ptimas, mientras que AR se
mantiene con soluciones casi-éptimas. Como el problema de crecimiento
econémico se desarrolla en un entorno continuo, no contamos con una
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matriz de transicién, por lo que usar -learning parece ser factible.

En [33] se establece el AR como una rama de PD, por lo que el al-
goritmo de AR se deriva de sus contrapartes de PD. En la metodologia
de PD, el primer paso es generar la matriz de probabilidad de transicién
y la matriz de transicién de costos/recompensas, después se usan estas
matrices en un algoritmo adecuado para generar la soluciéon 6ptima. En
AR no se estima ninguna de estas matrices, lo que se hace es simular
el sistema utilizando las distribuciones de las variables aleatorias go-
bernantes. Posteriormente, dentro del simulador, se utiliza un algoritmo
adecuado para obtener la solucién. A continuacion, se discutirdan algunos
de los conceptos clave relacionados con el AR: los llamados @Q-factores,
el algoritmo de Robbins-Monro, tamanos de paso y la mezcla de estas
ideas para resolver PDMs dentro de los simuladores.

2.1.1. (@-factor

En AR, la funcién de valor se almacena en los denominados Q-
factores. La funcién de valor de costo descontado se puede definir por la
ecuacién de optimizacién de Bellman que sigue:

JH(0) = mix ZP o)+ 876 21)

para i € X, donde n = | X| es el nimero de estados de la cadena de Mar-
kov; J*(i) denota el i-ésimo elemento del vector de la funcién de valor;
A(t) es el conjunto de acciones admisibles en el estado ¢; p;;(a) denota la
probabilidad de transicién en un paso de ir del estado ¢ al estado j bajo
la influencia de la accién a; r(i,a, j) denota la recompensa inmediata en
el estado 7 cuando la accién a es seleccionada y como resultado el sistema
transita al estado j y 8 € (0,1) es el factor de descuento.

En PD, dado un estado i € X, asociamos un solo elemento de la funcién
de valor: J*(i). En cambio, en el enfoque de AR se utiliza una pareja
de estado-accién para asociarlo a un vector llamado Q-factor. Para una
pareja de estado-accién (i,a) € X x A(i) se define el Q-factor mediante
la expresion:

pr r(ia, ) + B ()] (2.2)

Observe que (2.1) y (2.2) en conjunto producen lo siguiente.

JH(i) = alél%) Qi,a). (2.3)
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La relacién (2.3) se traduce en que si conocemos los valores de los Q-
factores, es posible obtener la funcién de valor J*. Usando la igualdad
(2.3), la ecuacién (2.2) se puede escribir como sigue.

Qi,a) = Zpij(a) {r(i, a,j)+ 5523()%) Qi,a)], (2.4)
j=1

para todo (i,a) € X x A(7). La ecuacién (2.4) puede interpretarse como
la versién @Q-factor de la ecuacién de optimalidad de Bellman para el
costo descontado de PDMs, ver ecuacién (2.1). Por la expresién (2.4),
es facil ver que el algoritmo anterior es completamente equivalente al
algoritmo de iteracién de valor regular.

Es importante mencionar que los Q-factores deben ser actualizados en
cada etapa del tiempo, por ello se super indexan con el nimero de ite-
racién correspondiente. En PD, la actualizacién de @Q se realiza de la
siguiente manera:

@ (ia) & Y pila) |rli.a.d) + 5 mix ")

Jj=1

para k = 1,..., kmaz, donde kpqr € N es el nimero maximo de iteracio-
nes. Cuando se usa AR, se realiza un cambio en la regla de actualizacién
de @ que propone PD. Este cambio se logra cuando se aplica el algoritmo
de Robbins-Monro.

2.1.2. (-factores y Robbins-Monro

El algoritmo de Robbins-Monro, es un algoritmo popular y amplia-
mente usado que puede ayudar a estimar la media de una variable alea-
toria a partir de sus muestras. Considere z; la i-ésima muestra indepen-
diente de una variable aleatoria X que tiene esperanza E[X]. Entonces,
con probabilidad 1, ocurre que

k
B[X] = lim #

En esta expresién es posible descomponer la suma que aparece en el
limite anterior. Denote la suma de las primeras k muestras de X por
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o EI-C=1 Ti
Sk = ‘T

, k> 1. Con esta notacién, se puede escribir

Zf:fxi

k+1
_25:1451‘ + Te41
B k+1
_ kSk + w4
 k+1
_k‘Sk + Sk — Sk + k41
B E+1

(k+1)Sk — Sk + 41

k+1

Sk T41
kE+1 Ek+1

1 1
B TSl

Sk1 =

:Sk —

=(1 Th41-

Defina «y, := %, para k > 1, entonces la expresion anterior se escribe
como

Sk1 = (1 — ap1)Sk + Qpr1Z41,

la cual se denomina algoritmo de Robbins-Monro y « es llamada ta-
mano de paso o tasa de aprendizaje. En la literatura, se han estudiado
diferentes reglas cominmente usadas para «. Algunos tamanos de paso
conocidos se comentan al final de esta subseccién.

Ahora, se utilizard el algoritmo de Robbins-Monro para actualizar los
Q-factores dentro de los simuladores. Se puede demostrar que cada Q-
factor se puede expresar como un promedio de una variable aleatoria.
Observe que con ayuda de la expresion (2.4) se consigue que

Q6.0) = Yms ri.0.0)+ 8 i QD)

B [r(i,mj) + 8 méx QU, b)}

beA())
—E[SAMPLE).

Por lo tanto, si se generan muestras de la variable aleatoria que apare-
ce entre corchetes en la expresién anterior, es posible usar el esquema
que proporciona el algoritmo de Robbins-Monro para actualizar los Q-
factores. De este modo, utilizando el algoritmo de Robbins-Monro se
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tiene que

Q¥ (ia) & (1~ k1)@ @) + o |r(isa, ) + 8 méx Q(J.b)|
J

(2.5)
para cada (i,a) € X x A(i).

Esta tltima expresion tiene la caracteristica de que no se necesitan las
probabilidades de transicién para la implementacién del algoritmo. Note
que en este caso, inicamente se abordé el criterio descontado ya que este
es el adecuado para el problema de crecimiento econémico en cuestion.
En [50] se puede consultar el algoritmo de @-learning en el que se utiliza
el criterio promedio y con este enfoque se presentan resultados numéricos
en un modelo de lineas de espera.

Para concluir esta subseccion, se agregan algunos comentarios acer-
ca de los tamanos de paso [32,33]. En Q-learning, el tamano de paso
tiene gran impacto al desarrollar el algoritmo y obtener la solucién. En
los inicios de esta técnica, se probd con la tasa %, k=1,2,.... Sin em-
bargo, se observé que la tasa de aprendizaje decae rapidamente a cero,
lo cual podria no ser satisfactorio. Como consecuencia, se propuso una
generalizacion de este tamano de paso, en el que se agregaron valores
constantes A y B, de tal manera que la nueva propuesta tiene la forma

,F%B, k = 1,2,.... Otro tipo de paso conocido es la regla logaritmica,
esta es %, k =1,2,.... Finalmente, se cuenta con el tamano de paso
dado por ﬁ, donde A es una constante y V(i,a) denota el nimero

de visitas a la pareja estado-accién (i,a) € X x A(4). En general, para
obtener la convergencia al éptimo de las soluciones, es necesario que los
tamanos de paso cumplan las siguientes condiciones

oo o0
Zak =00 ¥y Z(o/“)2 < 00.
k=1

k=1

Adicionalmente, se han realizado algunos trabajos donde se comparan
las soluciones obtenidas por @-learning, cuando se prueban con las tasas
antes mencionadas. Lo que se encontrd es que el tamano de paso ,H_LB
produce las mejores soluciones para A = 100 y B = 150. Basado en lo
anterior, la implementacién numérica de este trabajo se desarrollé con
la tasa de aprendizaje }HiB, k=1,2,..., con Ay B constantes.
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2.2. El modelo de crecimiento identificado
con un PDM

El modelo de referencia para el analisis es una economia especializada
de [10] con produccién, acumulacién de capital y crecimiento estocdstico
de la productividad.

Se supone que la produccion se realiza por una funcién de produccién
Coob-Douglas de rendimientos constantes a escala con pardmetro «;

F(K,L)= K*(AL)'~,

donde K es el stock de capital, L es la oferta de mano de obra y A es el
parametro tecnolégico de aumento de la mano de obra. Para simplificar
se fija L = 1. Ademas, se supone que A evoluciona exégenamente como
sigue:
log(A¢11) = & +log(As) + 02441,

donde Z ~ N(0,1) y k > 0 es la tasa media de crecimiento tecnolégi-
co. Sea 0 la tasa de depreciacion del capital y C; denota el consumo.
Entonces la ecuacion de la evolucion del capital estd dada por:

Kij1= A °“K? —Ci 4+ (1 - 0)K;. (2.6)

Resulta que los cocientes de capital y tecnologia, k;, = K;/A; y la del
consumo a la tecnologia, ¢; = C;/A;, son estacionarios. Por lo tanto,
se presenta el problema en términos de variables estacionarias. Norma-
lizando el nivel de tecnologia la expresién (2.6) produce la ecuacién de
la evolucién del capital que sigue:

kiv1 =027 (K —co+ (1= 0)ke), (2.7)

donde 0 = e™" y Z7 tiene distribucién lognormal. Un agente represen-
tativo tiene preferencias de consumo separables en el tiempo, con una
utilidad periddica:
_OT e

1—vy 1—7’
con v € (0,1). El problema del planificador social consiste en elegir una
sucesion de consumo que maximice la utilidad descontada esperada del
agente representativo. Por lo tanto, resolvemos

U(C)

up E Y BU(Cy), (2.8)
=0

S
Cy —

sujeto a (2.7).
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En [58], se muestra que este problema de optimizacién de Markov tiene
una solucién que es un control de retroalimentacién de la forma ¢; =
¢? (kt). De esta manera se puede escribir la evolucién del capital 6ptimo
como

kg1 =027 (k7 —ce+ (1 —0)ke)
=17 (281, ke, c?)

donde la notacién en la segunda linea remarca la dependencia de la
politica de consumo desconocido ¢?. Esta politica satisface la ecuacién
estocastica de Euler que sigue:

(k)™

= 5/(920)7 @ (?" (Zv,mo)) - [a?" (29 k™)t 41— 5] dG°(2), (29)

donde G? es la funcién de distribucion log-normal.

El correspondiente modelo determinista estd descrito por la evolucién
del capital dada por:

ki =0 (K — &+ (1= 8)ky) = F (ko) (2.10)

que se obtiene al reemplazar ¢ por 0 en (2.7). Célculos muestran que este
problema tiene una solucién que es un control de retroalimentacion de la
forma ¢; = c’(k;). La politica de consumo éptimo satisface la ecuacién
de Euler andloga a (2.9):

) =07 (7' (0,e) 7 [o (k) 18] 21)

Ahora, serd derivada una expresién analitica para determinar el estado
estable del sistema determinista (2.10). En la ecuacién de Euler que
aparece en la expresién (2.11), sustituya k* en vez de k, entonces se
obtiene que

k)™ = O (k)7 [a(k*)afl +1- 5] .
Despejando a k* se consigue que el Unico estado estable determinista
interior es: X
1+ (6—-1)807\ T
Kr=——71w—— . 2.12
( afBov ( )

Finalmente, se puede observar en el caso determinista, que si se toma
k = k* en la expresion (2.10) y se despeja a c’(k*) se obtiene que

01— 6) —1

CO(]{)*) — (k*)oc + 9

k™.
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La expresién anterior y la representacién del estado estable en (2.12)
permitiran realizar una comparacién entre el modelo determinista y el
estocastico cuando o — 0. Tal comparacion se realizard a través de simu-
lacién. En lo que sigue se identifica el problema de crecimiento econémico
con un PDM discreto.

El espacio de estados serd considerado como X = [0, K], el espacio
de acciones es Ac = [0, K] con K > 0. Ademds, el conjunto de acciones
admisibles cuando el sistema se encuentra en el estado k € X es Ac (k) =
[0,k]. La funcién de utilidad estd definida por u(c) = %, para ¢ €
Ac(k), k € X¢, note que por esta condicién ¢ depende del estado actual
k. La ley de transicién denotada por ); se asume estd inducida por la
ecuacién en diferencias (2.7). De esta manera, el PDM con el que se
trabaja esta definido por

M = {Xe, Ac, {Ac(k) | k € X}, Qi u).

Como el modelo estudiado es continuo, se discretizan las componentes
y se obtiene lo siguiente. Se considera el conjunto finito de estados X =
{k07k1,...,kn}7 con kg < k1 < -+ < k, donde kg = 0 y k, = K,
n € N fijo. El espacio de acciones se toma como A = {cy, ¢y, ..., ¢ }, con
cp<cp << cepdonde cg =0y ¢, = K, m €N fijo. De manera
que el conjunto de acciones admisibles cuando el sistema se encuentra
en el estado k € X es A(k) = {0,¢1,...,¢j}, con ¢; = k. La funcién de
utilidad esta definida de la misma manera por u(c) = %, v € (0,1)
para ¢ € A(k), k € X. Para completar el PDM necesitamos de las
probabilidades de transicién controladas, denotadas por pg;(c), donde
k, l € X y ¢ € A(k), tales entradas corresponden a la probabilidad de
encontrarse en el estado k aplicar la accién ¢ y transitar al estado [. De
manera clara se puede observar que no tenemos a la mano la matriz de
transicion, por lo que una opcién factible es utilizar @-learning. Por lo
tanto, unicamente se necesita una trayectoria del proceso dado en (2.7).

2.3. Teorema del limite central

En esta seccién presentamos una version ligeramente generalizada del
teorema del limite central en un contexto de ecuaciones en diferencias
acopladas. Se inicia reescribiendo el modelo de crecimiento econémico
cuando la tasa de depreciacién del capital es aleatoria.

Normalizando el nivel de tecnologia y considerando a § como un valor

aleatorio, (2.6) produce las ecuaciones de la evolucién del capital y de la
evolucién del pardmetro 7, el cual interviene en la tasa de depreciacién
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del capital, que siguen

ki = 027 (kK — e+ (1—e %)ky) (2.13)
Ter1 = T + N1 (€), (2.14)
donde 0 := e~ " y Z7 tiene distribucién log-normal, Z° es un elemen-

to genérico de {Z7}, e es la tasa de depreciacién del capital con
Sy = Zf;é Tiy 70 =7 > 0y n(e) es una sucesién de variables alea-
torias independientes e idénticamente distribuidas tales que n:(e) — 0
cuando ¢ — 0. La representacién de la tasa de depreciacién del capital
se consideré como la mostrada en [28], en el que se aleatorizo el factor
de descuento.

Las expresiones (2.7) y (2.16) se pueden identificar con las dindmicas de
los z-estados y los a-estados, las cuales aparecen en las expresiones (1)
y (2) de [49], respectivamente como sigue:

kip1 = F(ke, 74, ¢, &41(0))

~ (2.15)
=027, (kf —ci+ (1 — e 5)ky),

Ter1 = G(1,Me41(€)) := 7 + ney1(e), (2.16)

donde &;41(0) := exp(—0Z;41) = Z{_,. Observe que cuando o — 0, se
cumple que & (o) — 1.

En lo que sigue es conveniente descomponer la evolucién del capital en
su esperanza condicional y su componente martingala. De esta manera,
se define la esperanza del lado derecho de (2.15) condicionada a k; = k
como:
o2
Foe) = 0e (B = (k) + (1= e T[T ONE),(27)
y la componente aleatoria es

y7e(k) = 0emo DT (K7 — (k) + (1= e B[ ODE) . (2.18)

Observe que en (2.17) y (2.18) se supone que la esperanza E[e="¢()]
existe y es finita.
Si se define (14, ¢t) := (log(k:),log(7:)), es posible reescribir las expresio-
nes (2.15) y (2.16) como

liv1 =97 (lt) — 02411,

te+1 = log(me),
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donde

g%<(ly) = log(e® — 7 (e'*) 4+ (1 — e 5telt)) — k. (2.19)

Ademas, las ecuaciones en diferencias acopladas para el correspondiente
modelo determinista son:

kvt :F(km Tty Ct,s 1)

=0 (k¥ — ¢ + (1 — e 7)k) (2.20)
:f070(kt)2’
Tt+1 = G(Tt, 0) = T, (221)

con 19 = 7 > 0, que se obtiene al reemplazar ¢ por 0 en (2.15) y &.41(€)
por 1 en (2.16). El problema de crecimiento éptimo es el andlogo de-
terminista de (2.8) con la ley de movimiento dada por (2.20) y (2.21).
Ademéds, la expresion correspondiente a (2.19) para e =0y o = 0 es la
siguiente.

Lip1 = g%°(1) = log(e® — P(e) 4+ (1 — e Tel)) — &. (2.22)

En lo que sigue se busca comparar el modelo estocéstico y el modelo
determinista.

2.3.1. Comparacion de los modelos estocasticos y de-
terministas

Para la comparacién de modelos considere {(k7,7f)} una realizacién
de la trayectoria del stock del capital y del pardmetro con el cual evolu-
ciona la tasa de depreciacion del capital para el modelo de crecimiento
estocdstico y {(k?,70)} una realizacién de la trayectoria del stock del
capital y del pardmetro con el cual evoluciona la tasa de depreciacién
del capital para el modelo determinista. Ademds, considere {(I7,:5)}
y {(19,:9)} los logaritmos de la trayectoria del stock del capital y del
pardmetro con el cual evoluciona la tasa de depreciacion del capital, pa-
ra el modelo estocdstico y determinista, respectivamente. Cuando € — 0
y 0 — 0 esperamos que, tomando el mismo valor inicial, las trayectorias
de la solucién del modelo de crecimiento estocastico podrian aproximar-
se a las del modelo determinista. En efecto esto es lo que ocurre.

En los resultados propuestos se considera la expresion de diferencias nor-
malizadas que sigue:
(17 — 1) + (e —ef)

X0 = - . (2.23)

Ahora veremos algunos de los supuestos sobre las componentes del mode-
lo para presentar un teorema limite central funcional en el que intervenga
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la expresion X; . A causa del amplio estudio de este modelo, se sabe que
se requieren de algunas condiciones de suavidad, estabilidad y conver-
gencia uniforme de las politicas, las cuales son adaptadas al contexto de
una dindmica acoplada como sigue. Considere [ € L C Ry k € K C R,
con L, K compactos. En lo que sigue, denotamos la primera derivada de

g7y foCpor fry g

Suposicién 1. Sobre cualesquiera conjuntos compactos L, K, las fun-
ciones g7 v 70 son continuas, de clase C? y tienen primera y segunda
derivadas acotadas para todo o > 0.

Suposicién 2. Sobre cualesquiera conjuntos compactos £, KC, las funcio-
nes g% — ¢%0 y fo0 — 90 yniformemente cuando o — 0.

Suposicién 3. Sobre cualesquiera conjuntos compactos £, K, las fun-
ciones g%% y f%0 tienen un tnico punto fijo I* y k*, respectivamente,
el cual es estable, i.e. [g)°(1*)] < 1y [fZ°(k*)| < 1, y cuyo dominio de
atracciéon incluye todo £ y K, respectivamente.

Lo anterior, permite establecer los siguientes resultados.

Teorema 2.3.1. Si las Suposiciones 1 y 2 se cumplen para g°°, enton-
ces las diferencias normalizadas {X;°} convergen débilmente al proceso
{X?°Y, cuando € — 0 y o — 0. El proceso limite sigue la auto-regresion
lineal gaussiana, dependiente del proceso determinista {19}

X0 =g )X + Ziga, (2.24)

donde {Z:11} es una sucesion de variables aleatorias normales indepen-
dientes e idénticamente distribuidas.

Ademas, si existe un unico estado de equilibrio del modelo determinis-
ta, el Teorema 2.3.1 implica que las diferencias con respecto al estado
estacionario son asintéticamente normales. Lo anterior se establece en el
siguiente corolario.

Corolario 2.3.2. Si las Suposiciones 1-3 se cumplen para g°°. Enton-
ces, cuando €,0 — 0 yt — oo se cumple asintoticamente lo siguiente

0,0
=g () =)+ 0Zssa.
Por lo tanto, cuando e = 0, 0 — 0 yt — oo, {I7} converge a un proceso
gaussiano estacionario con media I* y varianza lg(ffw
9

Este resultado muestra que el logaritmo del stock de capital sigue asintoti-
camente una auto-regresion lineal gaussiana centrada en el estado esta-
cionario determinista.
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Demostracion del Teorema 2.3.1. Por las ecuaciones de evolucion para
T y I, que se encuentran en (2.16) y (2.22) respectivamente, la segunda
diferencia que aparece en el numerador de la expresién (2.23) se escribe
como sigue:

v — 1} =log(7f) — log(7)

t—1
=log(T + Z &i(e)) —log(r)
=log (1 + Z:::i&(@) .

Cuando € — 0 la expresién (2.25) converge a 0, por la continuidad de la
funcién logaritmo y por la suposicién de que £(e) — 0, cuando € — 0.
Por lo tanto, cuando ¢ — 0, se obtiene que

(2.25)

g,€ a,0
{X7 = {X7,
donde th’o = g Por el Teorema 3.1 de [58], se sabe que cuando

o — 0, {X7°} converge débilmente al proceso {X"°}, y la expresién
(2.24) se cumple.
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2.4. Experimentos numéricos

En esta seccién se presentan los experimentos numéricos que utilizan
el modelo discretizado de la seccién anterior. Los experimentos numéricos
se dividen en dos etapas. La primera consiste en determinar la solucién
del modelo de crecimiento econémico cuando la tasa de depreciacion del
capital es aleatoria. La segunda etapa consiste en exhibir la conclusién
del Teorema 2.3.1 a través de algunos histogramas que fueron generados
por datos simulados. Adicionalmente, se realizaron pruebas estadisti-
cas que garantizan, a un nivel de significancia a =0.1, que los datos
generados por el proceso X;’° tienen un comportamiento normal. Es-
pecificamente, nos interesa el comportamiento de la trayectoria 6ptima
del proceso estocdstico y el comportamiento de una transformacién de
los logaritmos de las expresiones que modelan la evolucion del capital y
la evolucién de la tasa de depreciacion del capital cuando o — 0y € — 0.

Para conseguir lo anterior se implementaron los procedimientos descritos
en la Seccién 2.1. Con AR, el procedimiento central para obtener la
solucién para el problema de optimizacion via Q-learning consta de los
siguientes 6 pasos.

1. Inicialice los Q-factores en 0, es decir, establezca Q(i,7) = 0 para
todoi € X y j € A(i). Defina el tamano de paso o a utilizar,
introduzca kpmqr: nimero de iteraciones mdrimo (suficientemente
grande) y considere i el estado inicial. Iniciar con k = 1.

2. Simule una accion a € A(i) con probabilidad ﬁ.

3. El siguiente estado, digamos j, se obtiene con la expresion (2.7)
considerando los respectivos ajustes para obtener un elemento de
X. De esta manera, obtenemos la utilidad u(i,a, j).

4. Para (i,a) € X x A(i), calcule
Q*(ia) = (1= @) Q¥(ia) + o |uli, a, ) + B mix Q(j,)
cA(J

5. Actualice k < k+1. Si k < ke entonces i < j y regrese al paso
2, en otro caso vaya al punto 6.

6. Para cada i € X, calcule
d(i) = arg max Q(i,b),
(i) = arg mix Q(i.}
donde d denota la e-optima politica y pare.
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Los procedimientos desarrollados en este capitulo se muestran en los
Algoritmos 1-3 que se encuentra en la Subseccién 2.4.1 y fueron imple-
mentaron en el lenguaje de programaciéon de R [52].

El Algoritmo 1 se presenta como una funcién principal que nos devuelve
la trayectoria 6ptima del proceso, el capital promedio, genera un his-
tograma y realiza una prueba estadistica para los datos configurados
mediante la expresion X715 — g.(1;"°) X" que aparece en el Teorema
2.3.1.

El procedimiento numérico para obtener la solucién al problema de cre-
cimiento econémico puede consultarse en el Algoritmo 2, aqui es donde
se desarrolla la implementacién de QQ-learning para encontrar la politica
casi éptima. El Algoritmo 3 proporciona una trayectoria del proceso es-
tocastico que modela el capital cuando la tasa de depreciacién del capital
es aleatoria.

Para los resultados de los experimentos se consideran los valores numéri-
cos que se describen en la Tabla 2.1. La mayoria de estas estimaciones se
tomaron del estudio [58], tinicamente se ajustaron los valores del factor
de descuento y del pardmetro 7. Esta modificacion se realizé ya que con-
siderando el valor original de -, la funcién de utilidad resultaba negativa.

Parametro | Valor numérico
« 0.65
K 0.0176
1) 0.0517
¥ 0.4
15} 0.7638761

Tabla 2.1: Valores numéricos de los parametros.

Se puede observar que sustituyendo los valores de la Tabla 2.1 en la
expresién (2.12) el valor del estado estable determinista es k* = 5. En
la Figura 2.1, se muestran las simulaciones de la trayectoria 6ptima del
proceso conjunto dado por las expresiones (2.13) y (2.14) para un perio-
do de 43 unidades de tiempo. Los resultados arrojan aproximaciones del
capital promedio de 7.77057 y 8.12322, para las representaciones (I) y
(IT), respectivamente. Adem4s, en las Figura 2.2, se observa el compor-
tamiento de la trayectoria 6ptima del capital en el modelo estocastico
para un periodo de 300 unidades de tiempo. Las graficas fueron obteni-
das con los valores que siguen: iteracién méxima 1000, la discretizacién
del espacio de estados y el espacio de acciones se tomé con incrementos
de 0.75 unidades para la Figura 2.1, mientras que para la Figura 2.2,
los incrementos fueron de 0.1 unidades. En ambos casos se realizaron
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1000 trayectorias para promediar y conseguir la trayectoria éptima pro-
medio. Particularmente, en la Figura 2.2, se observa que cuando o y e,
los pardmetros que intervienen en el grado de estocasticidad del sistema
convergen a cero, la trayectoria se comporta de manera determinista.

Optimal trajectory Optimal trajectory

15
1

Capital
Capital

0 10 20 30 40 0 10 20 30 40

(0] Time stages (I Time stages

Figura 2.1: Realizacién de la trayectoria éptima del capital que
se desarrolla mediante (2.13) y (2.14): (I) ¢ =4.92x1073 y
€ =1x1073, (II) 0 =4.92x107% y ¢ =1x107C.

Optimal trajectory Optimal trajectory
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Figura 2.2: Realizacién de la trayectoria éptima del capital que
se desarrolla mediante (2.13) y (2.14): (I) ¢ =4.92x107% y
e =1x1076 (II) 0 =4.92x10" " y e =1x107 1.
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En la figura 2.3, se muestran los histogramas generados por el proceso
X7 jfl, para distintos valores de o y e. Adicionalmente, con los datos ge-
nerados se realizé una prueba de Kolmogorov-Smirnov, para verificar la
normalidad de X7} — g, (129X 7. La prueba se realizé fijando el valor
a =0.1, como resultado de la prueba se obtuvieron los p-valores que se
muestran en la Tabla 2.4, de modo que la normalidad se verifica tal como
lo establece el Teorema 2.3.1. En la dltima columna de la Tabla 2.4, po-
demos observar que cuando € y o convergen a cero, el valor promedio del
capital se aproxima al valor del estado estable del sistema determinista
que es 5. Esto fue posible ya que, los valores en Tabla 2.1, satisfacen que
existe un tnico estado estable del sistema determinista.

Histogram Histogram

10
1

Frequency
Frequency

-6e+05 -5e+05 —4e+05 -3e+05 —2e+05 -1e+05 “6e+10  -5e+10  -4e+10  -3e+10  -2e+10
0
(1 Xet =17 Xe (n X —gl1?) X
Histogram Histogram

Frequency
Frequency

T T T T T 1 T T T T 1
—6e+20 -5e+20 -4e+20 -3e+20 -2e+20 -1e+20 —6e+30 -5e+30 -—4e+30 -3e+30 -2e+30

() Yoot =10 X (1v) Yoot ~g(10) X

Figura 2.3: Histogramas: (I) ¢ =4.92x107% y ¢ =1x1076, (II)
0 =4.92x10"" y e =1x1071, (II) 0 =4.92x107 2! y e =1x 1072,
(IV) 0 =4.92x1073 y e =1x1073! .
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o € « p-valor | Capital promedio
4.92x1076% | 1x107% | o =0.1 | 0.5765 7.51682
4.92x1071 | 1x107 | o =0.1 | 0.2091 5.11794
4.92x10721 | 1 x 1072 | @« =0.1 | 0.5764 7.104244
4.92x10731 | 1 x 10731 | @ =0.1 | 0.2023 5.352499

Tabla 2.2: Capital promedio y p-valores obtenidos para la prueba
de Kolmogorov-Smirnov, para distintos valores de o y e.
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2.4.1. Algoritmos

Algorithm 1: Main function

Datos «, 3, 6,7, k, max.ite, A., A,, ko, Mazx.aver, o, ¢
Resultado Average Capital, Optimal Capital trajectory and
Histogram;
Pol = GeneratePolicy(a, B, 0,7, k, max.ite, Ae, Ay, ko, 0, €);
N = length(Pol);
for 1 <j< M do
T = matriz(0, N, M);
Tau = matriz(0, N, M);
T(1, ] = ko:
Tault, j] = —log(6);
T[2,5] = e—ornorm(l)—r (k§ — pol[1] + (1 — e~ ™)kg);
Taull, j] = —log(d);
for 2 <i< N do
Tauli, j] = Tauli — 1, j] + ernorm(1);
L Tli + 1, 4] = e=ormorm(=r (kg — pol[i] + (1 — e~™)ko);

for 1 <i< N do
| Tali] = mean(T[i]); Tacli] = mean(Tauli));
plot(Ta): genera la trayectoria 6ptima;
X — log(T'a)—log(k0)+log(Tac)—log(—log(d))
forlgiSNfldoU
L Zli] = X[i+ 1] — g2 X[i];
print(mean(A)): muestra el capital promedio;
Histograma(Z): crea el histograma,
ks.test(Z, prnom, ui, o) realiza la prueba de
Kolmogorov-Smirnov con los datos generados.
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Algorithm 2: Generate Policy

Datos «, 3, 6,7, k, mazx.ite, Ae, Ay, ko, Max.aver, o, €;

ResultadoOptimal policy;

r(i,c) = Cll;:: funcién de utilidad;

for 1 < j <100 do

T = matriz(0,2, maz.ite);

T = Trajectory(100,000, a, 0, €, K, 0,7, ko);

N.: Numero de estados;

N,: Numero de acciones;

Q = matriz(0, N. + 1, N, + 1);

oy = 150/300;

i = (trunc(ko) + 1)/ Ae;

p=array(1l/(i+1),i+1);

a = sample(c(0 : 1), 1, replace = T, prob = p): genera un
nuimero aleatorio entre 0 e ;

70 = —log(6);

j = trunc (e_”"orm(l)_” (kg —alg + (1 - e_TO)ko) + 1) J7AK

Qli,a] = (1 — a)Qliya] + oy (r(iAe, al) + Bméax(Q[4,]));

for 1 < s < mazx.ite do

To = To + ernorm(1);

i =J;

p=array(l/(i+1),i+ 1);

a = sample(c(0 : i), 1, replace = T, prob = p);

j =

trunc (67”"0”"(1)7“ (kg —alg+ (1 - efTO)ko) + 1) /A

ap = 150/(300 + s);

Qli,a] = (1—a)Qli, a]+ o (r(ile, ala) + S mdx(Q[7,]));

for 1 < s < max.ite do
| pol[s] = which.max(Qls,]);

return pol: genera la politica 6ptima.
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Algorithm 3: Trajectory

Datos N, «a,0,¢,k,7, ko;
Resultado Trajectory;
T = array(0, N);
A = array(0, N);
= —log(d);
[ | = ko;
A[l] = runif(1,0,T[1]);
genera un numero aleatorio en el intervalo (0, kg);
T[2] = e=7 om0 =% (kg — A[L] 4 (1 — e~ ko);
Al2] = runif(1,0,T[2]);
genera un numero aleatorio en el intervalo (0,7'[2])
for 2<i< N do
To = To + ernorm(1);
T[Z + 1] — e—arnorm(l)—n (T[Z]oz _ A[Z] + (1 _ G_To)k());
Ali + 1] = runif(1,0,T[i + 1));
Ta = matrix(O, 2,N);
Tall,] =
Ta[2,] = A

return(T'): genera una trayectoria del proceso estocdstico.
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Capitulo 3

Cadenas de decision de
Markov promedio: caso
propenso al riesgo

En este capitulo abordamos un tema independiente de procesos de
decisién que evolucionan mediante un par de ecuaciones en diferencias
acopladas y se da paso para trabajar con cadenas de decision de Mar-
kov dotadas de un espacio de estados numerable, con funcién de cos-
to acotada y criterio de rendimiento promedio propenso al riesgo. Las
condiciones estructurales en la ley de transicion garantizan que el cos-
to promedio es constante, sin embargo, no es posible garantizar que la
ecuacién de optimalidad tenga solucién. En esta situacién se obtienen
aproximaciones convergentes al costo promedio éptimo y se determinan
aproximadamente las politicas estacionarias 6ptimas usando los puntos
fijos de una familia de operadores contractivos. Esto representa una ex-
tension del clasico enfoque descontado, en el caso neutral al riesgo. Las
conclusiones son presentadas en el Teorema 3.2.1.

El estudio de cadenas de decisiéon de Markov con un criterio sensible
al riesgo se remonta a los articulos proporcionados por Howard y Mathe-
son [40], donde se analizaron cadenas de decisién de Markov con espacio
de estados finito y el costo promedio éptimo fue caracterizado via una
ecuacién de optimalidad. Modelos con espacio de estados finito o infinito
son considerados, por ejemplo, en [11,12], [55,56] mientras que cadenas
de decision de Markov sobre espacios de estado de Borel fueron analiza-
dos en [20-22], [41,42] y [54]. Juegos estocdsticos con criterio sensible al
riesgo son estudiados en [3].
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Este capitulo estd organizado como sigue. En la Seccién 3.1 se des-
cribe el modelo de decisién, se define el criterio promedio y se establecen
las principales suposiciones sobre el modelo. En la Seccién 3.2 se intro-
duce una familia de operadores contractivos y se presenta el resultado
principal de este capitulo en el Teorema 3.2.1. Las herramientas que se
utilizaran para establecer dicho resultado se establecen en la Seccién 3.3,
y la demostracién del resultado principal se presenta en la Seccién 3.4.

Notaciéon. En todo el capitulo, N denota el conjunto de enteros no
negativos y dado un espacio topolégico S, el espacio de Banach de todas
las funciones acotadas H : S — R es denotado por B(S), la norma del
supremo de H € B(S) es denotada por ||H| := sup,cg |H(z)|. Por otro
lado, cada (des) igualdad que involucra variables aleatorias es vélida casi
seguramente con respecto a la medida de probabilidad subyacente.

3.1. Modelo de decisién

Sea M = (S, A, {A(x)}zes, C, [pzy(a)]) una cadena de decisién de
Markov, un modelo para un sistema dindmico cuyas componentes son
las siguientes: El espacio de estados S es un conjunto numerable dotado
con la topologia discreta, el espacio métrico A es el conjunto de accio-
nes, mientras que para cada estado x € S, A(x) C A es la clase de
acciones admisibles (controles) en el estado x. Por otro lado C: K — R
es la funcién de costo, donde K = {(z,a) |z € S,a € A(z)} es la fami-
lia de parejas admisibles y, finalmente [p;.,(a)]s,yesaca(w) €s la ley de
transicion controlada. La interpretacion de M es la siguiente: en cada
tiempo t € N el controlador observa el estado del sistema X; = z € 5,
y entonces elige y aplica una accién A; = a € A(x). Como consecuencia
de esta intervencidn, (i) se incurre en un costo C(x,a), y (ii) el sistema
se mueve a un nuevo estado X;y; € S donde, de acuerdo con los estados
y acciones previos, el evento [X;+; = y] es observado con probabilidad
pay(a), donde 3 s psy(a) = 1; esta es la propiedad de Markov del
proceso de decision.

Suposicién 3.1.1. (i) Para cada x € S, A(z) es un subconjunto
compacto de A.

(i1) Para cada x,y € S, el mapeo a — pyy(a) y a — C(x,a) son
continuos en a € A(x).

(iii) La funcidn de costo es acotada, i.e., C € B(K).

Politicas. Una politica de control es una regla para elegir acciones, la
cual en cada tiempo de decisién n € N podria depender del estado actual,
asi como de los estados y acciones anteriores. Formalmente, para cada
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n € N defina el espacio H,, de posibles historias hasta el tiempo n por
Ho =Sy Hp :=K*x S paran = 1,2,3,...; un elemento genérico
de H, es denotado por h, = (xg,a0,21,01, ..; Tn—1,0n_1,Ty), donde
(zg,ar) € K para k < ny z, € S. Con esta notacién, una politica
de control m = {m,} es una sucesién de kernels estocdsticos m, sobre
A dado H,, que satisfacen m,(A(x,)|h,) = 1, para cada h, € H, y
n € N. La familia de todas las politicas es denotada por P. Luego,
establezca F := [[, .4 A(z), el cual es un espacio métrico compacto,
por la Suposicion 3.1.1, y consiste de todas las funciones f : S — A
que satisfacen f(z) € A(z) para cada = € S. Una politica 7 € P es
estacionaria si existe f € F tal que la igualdad m,({f(zn)}|hs) = 1
siempre es valida: la clase de politicas estacionarias es naturalmente
identificada con F, una convencién que permite escribir F C P. Dado un
estado inicial Xy = = y la politica 7 € P usada para manejar el sistema,
la distribucién del proceso estado-accién {(X¢, At) }ren estd determinado
tnicamente y es denotado por PT [1,35,51], mientras que ET denota el
correspondiente operador esperanza. A lo largo del capitulo, se utilizara
la siguiente notacién, para cada n € N, establezca

Hn = (X(),AQ, oo 7Xn—17An—1;Xn) y ./T"n = O'(Hn), (31)

mientras que para cada F C S el primer tiempo de retorno al conjunto
F estd definido por

Trp:=min{n >1]| X, € F}. (3.2)
Cuando F' = {z} es un conjunto singular, se considera la siguiente no-
tacion
Note que T es un tiempo de paro respecto a la filtracién {F,}, es decir,

[Tr =n] € F, para cada n € N.

Criterio promedio. En el desarrollo del trabajo, se supone que el con-
trolador tiene un coeficiente de sensibilidad al riesgo A que satisface
A < 0. Esto significa que el controlador evalia un costo aleatorio Y, a
través del valor esperado de U,(Y'), donde la funcién de (des-)utilidad
Uy :R — (—00,0) estd definida por

Ux(z) = =, z € R. (3.4)
Note que Uy(+) es estrictamente creciente y satisface la relacién
Ux(a+b) = e*Ux(b), a,b€R. (3.5)

Cuando el decisor se enfrenta a la posibilidad de elegir entre dos cos-
tos aleatorios Cy y C1, el controlador preferird pagar Cy si E [Ux(C1)] >
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E [Ux(Cp)], mientras que es indiferente entre ambos costos si E [Uy(C1)] =
E[Ux(Cp)]. El (A—)equivalente seguro de un costo Y, es denotado por
E\[Y] vy estd determinado por U (E5[Y]) = E[Ux (Y)], de modo que el
controlador es indiferente entre pagar la cantidad fija £x(Y") o hacer fren-
te al costo aleatorio Y. Note que U (+) es una funcién céncava, asi que
por la desigualdad de Jensen se tiene que £5(Y) < E[Y]. Ahora, observe
que

% log (E [e*]), (3.6)

una expresion que inmediatamente produce

alY]=U (EUAY)) =

PllY|<b=1=|e(Y)| <D (3.7)

Luego, suponga que el controlador elige la accién w € P iniciando en
Xo =x € S. La aplicacién de las primeras n acciones Ag, A1, ..., A, ge-
nera el costo Z;é C(Xk, Ag) vy por (3.6) el equivalente seguro asociado
estd dado por

1 n—
Jn(m,x) = X log (Eg [BAEfZOI C(X"’A*)D ,n=1,273,.., (3.8)
que representa un promedio de J,, (7, z) /n por decisién. El (Iimite inferior

A-sensible) indice de rendimiento promedio de la politica 7 € P en el
estado x € S bajo la politica 7 estd dado por

J(m,z) = hnrgloléf J (7, ), (3.9)
y
Jo(x) := Helf J(m,x), ¢ €S, (3.10)

es la correspondiente funcién de valor éptimo. Una politica 7w, € P es
(A-)promedio 6ptima si J(7*,x) = J (7., x) para cada x € S.

Condiciones de recurrencia-comunicacién. En el caso neutral al
riesgo, se sabe que la condicion simultdnea de Doeblin, la cual se establece
en la Suposicién 2.2 (i) que aparece abajo, es suficiente para asegurar
que el costo promedio éptimo es constante y es caracterizado via una
ecuacién de optimalidad [1,35,51]. En el presente contexto sensible al
riesgo, la ecuacién de optimalidad promedio A-sensible estd dada por

Ux(g + h(z)) = inf pr (C(z,a) +h(y))|, z€Sb,

acA(x)

(3.11)
donde ¢ es un nimero real y h : S — R es una funcién. Cuando esta
ecuacién admite una solucién (g, h(+)) y h(-) es un mapeo acotado, se sabe
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que la funcién de costo A-promedio éptima J.(-) es constante e igual a
g,y si f € F es tal que para cada estado z, la accién f(x) minimiza
el término dentro del paréntesis en (3.11), entonces f es A-promedio
6ptima; ver, por ejemplo, [11], [34], o [40]. Note que por (3.4) la ecuacién
de optimalidad anterior puede ser escrita de manera equivalente como

T = gup | AC@a) sz’y(a)e)‘h(y) , x€d. (3.12)
a€A(x) yes

En contraste con el contexto neutral al riesgo, en el presente contex-
to donde el controlador propenso al riesgo, las condiciones de Doeblin
simultaneas no son suficientes para asegurar incluso que la funcién de
costo promedio 6ptimo sea constante [11], [13]. Por esta razén, en este
trabajo la condicién de Doeblin simultanea serd complementada con un
requerimiento de comunicacién.

Suposicién 3.1.2. Eziste z € S tal que las propiedades (i) y (ii) que se
muestran a continuacion son vdlidas:

(i) [Condicion de Doeblin Simultinea.] El primer tiempo de retorno
T, satisface

sup FEI[T.] < cc. (3.13)
z€S,feF

(ii) [Accesibilidad desde z] Bajo la accidn de cualquier politica esta-
cionaria, cada estado y € S es accesible desde z, esto es

PIT, <] >0, yeS, feF. (3.14)

Observacién 3.1.3. Teorema 4.1 en [12], las Suposiciones 3.1.1 y 3.1.2
implican las condiciones (i) y (i1):

(i) Para cada y € S, existe una constante finita M, tal que

EIT)<M, z€8 weP. (3.15)

(it) Sixz,y € S conx #y, entonces P [T, < T,] > 0 para cada 7 € P.

Observacion 3.1.4. La Suposicion 3.1.2 es, sin duda, muy fuerte. Sin
embargo, actualmente es la condicion mds general bajo la que estd dispo-
nible una caracterizacion del costo promedio optimo sensible al riesgo. El
resultado en esta direccion puede verse en [12] e involucra una extension
de las relaciones de Collatz-Wielandt en la teoria de matrices positivas.

A continuacién, se presenta un ejemplo donde se cumplen las Suposicio-
nes 3.1.1 y 3.1.2.
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Ejemplo 3.1.5. Considere el siguiente sistema simple de colas con es-
pacio de estados S = N: El flujo de llegadas es {Sk}ren es una suce-
sion de variables aleatorias i.i.d. con distribucion Poisson con esperanza
E[Skg] = X > 0. Sean by, by y ¢ enteros positivos con by < by, y cada es-
tado © € S define el conjunto de accion por A(x) = {by,bo + 1,...,b1}.
El decisor controla las salidas, y si la accion a € A(z), el nimero de
clientes que abandonan el sistema es D(z,a) = A+ (x —¢) si ¢ > ¢,
mientras D(xz,a) =1+ X cuando 1 <z < ¢ y, por supuesto, D(z,a) =0
en x = 0. El ndmero de clientes X; en el sistema al tiempo t satisface
X1 =Xt + S — D(Xy, Ay) y entonces

E[Xt+1|./_'.t] = Xt+)\—D(Xt7At) = Xt+)\—()\+(Xt—C)) = C, S’i Xt >c

E[Xt+1|./—'.t] = Xt+)\—D(Xt7At) = Xt+)\—()\+1) = Xt—]. st 1 S Xt S C.

De estas relaciones se sigue que para cualquier politica w el nimero es-
perado de transiciones para pasar de x € N al estado z = 0 estd acotado
por arriba por ¢+ 1. Como X1 = Sy, se puede llegar a cualquier esta-
do desde z = 0 y entonces, dotando al sistema de una funcion de costo
acotada, la Suposicion 3.1.1 y 3.1.2 se cumplen en este contexto.

Bajo las Suposiciones 3.1.1 y 3.1.2 la funcién de costo promedio J.(+) es
constante, pero la ecuacién de optimalidad (3.11) no necesariamente ad-
mite una solucién; un ejemplo (no controlado) que ilustra este fenémeno
se present6 en la Seccién 9 de [12]. Este hecho proporciona la motivacién
para analizar el siguiente problema:

Obtener aproximaciones convergentes al costo promedio éptimo, asi co-
mo politicas estacionarias casi dptimas a través de los puntos fijos de
operadores contractivos.

La respuesta a este problema permite determinar aproximaciones al costo
promedio 6ptimo asi como una politica estacionaria cuyo costo promedio
es cercano al 6ptimo resolviendo la unica ecuacién que caracteriza el
punto fijo de un operador contractivo. El resultado principal sobre el
problema anterior se establece en la siguiente seccién y representa una
extensién del cldsico enfoque descontado en el caso neutral al riesgo [35,
51] al presente contexto propenso al riesgo. En el resto del capitulo,
incluso sin referencia explicita, se cumplen los Supuestos 3.1.1 y 3.1.2.

3.2. Aproximaciones contractivas

En esta seccion, el resultado principal del articulo se establece en el
Teorema 3.2.1. Para empezar, para cada o € (0,1) defina T, : B(S) —
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B(S) como sigue: para cada W € B(S), T,[W] estd implicitamente de-
terminado por

UNTolW](@) = fuf | Y pey(@)Ur(Clz,a) +aW(y) |, z€S,

a€A(x) ves
(3.16)
una expresién que por la expresion (3.4) conduce a
1
T [W](z): = <log | sup |er@® sz y@)erWw e s
A a€A(x) ’
yeSs
(3.17)

Utilizando la expresién (3.7) se consigue que [|[T,[W]|| < [|C|| + «||W],
asi que T,, mapea B(.S) en él mismo. Ademads, no es dificil verificar que T},
es un operador monétono y a-homogéneo, i.e., para cada W,V € B(S)
se tiene que

W 2>V = T[W] 2T, V] y To[V+c =To[V]+ac, ceR. (3.18)

Observe que V< W + ||V — W||, entonces estas propiedades implican
que T, [V] S To[W+ ||V = W||] = To[W]+al|]V —W]||, e intercambiando
los roles de V' y W se obtiene que

[TaW] = ToVIl < oW =V, W,V € B(S), (3.19)

asi que T, es un operador contractivo sobre B(S). Como B(S) dotado
con la norma del supremo es un espacio de Banach, existe un tnico
Va € B(S) que satisfacen

Vo = Ta[Val, (3.20)

una ecuacién que, por (3.17), es equivalente a

MVe@) = gup | erC(®a) pr,y(a)eMV“(y) , TES. (3.21)
a€A(x) yes

Adicionalmente, de la Suposicién 3.1.1 no es dificil ver que existe f, €
F tal que, para cada = € S, la accién f,(z) maximiza el término en
paréntesis en la expresién anterior, asi que

Vo) = AC@ID N (falx)e W)z e S, (3.22)
yeSs

El (a-)costo normalizado y las funciones (a-)relativas estdn definidas,
respectivamente, por

go(2): = (1= a)Vu(z), ha(x): =alVu(z) —Vo(w)], z€8, (3.23)
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donde, desde este punto en adelante, w € S es un estado arbitrario
pero fijo. Célculos directos que combinan estas definiciones con las dos
expresiones anteriores dan como resultado

eMe (@) FAha(@) —  gyp 6/\0(70"1)2]9:1:,;/(@)6)‘%(9) , xS, (3.24)
a€A(x) yes

e (@) FAha (@) — AC(2,fa(2)) me,y(fa(x))e)\ha(y)v resS.  (3.25)
yeS

Note que
Vo = Ta[0]]] = |1 Ta[Va] = T[0]]] < l[Va = 0] = o Val.
Entonces, observando que
[Ta[0]]] < lIC1l,
por (3.17), se sigue que
Vall = ICI < IVall = ITa[0)] < [Va = Ta[0]ll < allVall,

asi que
gall = (1 = a)[Vall < [IC]- (3.26)

El siguiente teorema es el resultado principal de este capitulo.

Teorema 3.2.1. Sea A < 0 arbitrario, pero fijo. Bajo las Suposiciones
8.1.1 y 8.1.2. Las siguientes afirmaciones son vdlidas.

(i) El costo promedio dptimo es constante, digamos g*, ylimg 1 go () =
g* = Ji«(x) para cada x € S.

(i1) Dado € > 0, para cada x € S existe g € (0,1) tal que la politica
fo en (3.22) es e-Optima en x para a € (ag., 1), esto es,

a€ (agel) = g"+e>J(fa,2). (3.27)

La demostraciéon del Teorema 3.2.1 serd presentada en la Seccién 3.4,
después de los resultados establecidos en la siguiente seccién.
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3.3. Herramientas auxiliares

En esta seccién, se analizan los instrumentos técnicos bésicos que se
usaran para demostrar el Teorema 3.2.1. Estos preliminares se establecen
en los Lemas 3.3.1-3.3.3 que siguen. El primero estd relacionado con las
propiedades de acotacién de la familia de funciones de costo relativas
presentadas en (3.8).

Lema 3.3.1. (i) Para cada o € (0,1),

ha() < 2([C| M, (3.28)
donde la constante finita M, es como en (3.15).
(11) Para cada x € S, liminf, ~ he(z) > —00.
Demostracion. (i) Dado « € (0,1), defina la sucesién {Y,,} de variables
aleatorias por Yy = eMa(X0) vy, = A T (C(Xe,A) = ga (Xe))+Aha (Xn)

para n > 1. Ahora, sea * € S un estado fijo, y observe que (3.25)
implica que para cada n € N

eAha(Xn) — eA(C(Xn«fa(Xn))_ga(Xn)) prn,y(fa(Xn))eAha(y)

ves (3.29)
— Eia |:6A(C(X7L1An>7g0t(XWL))+)\ha(X’rL+1> fn:| , Pifa-C.S.7

donde, se us6 que la relacién Pf[A; = f,(X;)] = 1 siempre es valida,

la segunda igualdad es debido a la propiedad de Markov. Observe que
A 210 (C(X:A1)=9a(X0)) o5 F,-medible, por (1 3.1), la expresién anterior
produce

Y, = Xm0 (C(Xe,A)=ga (Xe)+Aha(Xn)

— AT (C(XeA) =90 (X)) {GMC(X",A")% (Xn))+ A (Xni1)

7

— Eg]cccx e 2i=o(C(Xt, A1) = ga (Xe))+Aha (Xni1)

fn} = Egjcc& [Yn+1| ]:n] s

asi que {(Yy,, F)} es una martingala con respecto a Pfe. Como Pf=[X, =
x] = 1, el Teorema de muestreo opcional concluye que, para cada estado
iniclal z € SyneN

Mal) = Bl [y;)

= Bfe[Yyar,] = Efe [eAZ:QOTW*1(C(Xt,At)—ga<Xt))+hm(XMTW)
Ahora, observe que por (3.2) y (3.3), ha(X1,) = ha(w) = 0 sobre el
evento [T, < 0o]. Como PJ[T,, < oc] = 1, por (3.15), se sigue que

m e il N (O(X e A~ g0 (X)) Hha(Xnnty )
n—oo

— AT H(O(X e, Ad) —ga (X)) +ha(XT,)

= AT (C(XeA)=9a(X0)  pla_c g,
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Por el Lema de Fatou y por la desigualdad de Jensen, las ultimas dos
expresiones implican que

ha(®) = lim inf Efe [ AP 1(c<xt,At>—ga(Xt)>+ha<xmwq

n—oo
> El- [ AL (C(Xe A =ga(X0))
> eEf” A1 (O (X, Ar) = ga (X))

> P [- T NC(XA)=ga (X0)] > 2MICIEL (Tu]

donde (3.26) y la negatividad de A se usaron en el tltimo paso. Entonces
se sigue que Mg (z) > 2)|C||Efe [T,], asi que ho(x) < 2||C||Ef> [T,).
Dado que x fue un estado arbitrario, (3.28) se obtiene por (3.15).

(ii) Sea f € F fijo, y defina la sucesién {Si} de subconjuntos del
espacio de estados S por

So = {’U)},
Sp:={yes: pmy(f(x)) > 0 para algin z € S,_1}, k=1,23,...
Note que por la Observacién 3.1.3 (ii) se tiene que (J;- o Sk = S. Por lo

tanto, para establecer la parte (ii) es suficiente demostrar que, para cada
keN,

h'm/i‘rllf hao(x) > —00, x € Sk. (3.30)

[e3%

Tal afirmacién serd verificada por induccién. Sea f € F una politica fija
y note que (3.24) implica que
e () > AC(, f@)=ga(@) Zp )) Aha (y)

yeSs

> NSy ()M,
yeS

(3.31)

donde la segunda desigualdad es debido a (3.26) y la negatividad de
A. Ahora, observe que (3.30) es claramente valida para k = 0 ya que
So = {w} y ha(w) = 0 para cada a € (0,1). Luego, suponga que (3.30)
es valida para algin k € N y sea § € Si41 arbitrario. Elija & € Sy tal
que

pag(f(#) >0
y note que (3.31) implica que e*=(®) > 62’\“0”3955@(f(:fc))ekha@), asi que

ha(2) < 2[|IC] + 10g( 2.5(F(2))) + ha ().
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Como Z € Sy, la hipédtesis de induccién produce que liminf, ~1 ho(Z) >
—o00, y entonces las dos ultimas expresiones implican que

hén}rllf ha(7) > —o0.

Recordando que § € Sj41 es arbitrario, se sigue que (3.30) es vélida para
E+1. O

En el desarrollo subsecuente {a,,} C (0,1) es una sucesién fija tal que
a, /1 cuando n — . (3.32)

Sin pérdida de generalidad tomar una subsucesién -si es necesario- se
supone que el siguiente limite existe

g(x): = lim gqo,(z), h*(z): = lim hy, (z), z€S5, (3.33)

n—oo n—oo

donde, para cada x € S,
g(@) € [=CILIICH],  h*(z) € (—00,2(|C||My]; (3.34)

ver (3.26) y el Lema 3.3.1. El siguiente lema establece propiedades fun-
damentales de los mapeos g(-) y h*(-).

Lema 3.3.2. Con la notacion en (3.32)-(3.34) las siguientes afirma-
ciones son vdlidas.

(i) El mapeo g(-) en (3.33) es constante, digamos g(x) = g* € R para
cada x € S.

(ii) Para cada x € S,

AT > sup e a o) [em(””“) 2yes px,y(a)ehh*(”)] :

(#ii) Para cada entero positivo n,

ng* + h*(z) = 2||C||My < Jp(m,z), z€S, weP.
(iv) g* < Ji ().
Demostracion. (i) Note que (3.18) produce que

1—a,

Jou, (z) — Yo, (w) = o, ha, (z),

para cada z € S. Tomando el limite cuando n tiende a oo, (3.33) y (3.34)
juntos producen que g(z) = g(w) para cada x € S.
(ii) Sea (x,a) € K arbitrario y note que (3.23) implica que, para cada
neN,

6)\gan (z)+Ahq,, () > e/\C(x,a) Z Doy (a)e)‘h“n(y).

yeS
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Tomando el limite inferior cuando n tiende a oo en ambos lados de la
desigualdad, (3.21) y la parte (i) juntos implican que

QAT (@) > i f AC(@a) Aha, (y)
1nH_1>IO% e Zspl,y )
ye

)\C(:r a Z D, y hm 1Ilf eMan (y),
yeS

donde el Lema de Fatou se usé en la segunda desigualdad. Por lo tanto,
(3.21) y la expresién anterior implican que

e T TAR (@) > AC(x0) pr,y(a)e’\h*(y), (z,a) € K. (3.35)
yeSs

(iii) Un argumento de induccién iniciando en (3.35) y usando la propie-
dad de Markov concluye que

A9 (@) > o [eA e C(Xt,At>+Ah*(Xn+1>} 7

para cada estado x € S, m € Py n € N\ {0}. De la relacién anterior y
como A < 0, usando (3.34) se sigue que

Ang”HAR (@) > pr {ex e C(Xt,A,,)-i—Q/\HCHMw} — Mn(ma)+2AIC M

donde (3.8) se usé para establecer la igualdad. Por lo tanto, Ang* +
AR*(z) > Ap(m,x) + 2M||C|| M.y, y la conclusién se sigue, ya que A es
negativo.

(iv) Dividiendo por n en ambos lados de (3.29) y tomando el limite
inferior cuando n * oo en la desigualdad resultante, (3.9) produce que
g* < J(m,x) para cada x € S 'y m € P. Desde este punto, (3.10) dirige a
g < J(). O

El siguiente resultado es el paso final antes de proceder a la demostracién
del teorema principal.

Lema 3.3.3. Dado « € (0,1), sea fo € F una politica tal que (3.22) es
valida.
(i) Para cada x € S,

2 ok 1Jk fon

Mg

Jo(z) > (1 — )
k=1

(11) Dado € >0 y x € S, existe ay . € (0,1) tal que
Ja +€/22> J(fa,2)), @€ (Gae, ).
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Demostracion. (i) Sea x € S arbitrario, pero fijo. Siguiendo las ideas
en [14], se probard por induccién que para cada entero positivo n

AVal@) < Bfa [ A TIS COXGA)AVa(Xn) “ H A1—a)ak Ik (fa,m)
k=1
(3.36)
Para empezar, recuerde que la igualdad Pf~[A; = f,(X;)] = 1 siempre
es valida, asi que la propiedad de Markov y (3.22) producen que, para
cadaxz € SyneN,

AValXn) = pla [ACC A +HAaVa (Xns1)

fn] , Plec.s.

Estableciendo n = 0 en esta relacién y utilizando que Pj~[X, = 7], se
sigue que

AVal@) — pfa |:6AC(X0,A0)+>\aVu(X1)}

_ pfa |:(e/\C(X0,A0)+>\Va(X1))>a <6AC(XD,AO))1_Q:|

11—«
< Efe e

< mt |
[

— gt eAC(Xo,Aomva(Xl))]“eAJl(fa,x)u—a)’

eAC(Xo,A0)+)\Va(X1)):|a Bl [eAC(XD,AO)]

donde la desigualdad de Holder se aplico en el tercer paso, y la dltima
igualdad es debido a (3.8). Esto demuestra que (3.36) es valida para
n = 1. Luego, suponga que (3.36) es vilida para un entero positivon > 1.
Observe que la igualdad A; = f,(X}) siempre es valida con probabilidad
uno bajo f,. Lo anterior y aprovechando que 22;01 C(Xy, Ay) es Fp-
medible, por (3.1), por la propiedad de Markov se obtiene que

Efa [exzz;} O(Xe. A)FAVa (Xn)

)
= e>‘ Z:L;OI C(Xtht)e)\Va (Xn)

= P C(Xe A pla [eAC(xn,AnHmva(xm)

7

— gl {eA i C(Xe,A)+AaVa (Xni1)

Fal.
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Por lo tanto, de la desigualdad de Holder y (3.8) se consigue que
Efa [e,\ i C(Xt,At)-i-/\Va(Xn)}

_ Ej;“ 'eA DOV C(Xt,At)+)\aVa(Xn+1)]

= Efu -(GAZ?:O C(thAt)+>‘Va(X'rt+1 )Ot ( AZt 0 Xi>At)>(1_a):|

< Bl [ S0 COAI N (Xai)]* pfe [ATH O n}“’“)

— Eafﬁ _e>‘ 2izo C(Xt,AtH)\Va(XnH)}a (e)‘JnJrl(fmfr))(l_a) .

Entonces
Bl [ T Cua) Ve ()|
xT

(1—a)a™

n+1
S Ega |:e)‘ Z:L:O C(Xtht)+)‘Va (X71+1)i| * (e/\v]n+1(fa7$)>

n+1
_ EQJ;& {exz;ﬁzoC(xt,At)Hva(XnH)r Al—a)a™ Jupi(farw)

Combinando esta relacién con la hipotesis de induccion, se obtiene que
(3.36) es valida para n + 1. Ahora, para establecer la parte (i) note que
paran =1,2,3,... se tiene que

n—1

D (X, Ar) + Va(X)

t=0

<nlCll + Ve O < IC]I(n + (1 = a)7H).

De este modo, Efe e} Tisd C(XAr )+wa<xn>} < MIClnta-a™)

por la expresién (3.36) se sigue que

MVal@) < " IMICI(nt(1=a)™T) H eA(lfa)a’“_le(fmx)’

k=1

una desigualdad que, recordando que A < 0, es equivalente a
Va(z) > —a"|C||(n + (1 — @) +Z @) (far ).

Multiplicando por (1 — a) en ambos lados de esta relacién y por (3.23)
se obtiene que

ga(x) = =" (1= @)|C|[(n + (1 —a)™") + Y (1 = a)*a* "y (fa, 2).
k=1
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La conclusién deseada se obtiene tomando el limite cuando n tiende a
?1?) Sean z € S y € > 0 arbitrarios. Por (3.9), elija No(x,¢) € N tal que
FIufar) 2 I (fas) = /4, k= No(ae)

Como |J(fa, )|, k7 Jk(fas )| < ||C]| v por la parte (i) se consigue que

galz) > (1 — @)’ ikak—lw

st k
— J(fay ) + (1 — ) ;m“ (%Jk(fa,x) - J(fa,:r))
) (0 S ket (94 2) = Ias)) = /1
= ay = k k\Jay s
N(zg,e)—1
> J(fara) — 20— a)?IC] > kath— e/,

k=1

donde la expresién anterior se us6 para establecer la primera desigualdad.

Finalmente, seleccione d,, . tal que (1—«)? ZkN:(fo’e)_l kak=1 < €(8]|C||+
1)~! cuando « € (Gy., 1) para concluir que

9o(®) = J(fa, ) —€/2, € (dx,evl)'

(iii) Sea = € S arbitrario. Dado € > 0, sea &y € (0,1) como en la
parte (i) y observe que por (3.32) existe N(z,¢) € N tal que a, > @
sin > N(z,e€). En este caso (3.30) implica que gq, () > J(fa,, ) —€/2,
por lo tanto,

Jo, () > Jo(x) —€/2, n > N(z,e).

Tomando el limite cuando n tiende a oo, esta relacién conduce a g* >
J.(x) — €/2, y la condicién se sigue, ya que € > 0 es arbitrario. O

3.4. Demostracion del resultado principal

Después de los preliminares en la seccion previa, las conclusiones prin-
cipales se pueden establecer como sigue.
Demostracion del Teorema 3.2.1. Sea {ap nen una sucesién arbitraria

que satisface (3.32) y, como antes, tome una subsucesién si es necesa-
rio, sin pérdida de generalidad suponga que (3.33) es vilido, asi{ que
limg o0 9o, () = g* € R, por el Lema 3.3.2(i).

(i) Combinando el Lema 3.3.2(iv) y el Lema 3.3.3(iii) se sigue que J,(-) =
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g* = limy, 00 9u,, () para cada z € S. Por lo tanto, como la sucesién
{a, } es arbitraria y satisface (3.32), se sigue que limq, 11 go(-) = Ji(+) =
g

(ii) Sea x € S arbitrario, pero fijo. Dado € > 0, por la parte (i) seleccione

Gz e € (0,1) tal que
ga(x) < g* +€/2, a€ (dye, ).

Establezca oy = max{dg c, &z}, esta ltima expresién y el Lema 3.3.3
(i) producen que (3.27) es valida.
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Conclusiones

Se finaliza este escrito resaltando algunas de las conclusiones encon-
tradas en el estudio de la convergencia en PDMs y presentamos algunas
propuestas de investigaciones futuras que siguen esta linea.

En el Capitulo 1, se proporcionaron condiciones bajo las cuales existe
convergencia uniforme de las funciones de valor éptimo y politica 6pti-
ma de una familia de PDMs indexados por parametros € y § a la funcién
de valor optima y politica 6ptima de un adecuado PDM determinista
cuando € — 0y & — 0. Estos PDMs, evolucionan de acuerdo con dos
ecuaciones en diferencias acopladas. La primera ecuacion hace referencia
a la evolucion de los z-estados a través de una funciéon F' que aparece
en la ecuacién (1.1), mientras que la segunda ecuacién estd asociada a
la evolucion de algin parametro del modelo por medio de una funcién
G (ver ecuacién (1.2)). Los resultados principales de este capitulo son
los Teoremas 1.3.7 y 1.3.10. El Teorema 1.3.7 proporciona una cota su-
perior para el indice de estabilidad. Por otra parte, el Teorema 1.3.10
establece la convergencia de las sucesiones {Ves5} y {fes} a V'y f*, res-
pectivamente, cuando € y § tienden a cero. Finalmente, la teoria desa-
rrollada fue ilustrada con dos ejemplos que muestran las conclusiones de
los resultados principales. Una consecuencia directa del Teorema 1.3.7
es que la politica 6ptima del problema determinista es asintéticamen-
te éptima para el problema estocédstico. La teoria desarrollada en este
capitulo fue publicada en el articulo [49]. Por otro lado, los resultados
presentados en el Teorema 1.3.10 permiten realizar aproximaciones para
sistemas estocasticos usando el método de perturbacién. Tal metodologia
se encuentra bien establecida en la literatura de modelos de crecimiento
econdémico para sistemas estocasticos cuya dindmica estd descrita solo
por una ecuacién de z-estados [43].

En el Capitulo 2 se utiliz6 el enfoque de PDMs para reescribir y dar
solucién aproximada a un modelo de crecimiento econémico. Se exhibe
la solucion proporcionada por @Q-learning y se presentan realizaciones de
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la trayectoria éptima promedio del capital. Adicionalmente, se presenté
en una version aleatorizada del modelo: se aleatorizé la tasa de deprecia-
cion del capital, con esto se logré abordar el modelo via un sistema de
ecuaciones en diferencias acopladas como las propuestas en el Capitulo 1.
Con esta identificacion, se logré mostrar que a medida que la desviacién
estandar del proceso de choque tecnoldgico se vuelve pequena y cuando
el ruido pequeno € asociado a la tasa de depreciacién del capital tiende
a cero, el proceso de stock del capital converge a una auto-regresion li-
neal gaussiana. Esto fue posible al considerar la expresién (2.23) la cual
es una funcion del logaritmo de la dindmica del capital y del logaritmo
del parametro con el que la tasa de depreciacién del capital se desa-
rrolla. Ademds, con los experimentos numéricos desarrollados, se logré
ilustrar la normalidad de la expresién que establece el Teorema 2.3.1,
esto mediante histogramas y pruebas de normalidad. Adicionalmente,
bajo una suposiciéon de unicidad del estado estacionario del modelo de-
terminista, se tiene que para ruidos pequenos o y €, el proceso de stock
del capital converge al estado estacionario determinista. Con los experi-
mentos numéricos, se pudo observar que el capital promedio del sistema
estocastico converge al estado estable del sistema determinista. Algu-
nos trabajos futuros, consideran abordar teoremas centrales del limite
en contextos mas generales.

Finalmente, en el Capitulo 3 se estudiaron cadenas de decisién de
Markov sobre espacio de estados numerable. Se asumi6 que el desemperio
de una politica de decision se mide por el criterio promedio percibido por
un controlador propenso al riesgo con sensibilidad al riesgo constante.
Bajo condiciones que aseguren que el costo promedio 6ptimo sea cons-
tante, pero no que la ecuaciéon de optimalidad admita una solucién, los
problemas de aproximar el costo promedio éptimo y determinar una
politica casi 6ptima se estudiaron a través de puntos fijos de una familia
de operadores contractivos. Los resultados en esta direccion, los cuales
estan establecidos en el Teorema 3.2.1, proporcionan una extensién al
marco presente del cldsico enfoque descontado en la teoria de cadenas
de decisiéon de Markov dotadas con un indice promedio neutral al riesgo.
La teorfa desarrollada en este capitulo fue publicada en el articulo [48].
Por otra parte, extender las conclusiones del Teorema 3.2.1 a contextos
mas generales, incluyendo costos no acotados o un espacio de estados
mas general, parece ser un problema interesante.
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