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Introducción

Los modelos de decisión secuencial son abstracciones matemáti-
cas de situaciones en las que se toman decisiones en varias etapas.
En cada una de estas etapas se incurre en un cierto costo. Cada
decisión puede influir en las circunstancias bajo las que se tomarán
decisiones futuras, de modo que, si se quiere minimizar un costo
total, se debe equilibrar el deseo de minimizar el costo de la de-
cisión presente con el deseo de evitar situaciones futuras donde el
alto costo es inevitable. Entre la variedad de problemas de decisión
secuenciales se tienen Problemas de Control Óptimo Determinis-
ta (PCOD) y Problemas de Control Óptimo Estocástico (PCOE),
problemas de decisión de Markov y semi-Markoviano, problemas
de control minimax y juegos secuenciales [7].

Como uno de los principales métodos para el análisis de proble-
mas de decisiones secuenciales se tiene la Programación Dinámi-
ca (PD) [6, 24]. Aunque la naturaleza de estos problemas vaŕıa
de manera considerable, sus estructuras subyacentes resultan ser
muy similares. En todos los casos, el costo correspondiente a una
poĺıtica y la iteración básica del algoritmo PD pueden describirse
mediante un determinado mapeo que difiere de un problema a otro
en detalles que en gran medida no son esenciales. Normalmente,
tal mapeo resume los datos del problema y determina las cantida-
des de interés para el analista. Si se toma este mapeo como punto
de partida se pueden proporcionar resultados anaĺıticos poderosos
que son aplicables a una gran colección de problemas de decisión
secuencial.

El trabajo está enfocado a Procesos de Decisión de Markov
(PDMs) a tiempo discreto [7, 37, 38, 51]. En los tres caṕıtulos que
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componen este escrito, se proponen algunos resultados que involu-
cran convergencia en PDMs. En el Caṕıtulo 1, la atención se centra
en PDMs donde la ley de transición es inducida por un sistema de
dos ecuaciones en diferencias acopladas que son perturbadas por
un ruido pequeño que depende de parámetros numéricos ϵ y δ, ver
Sección 1.1. La primera ecuación representa la evolución de esta-
dos x, mientras que la segunda representa la evolución de estados
α, que se relacionan directamente con parámetros del modelo. En
este contexto, estamos interesados en los siguientes problemas:

Estudiar aproximaciones de PDMs por procesos de control
deterministas. En particular, estamos interesados en asegu-
rar que la poĺıtica de un sistema determinista es asintótica-
mente óptima para el sistema aleatorio, ver Teorema 1.3.7.

Analizar la convergencia de la función de valor óptimo y
la poĺıtica óptima del sistema estocástico cuando ϵ → 0 y
δ → 0, ver Teorema 1.3.10.

La metodoloǵıa para resolver estos problemas es imponer restric-
ciones de continuidad de Lipschitz [39, 46] sobre las componentes
del modelo de control y aplicar técnicas de PD. Nuestro enfoque
asegura los siguientes tres aspectos importantes:

La existencia de una cota superior para el ı́ndice de estabili-
dad [29–31] cuando aplicamos la poĺıtica óptima del sistema
determinista. En consecuencia, resulta que la poĺıtica ópti-
ma del sistema determinista es asintóticamente óptima para
el sistema estocástico.

Una tasa de convergencia de la función de costo óptimo para
el sistema aleatorio con respecto al sistema determinista.

La convergencia uniforme de las poĺıticas estocásticas ópti-
mas para la poĺıtica determinista cuando ϵ → 0 y δ → 0,
sobre subconjuntos compactos del espacio de estados.

En el Caṕıtulo 2, se aborda un problema de crecimiento económi-
co que se ha estudiado ampliamente en [58]. Tal problema se con-
forma de producción, acumulación de capital y crecimiento es-
tocástico de la productividad. La variante presentada en este tra-
bajo es a través la perturbación por un ruido pequeño de la tasa
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con la que evoluciona la depreciación del capital. Esta idea, permi-
te identificar el problema perturbado con un Proceso de Decisión
de Markov, que se desarrolla por dos ecuaciones en diferencias aco-
pladas (Caṕıtulo 1), cada una perturbada por un ruido pequeño.
En este contexto, se presenta un teorema del ĺımite funcional para
una transformación de los logaritmos del capital y de los logarit-
mos de la tasa con la que evoluciona la depreciación del capital,
tanto del sistema estocástico como el sistema determinista. Esta
conclusión se establece en el Teorema 2.3.1.

Adicionalmente, presentamos experimentos numéricos desarro-
llados con técnicas de Aprendizaje por Refuerzo, espećıficamente
utilizando Q-learning, para presentar la solución del problema de
crecimiento económico perturbado y para mostrar la convergencia
al estado estable determinista. Finalmente, se muestra evidencia
de la normalidad dada en el teorema principal a través de histo-
gramas y de pruebas estad́ısticas. Esto se logró gracias a la imple-
mentación de los Algoritmos 1-3, que fueron implementados en el
software R [52].

En el Caṕıtulo 3, se aborda un tema independiente a los que
se presentaron en los caṕıtulos 1 y 2. De manera precisa se tra-
baja con cadenas de decisión de Markov sobre espacio de estados
numerable, donde la función de costo en un paso es acotada y
el rendimiento se mide por el criterio promedio asociado con un
controlador de decisiones propenso al riesgo (risk-seeking). Las
condiciones estructurales sobre la ley de transición aseguran que
el costo promedio es constante, pero no garantizan que la ecuación
de optimalidad admite solución. En este contexto, se aborda el si-
guiente problema: Obtener aproximaciones convergentes al costo
promedio óptimo, y para determinar aproximadamente las poĺıti-
cas estacionarias óptimas usando los puntos fijos de una familia
de operadores contractivos. Las conclusiones principales sobre es-
te problema se establecen en el Teorema 3.2.1 y representan una
extensión del clásico “enfoque descontado” en el caso neutral al
riesgo [1, 35]. En este contexto, se extienden los resultados esta-
blecidos en [53], donde una versión del caso averso al riesgo (risk-
averse) de este problema fue analizado.

El estudio de cadenas de decisión de Markov dotado con un
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INTRODUCCIÓN

criterio sensible al riesgo se remonta, al menos a los art́ıculos
proporcionados por Howard y Matheson [40], donde fueron ana-
lizadas las cadenas de decisión de Markov con espacio de esta-
dos finito y el costo promedio óptimo fue caracterizado v́ıa una
ecuación de optimalidad. El interés sobre este tema ha sido mo-
tivado por las aplicaciones, por ejemplo, en finanzas [4, 5, 47, 57],
gestión de ingresos [2], y teoŕıa de las grandes desviaciones [8].
Modelos con espacio de estados finito o infinito son considerados,
por ejemplo, en [11, 12], [55, 56] mientras que cadenas de decisión
de Markov sobre espacios de estado de Borel fueron analizados
en [20–22], [41,42] y [54]. Juegos estocásticos con criterio sensible
al riesgo son estudiados en [3].
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Caṕıtulo 1

Aproximación
determinista de PDMs
con dinámica acoplada

En este caṕıtulo se abordan los llamados Procesos de Decisión
de Markov discretos con horizonte infinito y costo total desconta-
do [7, 24,37,38, 51]. La importancia de trabajar con PDMs radica
en el amplio rango de aplicación en distintas disciplinas, por ejem-
plo: ingenieŕıa, informática, comunicaciones y economı́a [9,36]. El
problema principal en PDMs es determinar una poĺıtica óptima
y la función de valor óptimo. Para caracterizar y determinar las
soluciones de los PDMs se tiene disponible el enfoque de Progra-
mación Dinámica [6, 24].

En este caṕıtulo, los PDMs de interés son aquellos que evo-
lucionan mediante una dinámica de estados compuesta por dos
ecuaciones en diferencias acopladas como se muestra en (1.1) y
(1.2). La ecuación (1.1) modela la transición de estados del sis-
tema, donde el conjunto de todos los estados se denota por X,
en este caṕıtulo, tales elementos serán llamados x-estados. Simi-
larmente, la ecuación (1.2) modela el cambio en los parámetros
del sistema; el conjunto de todos los parámetros es denotado por
Γ, estos estados serán llamados α-estados. Sean ϵ0 y δ0 números
positivos y sean ϵ ∈ [0, ϵ0] y δ ∈ [0, δ0], entonces considere las
perturbaciones {ξt(ϵ)} y {ηt(δ)}, que son sucesiones de elementos
aleatorios independientes e idénticamente distribuidos en algunos
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CAPÍTULO 1. APROXIMACIÓN DETERMINISTA DE PDMS
CON DINÁMICA ACOPLADA

espacios de Borel (S1, r1) y (S2, r2) (espacios métricos de pertur-
bación [18] o espacios de ruido [30]), respectivamente.
Suponga que existen s1 ∈ S1 y s2 ∈ S2 tales que s1 = ξt(0) y
s2 = ηt(0), cada elemento de las sucesiones anteriores depende
de parámetros ϵ y δ tales que Er1(ξ(ϵ), s1) → 0 cuando ϵ → 0
y Er2(η(δ), s2) → 0 cuando δ → 0, donde ξ y η son elementos
genéricos de {ξt(ϵ)} y {ηt(δ)}, respectivamente. Bajo el contexto
anterior, estamos interesados en los siguientes problemas:

Estudiar aproximaciones de PDMs por procesos de control
deterministas. En particular, estamos interesados en asegu-
rar que la poĺıtica de un sistema determinista es asintótica-
mente óptima para el sistema aleatorio, ver Teorema 1.3.7.

Analizar la convergencia de la función de valor óptimo y
la poĺıtica óptima del sistema estocástico cuando ϵ → 0 y
δ → 0, ver Teorema 1.3.10.

En lo que sigue, describimos brevemente el trabajo relacionado
con los problemas discutidos en este caṕıtulo.

El estudio en [45], consideró el problema de aproximación de un
proceso de control estocástico por un proceso determinista en el
caso continuo. En este art́ıculo, los autores demostraron que el
problema estocástico puede ser aproximado por un determinista
cuando el ruido es pequeño y las fluctuaciones se vuelven rápi-
das. En este contexto, se demuestra que el control óptimo para
el problema determinista es asintóticamente óptimo para proble-
mas estocásticos. En el caso continuo, [23] aborda un problema
similar, es decir, cuando los efectos del ruido en un sistema f́ısi-
co son pequeños, estos autores realizaron un análisis asintótico de
aproximación de difusión y usaron esto para estimaciones desea-
das del sistema original. Para PDMs a tiempo discreto, esta clase
de problemas fueron estudiados por [17,18], donde la dinámica del
sistema está descrita por una sola ecuación en diferencias. La con-
vergencia entre estos modelos también fue estudiada en [44]. Sin
embargo, la convergencia fue estudiada usando sucesiones que per-
tenecen al conjunto de parejas de estado-acción admisibles, que se
supone es un subconjunto de un espacio euclidiano. Además, es-
te estudio se lleva a cabo bajo el supuesto de que el espacio de
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acciones es un conjunto compacto y que la función de costos es
acotada. Ahora, cuando consideramos PDMs que se desarrollan
con respecto a (1.1) y (1.2), los resultados que aparecen en [17] se
generalizan. El enfoque de ecuaciones acopladas puede aplicarse,
por ejemplo, cuando se considera un factor de descuento aleato-
rio [25–28], donde la segunda ecuación en diferencias se refiere a
la evolución del factor de descuento aleatorio.

La metodoloǵıa para resolver los problemas descritos arriba es im-
poner restricciones de continuidad de Lipschitz [39, 46] sobre las
componentes del modelo de control y aplicar técnicas de PD. Es-
pećıficamente, suponemos condiciones Lipschitz para las funciones
c, F y G involucradas en la dinámica del sistema compuesta de dos
ecuaciones en diferencias acopladas (ver ecuaciones (1.1) y (1.2)).
Una consecuencia de esta suposición es la continuidad de Lipschitz
de la función de costo óptimo. Este enfoque asegura los siguientes
tres aspectos importantes:

La existencia de una cota superior para el ı́ndice de estabili-
dad [29–31] cuando aplicamos la poĺıtica óptima del sistema
determinista. En consecuencia, resulta que la poĺıtica ópti-
ma del sistema determinista es asintóticamente óptima para
el sistema estocástico.

Una tasa de convergencia de la función de costo óptimo para
el sistema aleatorio con respecto al sistema determinista.

La convergencia uniforme de las poĺıticas estocásticas ópti-
mas para la poĺıtica determinista cuando ϵ → 0 y δ → 0,
sobre subconjuntos compactos del espacio de estados.

Este caṕıtulo está organizado como sigue. En la Sección 1.1, se
presenta la teoŕıa básica de los PDMs con estados que evolucio-
nan con la dinámica compuesta por dos ecuaciones en diferencias
acopladas. En la Sección 1.2, se establece el planteamiento del pro-
blema de aproximación de la función de valor y la poĺıtica óptima.
En la Sección 1.3, se presenta el resultado que proporciona la cota
para el ı́ndice de estabilidad δ̂ϵ,δ, la tasa de convergencia del costo
óptimo y la convergencia de la poĺıtica óptima sobre subconjuntos
compactos. Finalmente, en la Sección 1.4, se ilustra la teoŕıa de-
sarrollada con dos ejemplos. El primero es referente al problema
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CAPÍTULO 1. APROXIMACIÓN DETERMINISTA DE PDMS
CON DINÁMICA ACOPLADA

de consumo-inversión. Este ejemplo tiene como antecedentes los
ejemplos desarrollados en [19, 25]. El segundo ejemplo es un pro-
blema de control con ruido aditivo pequeño. En ambos problemas
se proporcionan expĺıcitamente la cota para el ı́ndice de estabilidad
y la tasa de convergencia de la función de valor óptimo.

1.1. Modelo de control de Markov

Considere el modelo de Markov que sigue:

M := (X × Γ, A, {A(x, α) | (x, α) ∈ X × Γ}, Q, c) ,

donde X × Γ y A son espacios de Borel, denominados espacio de
estados y espacio de acciones, respectivamente; {A(x, α) | (x, α) ∈
X ×Γ} es una familia de subconjuntos medibles no vaćıos A(x, α)
de A, donde A(x, α) denota el conjunto de acciones admisibles
cuando el sistema se encuentra en el estado (x, α) ∈ X × Γ. El
conjunto de estado-acción admisibles está definido como sigue:

K := {(x, α, a) | (x, α) ∈ X × Γ, a ∈ A(x, α)},

el cual es un subconjunto medible de X × Γ × A; la siguiente
componente es un kernel estocástico Q sobre X × Γ dado K, i.e.,
Q(·|x, α, a) es una medida de probabilidad sobre X ×Γ para cada
(x, α, a) ∈ K y Q(B|·) es una función medible sobre K para cada
B ∈ B(X × Γ), donde B(X × Γ) denota la σ-álgebra de Borel de
X × Γ; c una función medible sobre K que toma valores reales,
llamada función de costo por etapa.

Observación 1.1.1. En el desarrollo posterior, las métricas de
los espacios métricos X, Γ, y A serán denotadas por dx, dα y d2,
respectivamente. En consecuencia, sobre X×Γ se define la métrica
d1 como

d1
(
(x, α), (x

′
, α

′
)
)
= máx{dx(x, x

′
), dα(α, α

′
)},

para todo (x, α), (x
′
, α

′
) ∈ X×Γ. Además, sobre K es considerada

la métrica d definida por

d
(
(x, α, a), (x

′
, α

′
, a

′
)
)
= máx

{
d1
(
(x, α), (x

′
, α

′
)
)
, d2(a, a

′
)
}
,

para todo (x, α, a), (x
′
, α

′
, a

′
) ∈ K.
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1.1. MODELO DE CONTROL DE MARKOV

La dinámica del sistema se describe a continuación. Suponga que al
tiempo t, t = 0, 1, ..., el sistema se encuentra en el estado (xt, αt) =
(x, α) ∈ X × Γ. Entonces, el controlador elige un control at = a ∈
A(x, α). Como consecuencia de esto, ocurren dos cosas:

a) Se incurre en un costo c(xt, αt, at), y

b) el sistema se mueve a un nuevo estado (xt+1, αt+1) = (x
′
, α

′
)

de acuerdo a la ley de transición Q(·|x, α, a), i.e.,

Q(B|x, α, a) = Pr((xt+1, αt+1) ∈ B|xt = x, αt = α, at = a),

B ∈ B(X × Γ) y (x, α, a) ∈ K.

Posteriormente, el sistema pasa a un estado (xt+1, αt+1) y se re-
pite el proceso.

En este caṕıtulo, se supone que la ley de transición Q es inducida
por un sistema de ecuaciones en diferencias acopladas, como sigue

xt+1 = F
(
xt, αt, at, ξt(ϵ)

)
, (1.1)

αt+1 = G
(
αt, ηt(δ)

)
, (1.2)

donde t = 0, 1, ..., con (x0, α0) ∈ X × Γ dado, donde F : K× A×
S1 → X y G : Γ × S2 → Γ son funciones medibles. Sean ϵ0, δ0
números fijos positivos y sean ϵ ∈ [0, ϵ0], δ ∈ [0, δ0], las pertur-
baciones {ξt(ϵ)} y {ηt(δ)} son sucesiones de elementos aleatorios
independientes e idénticamente distribuidos (i.i.d.) con valores en
algunos espacios de Borel (S1, r1) y (S2, r2), respectivamente.

Observación 1.1.2. Se asume que las variables aleatorias ξ :
Ω1 → S1 y η : Ω2 → S2 están definidas sobre espacios de pro-
babilidad (Ω1,F1,P1) y (Ω2,F2,P2), donde ξ y η son elementos
genéricos de {ξt(ϵ)} y {ηt(δ)}, respectivamente. Además, la terna
(Ω1 × Ω2,F1 ⊗F2,P) denota el espacio de probabilidad producto,
donde F1⊗F2 es la σ-álgebra producto y P es la medida producto
inducida por el teorema de Ionescu-Tulcea [37]. El valor esperado
con respecto a la medida de probabilidad P será denotado por E.
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CAPÍTULO 1. APROXIMACIÓN DETERMINISTA DE PDMS
CON DINÁMICA ACOPLADA

En el desarrollo posterior, será considerado el espacio S := S1×S2

con la métrica r definida por

r
(
(ξ(ω1), η(ω2)), (ξ̂(ω

′
1), η̂(ω

′
2))
)

=máx
{
r1(ξ(ω1), ξ̂(ω

′
1)), r2(η(ω2), η̂(ω

′
2))
}
,

para todo (ξ(ω1), η(ω2)), (ξ̂(ω
′
1), η̂(ω

′
2)) ∈ S, donde ω1, ω

′
1 ∈ Ω1 y

ω2, ω
′
2 ∈ Ω2.

Ahora, considere χ(ϵ, δ) =
(
ξ(ϵ), η(δ)

)
, entonces las ecuaciones en

diferencias (1.1) y (1.2) pueden ser expresadas como

(xt+1, αt+1) = H(xt, αt, at, χt(ϵ, δ)
)

:= (F (xt, αt, at, ξt(ϵ)), G(αt, ηt(δ))) .

Supongamos que existen s1 ∈ S1 y s2 ∈ S2 tales que s1 = ξ(0) y
s2 = η(0). Cada elemento de las sucesiones anteriores depende de
un parámetro numérico ϵ y δ, de tal modo que Er1(ξ(ϵ), s1) → 0
cuando ϵ → 0 y Er2(η(δ), s2) → 0 cuando δ → 0. Por otro lado,
se considera un PDM determinista cuya dinámica evoluciona de
acuerdo con las ecuaciones en diferencias que se muestran en (1.3)
y (1.4):

xt+1 = F
(
xt, αt, at, s1

)
, (1.3)

αt+1 = G
(
αt, s2

)
, (1.4)

para todo t = 0, 1, .... Observe que χ(0, 0) =
(
ξ(0), η(0)

)
= (s1, s2),

entonces la dinámica conjunta dada por (1.3) y (1.4) se denota de
la siguiente manera

(xt+1, αt+1) = H(xt, αt, at, χt(0, 0)
)

:= (F (xt, αt, at, ξt(0)), G(αt, ηt(0))) .

En este contexto, estamos interesados en la aproximación de Pro-
cesos de Decisión de Markov que evolucionan a través de (1.1)
y (1.2) mediante el proceso de control determinista dado por las
ecuaciones (1.3) y (1.4).
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1.1. MODELO DE CONTROL DE MARKOV

Cuando los procesos x-estados y α-estados estén especificados por
el modelo dinámico dado por las ecuaciones (1.1) y (1.2), la ley de
transición toma la forma

Q(B|x, α, a) : = Pr [(xt+1, αt+1) ∈ B|xt = x, αt = α, at = a]

=

∫
S1×S2

1B
(
H(x, α, a, sϵ,δ)

)
µ(ds)

= µ ({s ∈ S1 × S2 : H(x, α, a, sϵ,δ) ∈ B}) ,
(1.5)

donde B ∈ B(X × Γ), 1B(·) denota la función indicadora sobre B
y µ es la distribución común del vector aleatorio χt(ϵ, δ).

Por otro lado, cuando los procesos x-estados y α-estados están
especificados por el modelo dinámico de las ecuaciones (1.3) y
(1.4), la ley de transición toma la forma

QH(B|x, α, a) := 1B

(
H
(
x, α, a, χ(0, 0)

))
, (1.6)

donde B ∈ B(X × Γ), (x, α, a) ∈ K. Aśı, el modelo de control de
Markov está dado por (X×Γ, A, {A(x, α) : (x, α) ∈ X×Γ}, QH , c).

Una poĺıtica de control π es una secuencia {πt : t = 0, 1, ...},
donde para cada t = 0, 1, ..., πt(· | ht) es una probabilidad con-
dicional sobre la σ-álgebra de Borel B(A), dada la historia ht :=
(x0, α0, a0, ..., xt−1, αt−1, at−1, xt, αt), tal que πt (A(xt, αt) | ht) =
1. El conjunto de todas las poĺıticas es denotado por Π.

Sea F := {ϕ : X × Γ → A | ϕ es medible y ϕ(x, α) ∈ A(x, α), (x, α) ∈
X × Γ}. Una sucesión π = {ϕt | t = 0, 1, ...} de funciones ϕt ∈ F es lla-
mada poĺıtica de Markov. Una poĺıtica de Markov π = {ϕt | t = 0, 1, ...}
es llamada poĺıtica estacionaria si ϕt = ϕ ∈ F, para todo t = 0, 1, ....

Dados los estados iniciales (x0 = x, α0 = α) ∈ X × Γ y cualquier poĺıti-
ca π ∈ Π, existe una medida de probabilidad Pπ

(x,α) inducida por la

tripleta (x, α, π) sobre el espacio Ω = (X × Γ × A)∞, con F la σ-álge-
bra producto. La existencia de esta medida de probabilidad se verifica
de manera análoga a la realizada en [28]. El correspondiente operador
esperanza será denotado por Eπ

(x,α). La tripleta (x, α, π) determina un

proceso estocástico (Ω,F , Pπ
(x,α), {(xt, αt)}) llamado Proceso de Decisión

de Markov. En lo sucesivo se denota y = (x, α) y Y = X × Γ.
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CAPÍTULO 1. APROXIMACIÓN DETERMINISTA DE PDMS
CON DINÁMICA ACOPLADA

1.2. Planteamiento del problema

Considere un modelo de control de Markov determinista (Y,A, {A(y) :
y ∈ Y }, QH , c) como se presentó en la Sección 1.1. Además, considere
un sistema de control estocástico con el mismo espacio de estados Y ,
espacio de controles A, conjuntos admisibles A(y), y ∈ Y y función de
costo c, pero con el sistema dinámico descrito por

yt+1 = H
(
yt, at, χt(ϵ, δ)

)
, t = 0, 1, ....

Observe que cuando el sistema es manejado por una poĺıtica determi-
nista, en la ley de transición estocástica (1.5), el sistema estocástico se
convierte en un sistema determinista, con ley de transición (1.6), cuando
ϵ→ 0 y δ → 0.

Para cada poĺıtica π ∈ Π y estado inicial (x, α) ∈ Y , considere el costo
total esperado descontado, denotado por V̂ϵ,δ(π, x, α), y definido como

V̂ϵ,δ(π, x, α) = Eπ
(x,α)

[ ∞∑
t=0

βtc(xt, αt, at)

]
,

donde β ∈ (0, 1) es el factor de descuento.

Por lo tanto, el problema de control óptimo es encontrar una poĺıtica
π∗ ∈ Π tal que

V̂ϵ,δ(π
∗, x, α) = ı́nf

π∈Π
{V̂ϵ,δ(π, x, α)} := Vϵ,δ(x, α),

(x, α) ∈ X × Γ. A π∗ se le conoce como poĺıtica óptima, mientras que
Vϵ,δ(x, α), (x, α) ∈ Y es llamada función de valor óptimo. En el caso
determinista cuando ϵ = 0 y δ = 0, se denotará a Vϵ,δ por V .

En el resto del caṕıtulo, se establecen condiciones para realizar un análisis
asintótico de la solución óptima para el sistema estocástico.

1.3. Suposiciones y resultados

En esta sección, introducimos tres bloques de condiciones para estu-
diar la convergencia del sistema estocástico definido por las ecuaciones
(1.1) y (1.2). Además, se proporciona una cota para el ı́ndice de estabi-
lidad que depende de un parámetro de perturbación de ruido pequeño
δ̂ϵ,δ. En lo que sigue χ(ϵ, δ) denota un elemento genérico de {χt(ϵ, δ)}.
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1.3. SUPOSICIONES Y RESULTADOS

Suposición 1.3.1. a) El conjunto A(x, α) es compacto para cada
(x, α) ∈ Y y el mapeo de valores-conjunto (x, α) → A(x, α) es
semicontinuo superior con respecto a la métrica de Hausdorff.

b) La función de costo c(y, ·) es semicontinua inferior sobre A(y)
para cada y ∈ Y .

c) Para cada función continua acotada U : Y → R la función

U
′
(y, a) := EU

[
H
(
y, a, χ(ϵ, δ)

)]
,

(y, a) ∈ K, es una función continua sobre K y E es introducida en
la Observación 1.1.2.

La Suposición 1.3.1 es necesaria para asegurar la existencia de minimi-
zadores en la correspondiente ecuación de optimalidad. La Suposición
1.3.1 a) es similar a la Suposición 1 presentada en [30].

Sea Z : X × Γ → [1,∞) una función medible. Si U es una función con
valores reales sobre X × Γ, entonces su norma ponderada está definida
como

∥U∥Z := sup
(x,α)∈X×Γ

|U(x, α)|
Z(x, α)

,

donde Z denota la función de peso. Sea BZ el espacio de Banach de
funciones medibles U : Y → R tales que ∥U∥Z <∞.

Suposición 1.3.2. Existen constantes γ tal que γ ∈ (β, 1) y una función
de peso W sobre Y tal que para cualesquiera ϵ ∈ [0, ϵ0], δ ∈ [0, δ0] se
tiene que

a) |c(y, a)| ≤W (y), (y, a),∈ K.

b) EW
[
H
(
y, a, χ(ϵ, δ)

)]
≤ γ

βW (y), (y, a) ∈ K.

c) Para cada estado y ∈ Y , la función

W
′
(y, a) := EW

[
H
(
y, a, χ(ϵ, δ)

)]
,

es continua en a ∈ A(y).

La Suposición 1.3.2 se usa para garantizar la existencia de soluciones a
la ecuación de optimalidad [30]. Además, bajo las Suposiciones 1.3.1 y
1.3.2, el enfoque de PD es válido. Por lo tanto, para cada (x, α) ∈ X×Γ,
la siguiente relación es válida:

Vϵ,δ(x, α) = ı́nf
a∈A(x,α)

{
c(x, α, a) + β

∫
S1×S2

Vϵ,δ(y)Q(y|x, α, a)
}
.
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Un procedimiento para aproximar la función de valor es por medio de
las funciones de iteración valor que se definen como:

V n
ϵ,δ(x, α) = ı́nf

a∈A(x,α)

{
c(x, α, a) + β

∫
S1×S2

V n−1
ϵ,δ (y)Q(y|x, α, a)

}
,

donde (x, α) ∈ X × Γ y n = 1, 2, ..., con V 0
ϵ,δ(·) = 0.

Suposición 1.3.3. Existen constantes L0, L1, L2,x y L2,α tales que

a) |c(y, a)− c(y
′
, a)| ≤ L0d1(y, y

′
), para cada (y, a), (y

′
, a) ∈ K.

b) d1

(
H
(
y, a, (s1, s2)

)
, H
(
y

′
, a, (s1, s2)

))
≤ L1d1(y, y

′
), para (y, a),

(y
′
, a) ∈ K, (s1, s2) ∈ S1 × S2 con L1 ≤ 1.

c) Las funciones F y G satisfacen:

(i) dx
(
F (x, α, a, s1), F (x, α, a, s

′

1)
)
≤ L2,xr1(s1, s

′

1),

para todo (x, α, a) ∈ K y para todo s1, s
′

1 ∈ S1.

(ii) dα
(
G(α, s2), G(α, s

′

2)
)
≤ L2,αr2(s2, s

′

2),

para cualquier α ∈ Γ y s2, s
′

2 ∈ S2.

Observación 1.3.4. Bajo la Suposición 1.3.3, la función de costo y
la función H involucrada en la dinámica de los estados son funciones
Lipschitz respecto a la variable y ∈ Y . Además, las funciones F y G son
funciones Lipschitz respecto a ξ y η, respectivamente.

Si se cumplen las Suposiciones 1.3.1 y 1.3.2 con argumentos similares
a los expuestos en [38] (considerando los respectivos cambios), se ga-
rantiza la existencia de una poĺıtica óptima πϵ,δ = {fϵ,δ, fϵ,δ, ...} donde
fϵ,δ : Y → A, at+1 = fϵ,δ(xt, αt), fϵ,δ ∈ F, t = 0, 1, ... con correspon-

diente función de valor V̂ϵ,δ(x, α, πϵ,δ) = Vϵ,δ(x, α) ∈ BW y la esperanza
EVϵ,δ [H(y, a, χ(ϵ, δ))] existe para cada ϵ ∈ [0, ϵ0] y δ ∈ [0, δ0], (y, a) ∈ K.
Además, la poĺıtica óptima para el problema de control determinista es
denotado por π∗

0 = {f∗, f∗, ...} con f∗ ∈ F.

Sea L la distancia de Kantorovich definida en (S,Bs):

L(χ, χ
′
) = sup{|Eφ(χ)− Eφ(χ

′
)| | φ tal que

|φ(s)− φ(s
′
)| ≤ r(s, s

′
), s, s

′
∈ S}.

(1.7)

Por otra parte, el ı́ndice de estabilidad ∆ϵ,δ se define como

∆ϵ,δ(y, π) := V̂ϵ,δ(y, π)− Vϵ,δ(y), y ∈ Y, π ∈ Π.

El ı́ndice ∆ϵ,δ(y, π) expresa el exceso del costo descontado cuando se
aplica la poĺıtica π para el proceso de control estocástico relacionado con
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1.3. SUPOSICIONES Y RESULTADOS

(1.1) y (1.2) para ϵ > 0 y δ > 0, y ∈ Y . La calidad de la aproximación
para el sistema estocástico por la poĺıtica π∗

0 será medida por el ı́ndice
de estabilidad ∆ϵ,δ(y, π

∗
0) (ver [17,30]), i.e.,

∆ϵ,δ(y, π
∗
0) := V̂ϵ,δ(y, π

∗
0)− Vϵ,δ(y), y ∈ Y.

Por otra parte, defina un parámetro perturbación de ruido pequeño δ̂ϵ,δ
como sigue:

δ̂ϵ,δ := Emáx
{
r1
(
ξ(ϵ), ξ(0)

)
, r2
(
η(δ), η(0)

)}
,

para ϵ ∈ [0, ϵ0] y δ ∈ [0, δ0]. El Teorema 1.3.7 proporciona una cota

superior para ∆ϵ,δ(y, π
∗
0) que involucra el parámetro de ruido δ̂ϵ,δ. Los

siguientes lemas serán utilizados para demostrar los Teoremas 1.3.7 y
1.3.10.

Lema 1.3.5. Bajo las Suposiciones 1.3.1, 1.3.2 y 1.3.3 a) y b), para cada
ϵ ∈ [0, ϵ0] y δ ∈ [0, δ0] fijos se tiene que V n

ϵ,δ es una función Lipschitz,
para todo n = 1, 2, .... En consecuencia, Vϵ,δ es una función Lipschitz
con constante Lipschitz L0

1−βL1
.

Demostración. Sean ϵ ∈ [0, ϵ0] and δ ∈ [0, δ0]. La demostración es por
inducción sobre n ≥ 1. Para n = 1, observe que si (x, α), (x

′
, α

′
) ∈ Y se

tiene que (x, α), (x′, α′) ∈ Y

|V 1
ϵ,δ(x, α)− V 1

ϵ,δ(x
′, α′)| =

∣∣ ı́nf
a∈A
{c(x, α, a)} − ı́nf

a∈A
{c(x′, α′, a)}

∣∣
≤ sup

a∈A
|c(x, α, a)− c(x′, α′, a)|

≤ L0d1
(
(x, α), (x′, α′)

)
.

Para n > 1, suponga que V n−1
ϵ,δ es una función Lipschitz con constante

11
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L0

∑n−2
i=0 (βL1)

i. Entonces,

|V n
ϵ,δ(x, α)− V n

ϵ,δ(x
′, α′)|

=
∣∣∣ ı́nf
a∈A

{
c(x, α, a) + βEV n−1

ϵ,δ

[
H
(
x, α, a, χ(ϵ, δ)

)] }
− ı́nf

a∈A

{
c(x′, α′, a) + βEV n−1

ϵ,δ

[
H
(
x′, α′, a, χ(ϵ, δ)

)] }∣∣∣
≤ sup

a∈A

{
|c(x, α, a)− c(x′, α′, a)|

+
∣∣∣βEV n−1

ϵ,δ

[
H
(
x, α, a, χ(ϵ, δ)

)]
− βEV n−1

ϵ,δ

[
H
(
x′, α′, a, χ(ϵ, δ)

)] ∣∣∣}
≤ L0d1

(
(x, α), (x′, α′)

)
+ β sup

a∈A
EL0

n−2∑
i=0

(βL1)
id1

(
H
(
x, α, a, χ(ϵ, δ)

)
, H
(
x′, α′, a, χ(ϵ, δ)

))
≤ L0d1

(
(x, α), (x′, α′)

)
+ βL0

n−2∑
i=0

(βL1)
iL1d1

(
(x, α), (x′, α′)

)
=

(
L0 + L0

n−1∑
i=1

(βL1)
i

)
d1
(
(x, α), (x′, α′)

)
= L0

n−1∑
i=0

(βL1)
id1
(
(x, α), (x′, α′)

)
.

Por lo tanto, V n
ϵ,δ es una función Lipschitz con constante de Lipschitz

L0

∑n−1
i=0 (βL1)

i, para n ∈ N.
Para verificar la segunda parte, observe que βL1 < 1, entonces se

cumple que
∑∞

i=0(βL1)
i = 1

1−βL1
. Además, como V n

ϵ,δ → Vϵ,δ, cuando
n → ∞, se consigue que Vϵ,δ es una función Lipschitz con constante de
Lipschitz L0

1−βL1
.

Lema 1.3.6. Bajo las Suposiciones 1.3.1 y 1.3.2 b), para cada ϵ ∈ [0, ϵ0]
y δ ∈ [0, δ0] se cumple que

Eπ∗
0

y sup
a∈A(yt−1)

{
EW

[
H
(
yt−1, a, χt−1(ϵ, δ)

)] }
≤
(
γ

β

)t−1

W (y). (1.8)

Demostración. Sean ϵ ∈ [0, ϵ0], δ ∈ [0, δ0] y y ∈ Y . De la Suposición
1.3.2 b), se tiene que

EW
[
H
(
yt−1, a, χt−1(ϵ, δ)

)]
≤ γ

β
W (yt−1),

para cualquier t ≥ 1 fijo. Entonces se consigue que

Eπ∗
0

y sup
a∈A(yt−1)

{
EW

[
H
(
yt−1, a, χt−1(ϵ, δ)

)] }
≤ γ

β
Eπ∗

0
y W (yt−1),
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para cualquier t ≥ 1 fijo. Ahora, considere ĥt = {y, a1, y1, a2, ..., yt−1, at},
la historia del proceso conjunto descrito por las ecuaciones (1.1) y (1.2)
bajo la poĺıtica π∗

0 = {f∗, f∗, ...}, entonces

Eπ∗
0

y W (yt−1) = Eπ∗
0

y W
(
H(yt−2, at−2, χt−2(ϵ, δ))

)
= Eπ∗

0
y

[
EW

(
H(yt−2, at−2, χt−2(ϵ, δ))

)∣∣ĥt−2

]
≤ γ

β
Eπ∗

0
y

[
W (yt−2)|ĥt−2

]
=

γ

β
Eπ∗

0
y

[
W
(
H(yt−3, at−3, χt−3(ϵ, δ))

)∣∣ĥt−2

]
=

γ

β
Eπ∗

0
y W

(
H(yt−3, at−3, χt−3(ϵ, δ))

)
.

Por lo tanto,

Eπ∗
0

y sup
a∈A(yt−1)

{
EW

[
H
(
yt−1, a, χt−1(ϵ, δ)

)] }
≤
(
γ

β

)2

Eπ∗
0

y W
(
H(yt−3, at−3, χt−3(ϵ, δ))

)
.

Continuando con este procedimiento iterativo se tiene que

Eπ∗
0

y sup
a∈A(yt−1)

{
EW

[
H
(
yt−1, a, χt−1(ϵ, δ)

)] }
≤
(
γ

β

)t−1

W (y).

La demostración del siguiente teorema está basada en el Teorema 1
de [30].

Teorema 1.3.7. Bajo las Suposiciones 1.3.1 y 1.3.3 se cumple que

∆ϵ,δ(y, π
∗
0) ≤ Ĉ(y)δ̂ϵ,δ, y ∈ Y,

donde

Ĉ(y) =
2βL0 máx{L2,x, L2,α}

1− βL1

[
1

1− β
+

β

(1− γ)2
W (y)

]
,

para cada ϵ ∈ [0, ϵ0] y δ ∈ [0, δ0].

Demostración. Observe que para ϵ ∈ [0, ϵ0] y δ ∈ [0, δ0] se cumple que
Vϵ,δ y fϵ,δ satisfacen la siguiente ecuación de optimalidad

Vϵ,δ(y) = ı́nf
a∈A(y)

{c(y, a) + βEVϵ,δ

[
H
(
y, a, χ(ϵ, δ)

)]
}

= c(y, fϵ,δ(y)) + βEVϵ,δ

[
H
(
y, fϵ,δ(y), χ(ϵ, δ)

)]
.

(1.9)
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Denote

Rϵ,δ(y, a) := c(y, a) + βEVϵ,δ

[
H
(
y, a, χ(ϵ, δ)

)]
, (y, a) ∈ K, (1.10)

y considere ĥt = {y, a1, y1, a2, ..., yt−1, at}, como en la demostración del
Lema 1.3.6. Por la propiedad de Markov se verifica que

Eπ∗
0

[
βVϵ,δ(yt)|ĥt

]
=Rϵ,δ(yt−1, at)− c(yt, at)

− ı́nf
a∈A(yt−1)

Rϵ,δ(yt−1, a) + ı́nf
a∈A(yt−1)

Rϵ,δ(yt−1, a).(1.11)

Denotando Λϵ,δ
t := Rϵ,δ(yt−1, at) − ı́nfa∈A(yt−1) Rϵ,δ(yt−1, a), por (1.11)

se obtiene que

Eπ∗
0

[
βVϵ,δ(yt)|ĥt

]
= Λϵ,δ

t − c(yt, at) + Vϵ,δ(yt−1). (1.12)

Si tomamos valor esperado en (1.12), obtenemos que

Eπ∗
0

y [βVϵ,δ(yt)] = Eπ∗
0

y [Vϵ,δ(yt−1)]−Eπ∗
0

y [c(yt−1, at)]+Eπ∗
0

y

[
Λϵ,δ
t

]
. (1.13)

Sumando (1.13) sobre t = 1, 2, ..., n con pesos βt−1 conseguimos que

n∑
t=1

βt−1Eπ∗
0

y [c(yt−1, at)] =

n∑
t=1

βt−1
[
Eπ∗

0
y Vϵ,δ(yt−1)− βEπ∗

0
y Vϵ,δ(yt)

]
+

n∑
t=1

βt−1Eπ∗
0

y

[
Λϵ,δ
t

]
=Vϵ,δ(y)− βnEπ∗

0
y Vϵ,δ(yn) +

n∑
t=1

βt−1Eπ∗
0

y Λϵ,δ
t .

(1.14)

Como Vϵ,δ ∈ BW , ĺımn→∞ βnEπ∗
0

y Vϵ,δ(yn) = 0. Por lo tanto, cuando
n→∞, se sigue de (1.14) que

∆ϵ,δ0(y, π
∗
0) =

∞∑
t=1

βt−1Eπ∗
0

y Λϵ,δ
t =

∞∑
t=1

βt−1Eπ∗
0

y c(yt−1, at)− Vϵ,δ(y).

(1.15)
Ahora, por (1.9) y (1.10), se sigue que

R0,0(y, f
∗(y)) = ı́nf

a∈A(y)
R0,0(y, a),

entonces

Λϵ,δ
t =Rϵ,δ(yt−1, a)−R0,0(yt−1, f

∗(yt−1))

+ ı́nf
a∈A(yt−1)

{R0,0(yt−1, a)} − ı́nf
a∈A(yt−1)

{Rϵ,δ(yt−1, a)},
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esto implica que

Λϵ,δ
t ≤Rϵ,δ(yt−1, a)−R0,0(yt−1, f

∗(yt−1))

+ sup
a∈A(yt−1)

{R0,0(yt−1, a)−Rϵ,δ(yt−1, a)}.

Por lo tanto,

|Λϵ,δ
t | ≤ 2 sup

a∈A(yt−1)

|Rϵ,δ(yt−1, a)−R0,0(yt−1, a)|

≤ 2β sup
a∈A(yt−1)

∣∣EVϵ,δ

(
H(yt−1, a, χ(ϵ, δ))

)
− EV

(
H(yt−1, a, χ(0, 0))

)∣∣,
donde el valor esperado en el último término es tomado con respecto al
vector aleatorio χ(ϵ, δ) para t fijo. De la última desigualdad se sigue que

|Λϵ,δ
t | ≤2β sup

a∈A(yt−1)

∣∣EVϵ,δ

(
H(yt−1, a, χ(ϵ, δ))

)
− EVϵ,δ

(
H(yt−1, a, χ(0, 0))

)∣∣
+ 2β sup

a∈A(yt−1)

∣∣EVϵ,δ

(
H(yt−1, a, χ(0, 0))

)
− EV

(
H(yt−1, a, χ(0, 0))

)∣∣
≤2βµ1(χ(ϵ, δ), χ(0, 0))

+ 2β∥Vϵ,δ − V ∥W sup
a∈A(yt−1)

EW
(
H(yt−1, a, χ(0, 0))

)
,

(1.16)

donde

µ1

(
χ(ϵ, δ), χ(0, 0)

)
= sup

(y,a)∈K

∣∣EVϵ,δ

(
H
(
y, a, χ(ϵ, δ)

))
− EVϵ,δ

(
H
(
y, a, χ(0, 0)

)) ∣∣.
De la Proposición 8.3.9 parte (a) de [38], se puede demostrar que

Tϵ,δu(y) := ı́nf
a∈A(y)

{
c(y, a) + βEu

(
H
(
y, a, χ(ϵ, δ)

))}
,

es un operador contractivo en BW con módulo γ, para cada ϵ ∈ [0, ϵ0]
y δ ∈ [0, δ0]. Como Vϵ,δ y V son puntos fijos para el operador Tϵ,δ se
consigue que

∥Vϵ,δ − V ∥W ≤ ∥Tϵ,δVϵ,δ − T0,0Vϵ,δ∥W + ∥T0,0Vϵ,δ − T0,0V ∥W .

Esta última relación implica que

∥Vϵ,δ − V ∥W
≤ (1− γ)−1∥Tϵ,δVϵ,δ − T0,0Vϵ,δ∥W

≤ β

1− γ
sup
y∈y

{
supa∈A(y)

∣∣EVϵ,δ

[
H
(
y, a, χ(ϵ, δ)

)]
− EVϵ,δ

[
H
(
y, a, χ(0, 0)

)] ∣∣
W (y)

}
.(1.17)

Combinando la desigualdad (1.8) del Lema 1.3.6 y las expresiones (1.16)
y (1.17), se consigue que

Eπ∗
0

y |Λϵ,δ
t | ≤ 2β

[
1 +

β

1− γ

(
γ

β

)t−1

W (y)

]
µ1(χ(ϵ, δ), χ(0, 0)).
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Finalmente, por (1.15) se obtiene que

∆ϵ,δ(y, π
∗
0) ≤ 2β

[
1

1− β
+

β

(1− γ)2
W (y)

]
µ1(χ(ϵ, δ), χ(0, 0)).

Por el Lema 1.3.5, se tiene que

∆ϵ,δ(y, π
∗
0) ≤ 2β

L0

1− βL1

[
1

1− β
+

β

(1− γ)2
W (y)

]
L(χ(ϵ, δ), χ(0, 0)).

(1.18)
Considere el caso particular χ′ = χ(0, 0) on (1.7), entonces se sigue que

L(χ(ϵ, δ), χ(0, 0)) = Er
(
χ(ϵ, δ), χ(0, 0)

)
= δ̂ϵ,δ.

Por lo tanto, sustituyendo la igualdad anterior en la ecuación (1.18) el
resultado se sigue.

Observación 1.3.8. Observe que el Teorema 1.3.7 garantiza que la
poĺıtica óptima del sistema determinista (ver (1.3) y (1.4)) π∗

0 ∈ F es
asintóticamente óptima para el sistema estocástico (ver(1.1) y (1.2)),
i.e.,

ĺım
ϵ,δ→0

∣∣∣V̂ϵ,δ(y, π
∗
0)− Vϵ,δ(y)

∣∣∣ = 0.

En el siguiente lema se verifica la continuidad de la función f∗, bajo
el supuesto de que existe una única poĺıtica óptima π∗

0 . La unicidad de
la poĺıtica óptima es una condición restrictiva, pero en [16] se pueden
encontrar tres bloques de condiciones para las componentes del modelo
de decisión para garantizar esta suposición. En particular, en [16] se
proporcionan condiciones para la unicidad cuando el espacio de estados
es un subconjunto de Rn.

Lema 1.3.9. Bajo las Suposiciones 1.3.1, 1.3.2 y si además, la poĺıtica
óptima estacionaria para el problema determinista π∗

0 = {f∗, f∗, ...} es
única, entonces f∗ es una función continua.

Demostración. Por contradicción se demostrará que para ϵ = 0 y δ =
0, la poĺıtica óptima f∗ : Y → A es una función continua. Bajo las
Suposiciones 1.3.1 y 1.3.2 se tiene que

V (x, α) = ı́nf
a∈A

{
c(x, α, a) + βV

(
F
(
x, α, a, ξ(0)

)
, G
(
α, η(0)

))}
= c(x, α, f∗(x, α)) + β

(
F
(
x, α, f∗(x, α), s1

)
, G
(
α, s2

))
,
(1.19)

(x, α) ∈ Y. Suponga que existe (x̂, α̂) ∈ Y donde f∗ no es continua.
Entonces, existe una sucesión {(xn, αn)} tal que (xn, αn)→ (x̂, α̂) pero

16
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d2
(
f∗(xn, αn), f

∗(x̂, α̂)
)
↛ 0, cuando n → ∞. Después de tomar una

subsucesión -si es necesario- sin pérdida de generalidad, existe τ > 0 tal
que d2

(
f∗(xn, αn), f

∗(x̂, α̂)
)
≥ τ , para todo n ∈ N. Como A es compacto,

existe una subsucesión {znk
} de {zn = f∗(xn, αn)} que converge a z ∈ A,

donde z ̸= f∗(x̂, α̂). Considere (xnk
, αnk

) y f∗(xnk
, αnk

) en vez de (x, α)
y f∗(x, α) en (1.19), entonces se consigue que

V (xnk
, αnk

) =c(xnk
, αnk

, f∗(xnk
, αnk

))+

βV
(
F
(
xnk

, αnk
, f∗(xnk

, αnk
), ξ(0)

)
, G
(
αnk

, η(0)
))

.

Por la continuidad de las funciones c, F, G y V , cuando k → ∞, se
obtiene que

V (x̂, α̂) = c(x̂, α̂, z) + βV
(
F
(
x̂, α̂, z, ξ(0)

)
, G
(
α̂, η(0)

))
,

(x̂, α̂) ∈ Y. Por las Suposiciones 1.3.1 y 1.3.2, existe una poĺıtica óptima
f con z = f(x̂, α̂). Pero f(x̂, α̂) ̸= f∗(x̂, α̂), lo cual contradice la unicidad
de la poĺıtica óptima. Por lo tanto, f∗ es continua.

A continuación, se enuncia y demuestra el teorema principal.

Teorema 1.3.10. Bajo las Suposiciones 1.3.1, 1.3.2 y 1.3.3, para cada
ϵ ∈ [0, ϵ0] y δ ∈ [0, δ0] se cumplen las siguientes afirmaciones

(a) ∥Vϵ,δ − V ∥W ≤ β
1−γ

L0 máx{L2,x,L2,α}
1−βL1

δ̂ϵ,δ.

(b) Sea K un subconjunto compacto de Y . Si la poĺıtica estacionaria
óptima para el problema determinista π∗

0 = {f∗, f∗, ...} es única,
entonces fϵ,δ → f∗ uniformemente sobre K cuando ϵ → 0 y δ →
0.

Demostración. (a) La expresión (1.17) implica que

∥Vϵ,δ − V ∥W ≤ β(1− γ)−1 sup
y∈Y

{
W−1(y)

sup
a∈A(y)

∣∣EVϵ,δ

(
H
(
y, a, χ(ϵ, δ)

))
− EVϵ,δ

(
H
(
y, a, χ(0, 0)

)) ∣∣}.
Ahora, por el Lema 1.3.5 y como W (y) ≥ 1 para y ∈ Y , se tiene que

∥Vϵ,δ − V ∥W ≤ β(1− γ)−1 L0

1− βL1

sup
y∈Y

sup
a∈A(y)

∣∣∣Ed1(H(y, a, χ(ϵ, δ)), H(y, a, χ(0, 0)))∣∣∣.
Por otro lado, las siguientes expresiones son válidas:
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∣∣∣Ed1(H(y, a, χ(ϵ, δ)), H(y, a, χ(0, 0)))∣∣∣
=

∣∣∣∣∣Emáx

{
dx

(
F
(
x, α, a, ξ(ϵ)

)
, F
(
x, α, a, ξ(0)

))
,

dα

(
G
(
α, η(δ)

)
, G
(
α, η(0)

))}∣∣∣∣∣
≤
∣∣EL2,xr1

(
ξ(ϵ), ξ(0)

)∣∣1{dα≤dx}

((
F
(
x, α, a, ξ(ϵ)

)
, G
(
α, η(δ)

))
,

(
F
(
x, α, a, ξ(0)

)
, G
(
α, η(0)

)))
+

∣∣EL2,αr2
(
η(δ), η(0)

)∣∣1{dx<dα}

((
F
(
x, α, a, ξ(ϵ)

)
, G
(
α, η(δ)

))
,

(
F
(
x, α, a, ξ(0)

)
, G
(
α, η(0)

)))
,

donde 1{dα≤dx}(·) denota la función indicadora sobre {dα ≤ dx}, mien-
tras que 1{dx<dα}(·) denota la función indicadora sobre {dx < dα}. En-
tonces, se concluye que

∥Vϵ,δ − V ∥W ≤ β(1− γ)−1L0 máx{L2,x, L2,α}
1− βL1

δ̂ϵ,δ.

(b) Suponga que existen K ⊂ Y compacto, un número real τ > 0 y
sucesiones {ϵn}, {δn} convergentes a 0 tales que

d2
(
fϵn,δn(xn, αn), f

∗(xn, αn)
)
≥ τ

2
, n = 1, 2, ..., (1.20)

para alguna sucesión convergente {(xn, αn)} ⊂ K, tal que (xn, αn) →
(x, α) ∈ K, cuando n→∞. Como A es compacto, elija una subsucesión
{(xm, αm)} de {(xn, αn)} tal que fϵn,δn(xm, αm) → a ∈ A. Ahora, por
la continuidad de f∗ que provee el Lema 1.3.5 y por (1.20) se tiene que
d2
(
a, f∗(x, α)

)
≥ τ

2 . Como fϵn,δn es una poĺıtica óptima, análogamente
a (1.19) se obtiene que para m = 1, 2, ...,

Vϵm,δm(xm, αm) = c(xm, αm, fϵm,δm(xm, αm))

+ βEVϵm,δm

(
F
(
xm, αm, f∗(xm, αm), ξ(ϵm)

)
, G
(
αm, η(δm)

))
.

(1.21)
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Por otro lado, note que∣∣∣EVϵm,δm

(
F
(
xm, αm, f∗(xm, αm), ξ(ϵm)

)
, G
(
αm, η(δm)

))
−

V
(
F
(
x, α, a, ξ(0)

)
, G
(
α, η(0)

))∣∣∣
≤
∣∣∣EVϵm,δm

(
F
(
xm, αm, f∗(xm, αm), ξ(ϵm)

)
, G
(
αm, η(δm)

))
−

Vϵm,δm

(
F
(
xm, αm, f∗(xm, αm), ξ(0)

)
, G
(
αm, η(0)

))∣∣∣
+
∣∣∣Vϵm,δm

(
F
(
xm, αm, f∗(xm, αm), ξ(0)

)
, G
(
αm, η(0)

))
−

V
(
F
(
xm, αm, fϵm,δm(xm, αm), ξ(0)

)
, G
(
αm, η(0)

))∣∣∣
+
∣∣∣V (F (xm, αm, fϵm,δm(xm, αm), ξ(0)

)
, G
(
αm, η(0)

))
−

V
(
F
(
x, α, a, ξ(0)

)
, G
(
α, η(0)

))∣∣∣.

(1.22)

Por el Lema 1.3.5, el primer término del lado derecho de (1.22) es menor

o igual que L0

1−βL1
δ̂ϵm,δm . Los términos restantes convergen a 0 cuando

m → ∞, por la continuidad de las funciones F, G y V . Por lo tanto,
cuando m→∞, (1.21) se convierte en

V (x, α) = c(x, α, a) + βV
(
F
(
x, α, a, ξ(0)

)
, G

(
α, η(0)

))
.

Por argumentos similares a los proporcionados en la demostración del
Lema 1.3.9, se sabe que existe una poĺıtica óptima f con a = f(x, α),
pero f(x, α) ̸= f∗(x, α). Lo cual contradice la unicidad de la poĺıtica
óptima. Por lo tanto, fϵn,δn converge uniformemente a f∗.

1.4. Ejemplos

En esta sección, se presentan dos ejemplos que ilustran la teoŕıa
desarrollada y dos ejemplos que no verifican alguna de las suposicio-
nes del Teorema 1.3.7 y que, por tanto, proporcionan conclusiones muy
distintas a las que provee tal resultado. En esta sección, se consideran
dx, dα, d2, r1 y r2 como la métrica usual en R.

1.4.1. Problema de consumo-inversión

Será considerado un problema de consumo-inversión en el que un
inversor debe destinar su riqueza actual, digamos xt, entre inversión at
y consumo xt − at, en cada etapa t = 0, 1, 2, .... Además, en cada etapa
t se impone un factor de descuento exp(−αt), que depende de la tasa
de interés bancario actual αt. Los espacios de estados y acciones serán
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X = A = [0,∞). Suponiendo que no se permite el endeudamiento, el
conjunto de controles admisibles toma la forma: A(x, α) = [0, x]. Además
se supone que el banco recibe al menos una tasa de interés de exp(α∗)−1
para α∗ > 0. De este modo, el espacio de la tasa de descuento es Γ =
[α∗,∞). El proceso de estados {xt} y el proceso de descuentos {αt}
evolucionan de acuerdo con las ecuaciones en diferencias:

xt+1 = ξt(ϵ) (xt − at) ,

αt+1 = αt + ηt(δ),
(1.23)

t = 0, 1, 2, ..., con (x0, α0) fijo dado, {ξt} y {ηt} son sucesiones de va-
riables aleatorias independientes e idénticamente distribuidas (v.a.i.i.d.)
independientes de (x0, α0) que tienen distribución discreta con valores
en S1 = S2 = [0, 1].

Observación 1.4.1. En particular, si ηt(0) = s2 = 0, t = 0, 1, ..., en
la ecuación (1.23) el correspondiente PDM determinista tiene factor de
descuento constante.

El objetivo es maximizar la utilidad de consumo del inversor sobre todo
π ∈ Π,

V̂ϵ,δ(π, x, α) = Eπ
(x,α)

[ ∞∑
t=0

e−Stu(xt, αt, at)

]
,

donde St = α0 +α1 + · · ·+αt−1 y u es la función de utilidad. Considere
la función de utilidad u definida por

u(x, α, a) =
b

γ1
aγ1 ,

(x, α, a) ∈ K, donde b > 0, γ1 ∈ (0, 1). Además, suponga que µγ1 :=
E [ξγ1 ] < ∞ con 0 < βµγ1 < 1, donde β = e−α0 . Por la definición de la
función de utilidad, de manera inmediata se satisfacen las Suposiciones
1.3.1 b) y 1.3.3 a) con L0 := 1.

Note que A(x, α) es compacto para todo (x, α) ∈ X×Γ. Ahora, considere
Ha la métrica de Haussdorff, entonces para (x, α), (x

′
, α

′
) ∈ X × Γ se

tiene que

Ha (A(x, α), A(x
′
, α

′
)) = Ha([0, x], [0, x

′
])

= |x− x
′
|

≤ máx
{
|x− x

′
|, |α− α

′
|
}

= d1

(
(x, α), (x

′
, α

′
)
)
.
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Luego el mapeo de valores-conjunto (x, α) → A(x, α) es continuo res-
pecto a la métrica de Hausdorff, por lo que la Suposición 1.3.1 a) es
válida. Además, por la continuidad de H la función U

′
(x, α, a) también

es continua, por lo que se cumple 1.3.1 c).

Considere W : X × Γ→ [1,∞) definida por

W (x, α) =
bµγ1

γ1 (1− βµγ1)
xγ1 + 1, (x, α) ∈ X × Γ.

En [19] se verifica que la función W satisface las Suposiciones 1.3.2 a),
b). Además, note que

W
′
(x, α, a) =

bµγ1

γ1 (1− βµγ1
)
(x− a)Eξ(ϵ) + 1,

es continua sobre K, por lo que la Suposición 1.3.2 se sigue.

Por otra parte, para (x, α, a), (x
′
, α

′
, a) ∈ K y (s1, s2) ∈ S1 × S2 se tiene

que

d1

(
H
(
x, α, a, (s1, s2)

)
, H
(
x

′
, α

′
, a, (s1, s2)

))
=máx{ξ|x− x

′
|, |α− α

′
|}

≤máx{|x− x
′
|, |α− α

′
|}

=d1
(
(x, α), (x

′
, α

′
)
)
,

con lo que 1.3.3 b) se cumple para L1 := 1.

Finalmente, se mostrará la condición 1.3.3 c):

dx
(
F (x, α, a, ξ(ω1)), F (x, α, a, ξ

′
(ω

′

1))
)

=|F (x, α, a, ξ(ω1))− F (x, α, a, ξ
′
(ω

′

1))|

=
∣∣∣ (ξ(ω1)− ξ

′
(ω

′

1)
)
(x− a)

∣∣∣
≤x|ξ(ω1)− ξ

′
(ω

′

1)|

=L2,xr1(ξ(ω1), ξ
′
(ω

′

1)),

para todo (x, α, a) ∈ K y ξ(ω1), ξ
′
(ω

′

1) ∈ S1, donde L2,x := x.
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También, se tiene que

dα
(
G(α, η(ω2)), G(α, η

′
(ω

′

2))
)
=|G(α, η(ω2))−G(α, η

′
(ω

′

2))|

=|α+ η(ω2)− (α+ η
′
(ω

′

2))|

=δ|η(ω2)− η
′
(ω

′

2)|

≤δ0|η(ω2)− η
′
(ω

′

1)|

=L2,αr2(η(ω2), η
′
(ω

′

2)),

para todo α ∈ Γ y η(ω2), η
′
(ω

′

2) ∈ S2, donde L2,α := δ0.

Por el Teorema 1.3.7, se obtiene la desigualdad

∆ϵ,δ((x, α), π
∗
0)

≤2βmáx{x, δ0}
1− β

[
1

1− β
+

β

(1− γ)2

(
bµγ1

γ1 (1− βµγ1)
xγ1 + 1

)]
R̂,

donde R̂ = Emáx {|ξ(ϵ)− ξ(0)|, |η(δ)− η(0)|} . Por el Teorema 1.3.10
inciso a) la tasa de convergencia de la función de valor óptimo es:

βmáx{x, δ0}
(1− γ) (1− β)

.

Finalmente, por el Teorema 1.3.10 inciso b) para cualquier subconjunto
K del espacio de estados X × Γ se tiene que

sup
(x,α)∈K

|fϵ,δ(x, α)− f∗(x, α)| → 0,

cuando ϵ→ 0 y δ → 0.

1.4.2. Problema de control con ruido aditivo pequeño

Suponga que la dinámica del sistema está dada por las ecuaciones en
diferencias siguientes:

xt+1 =
1

2
(αtxt + at + ξt(ϵ)) ,

αt+1 = hαt + ηt(δ),
(1.24)

t = 0, 1, 2, ..., donde 0 < h ≤ 1 y {ξt(ϵ)}, {ηt(δ)} son sucesiones de
v.a.i.i.d. que toman valores en S1 = [0, B

3 ] y S2 = [0, 1
2 ], respectivamente.

El espacio de x-estados es X = [0, B], donde 0 < B < 6
(

1
β − 1

)
, con β

el factor de descuento y el espacio de α-estados es Γ = [0, 1], es decir,
0 ≤ α ≤ 1. El espacio de control es A = [0, B

3 ]. El conjunto de controles
admisibles en los estados (x, α) es A(x, α) = [0, xα] y la función de costo
es c(x, α, a) = xα− a, (x, α, a) ∈ K.
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Observación 1.4.2. En particular, si ηt(0) = s2 = 0, t = 0, 1, ..., y
h = 1, el correspondiente PDM determinista tiene parámetro constante
α.

En este ejemplo, la Suposición 1.3.1 se verifica de manera inmediata. A
continuación, serán verificadas las Suposiciones 1.3.2 y 1.3.3.
Considere W : X × Γ→ [1,∞) definida por W (x, α) = x+ 1 para todo
(x, α) ∈ X × Γ. Entonces se cumple que

|c(x, α, a)| = (xα− a)

≤ x− a

≤ x

< x+ 1

:= W (x, α),

para todo (x, α, a) ∈ K.

También, se tiene que

EW [H (x, α, a, (ξ(ϵ), η(δ)))] =E
[
1

2
(αx+ a+ ξ(ϵ)) + 1

]
=
1

2
(αx+ a+ Eξ(ϵ)) + 1

≤1

2

(
2αx+

B

3

)
+ 1

≤1

2

(
2x+ 2 +

B

3

)
≤x+ 1 +

B

6

≤
(
1 +

B

6

)
(x+ 1)

=
γ

β
W (x, α),

(1.25)

para todo (x, α, a) ∈ K donde γ = β
(
1 + B

6

)
. Es claro que γ > β.

Además, note que como B < 6
(

1
β − 1

)
se tiene que γ < 1 y por lo

tanto, γ ∈ (β, 1).

De la segunda igualdad en (1.25) se observa que la función

EW
[
H
(
x, α, a, χ(ϵ, δ)

)]
,

es continua sobre K. Por lo tanto, la Suposición 1.3.2 se cumple.
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Finalmente, se verifica la Suposición 1.3.3. Note que

|c(x, α, a)− c(x
′
, α

′
, a)| =|xα− a−

(
x

′
α

′
− a
)
|

=|xα−
(
x

′
α

′
)
|

≤|x− x
′
|

≤máx
{
|x− x

′
|, |α− α

′
|
}

=L0d1

(
(x, α), (x

′
, α

′
)
)
,

para todo (x, α, a), (x
′
, α

′
, a) ∈ K, donde L0 := 1.

Las siguientes desigualdades se cumplen para la dinámica conjunta de
los estados

d1

(
H
(
x, α, a, (s1, s2)

)
, H
(
x

′
, α

′
, a, (s1, s2)

))
=máx

{∣∣∣∣12αx− 1

2
α

′
x

′
∣∣∣∣ , ∣∣∣h(α− α

′
)∣∣∣}

≤máx

{
1

2
|x− x

′
|, h|α− α

′
|
}

≤L1d1

(
(x, α), (x

′
, α

′
)
)
,

para todo (x, α, a) ∈ K y (s1, s2) ∈ S1×S2, donde L1 := máx
{

1
2 , h
}
≤ 1.

Finalmente, se verifican las condiciones Lipschitz para las funciones F y
G respecto a las variables de perturbación:

dx

(
F
(
x, α, a, ξ(ω1)

)
, F
(
x, α, a, ξ

′
(ω

′

1)
))

=

∣∣∣∣12 (αx+ a+ ξ(ω1))−
1

2

(
αx+ a+ ξ

′
(ω

′

1)
)∣∣∣∣

=

∣∣∣∣12ξ(ω1)−
1

2
ξ
′
(ω

′

1)

∣∣∣∣
≤1

2
|ξ(ω1)− ξ

′
(ω

′

1)|

≤L2,xr1

(
ξ(ω1), ξ

′
(ω

′

1)
)
,
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para todo (x, α, a) ∈ K, ξ(ω1), ξ
′
(ω

′

1) ∈ S1, donde L2,x := 1
2 y

dα

(
G
(
α, η(ω2)

)
, G
(
α, η

′
(ω

′

2)
))

=
∣∣∣(hα+ η(ω2))−

(
hα+ η

′
(ω

′

2)
)∣∣∣

=
∣∣∣η(ω2)− η

′
(ω

′

2)
∣∣∣

≤L2,αr2

(
η(ω2), η

′
(ω

′

2)
)
,

para cada α ∈ Γ y η(ω2), η
′
(ω

′

2) ∈ S2, donde L2,α := 1. Por lo tanto, la
Suposición 1.3.3 se cumple.

Por el Teorema 1.3.7 se tiene que

∆ϵ,δ((x, α), π
∗
0) ≤

2β

1− β
(
máx

{
1
2
, h

}) [
1

1− β
+

β(
1−

(
β(1 + B

6
)
))2 (x+ 1)

]
R̂,

donde R̂ := Emáx {|ξ(ϵ)− ξ(0)|, |η(δ)− η(0)|} . Mientras que por el
Teorema 1.3.10 la tasa de convergencia de la función de valor es:

β[
1−

(
β(1 + B

6 )
)] [

1− β
(
máx

{
1
2 , h
})] .

Además, por el inciso b) del Teorema 1.3.10 se tiene que fϵ,δ(x, α) →
f∗(x, α) sobre cualquier subconjunto K del espacio de estados X × Γ,
cuando ϵ→ 0 y δ → 0.

1.4.3. Importancia de las suposiciones

Finalmente, presentamos dos ejemplos donde no se satisfacen las Su-
posiciones 1.3.2 y 1.3.3 y por lo tanto, no se garantizan las conclusiones
del Teorema 1.3.7.

Ejemplo 1.4.3. Sean X = [0,∞), Γ = [0, 1], A = [1, 1
β ], ϵ, δ ∈ [0, 1] y

la función de costo en una etapa dada por

c(x, α, 0) =1, (x, α) ∈ X × Γ,

c(x, α, a) =

{
a, x ∈ [0, 1], α ∈ Γ,

a+ x− 1, x > 1, a ∈ (0, 1
β ), α ∈ Γ,

c(x, α,
1

β
) =

{
0, x ∈ [0, 1], α ∈ Γ,

x− 1, x > 1, α ∈ Γ.

Considere las ecuaciones en diferencias:

xt+1 = atxt + ϵαtξt,

αt+1 = kαt + δηt,
(1.26)
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CON DINÁMICA ACOPLADA

t = 0, 1, ..., donde {ξt} es una sucesión de v.a.i.i.d. con distribución
uniforme sobre (0, 1), ηt = 0, t = 1, 2, ... y k < 1. La aproximación
determinista al proceso (1.26) está dada por las ecuaciones:

xt+1 = atxt,

αt+1 = kαt,
(1.27)

t = 1, 2, ... y k < 1. Considere x0 = 0 y α0 = 1, entonces para cualquier
poĺıtica de control en (1.27), se tiene que (xt, αt) = (0, ht), t = 1, 2, ....
Por lo tanto, la poĺıtica π∗

0 = { 1β ,
1
β , ...} proporciona el valor mı́nimo de

V̂
(
(0, 1), π∗

0

)
= V

(
(0, 1)

)
= 0. Ahora, si se aplica la poĺıtica π∗

0 en la
ecuación (1.26) con estado inicial (0, 1) se obtiene que

xt =
1

βt
+

ϵk

βt−1

t−1∑
i=0

(βk)
i
ξi+1, (1.28)

t = 1, 2, .... Observe que el primer término del lado derecho de (1.28) es
mayor que 1, por tanto, xt > 1 para t = 1, 2, .... Como c(x, α, 1

β ) = x− 1

para x > 1 y usando (1.28) se consigue que

βtEπ∗
0

(0,1)c(xt, αt,
1

β
) =βtEπ∗

0

(0,1)

[
1

βt
+

ϵk

βt−1

t−1∑
i=0

(βk)
i
ξi+1 − 1

]

=1 +
ϵkβ

2

t−1∑
i=0

(βk)
i − βt

≥ϵkβ
2

t−1∑
i=0

(βk)
i

=ϵ
kβ

2

1− (kβ)t

1− kβ
,

t = 1, 2, .... Ahora, para cada ϵ1 ∈ (0, 1
2 ) elija la poĺıtica estacionaria

π1 = {ϵ1, ϵ1, ...}, por (1.26) se obtiene que xt ∈ [0, 1], t = 0, 1, 2, ....
Observe que

V̂ϵ,δ

(
(0, 1), π1

)
=Eπ1

(0,1)

[ ∞∑
t=0

βtc(yt, αt, at)

]

=Eπ1

(0,1)

[ ∞∑
t=0

βtϵ1

]
=

ϵ1
1− β

.

De esta manera,

0 ≤ Vϵ,δ

(
(0, 1)

)
≤ V̂ϵ,δ

(
(0, 1), π1

)
→ 0,
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cuando ϵ1 → 0. Por otro lado, observe que (kβ)t ≤ kβ, para t ≥ 1,
entonces

∆ϵ,δ((0, 1), π1) =V̂ϵ,δ

(
(0, 1), π1

)
− Vϵ,δ

(
(0, 1)

)
=Eπ1

(0,1)

[ ∞∑
t=0

βtc(yt, αt, at)

]

≥ϵkβ
2

∞∑
t=0

1− (kβ)t

1− kβ

=ϵ
kβ

2

∞∑
t=1

1− (kβ)t

1− kβ

≥kβ

2

∞∑
t=1

1− kβ

1− kβ

=∞.

Por lo tanto, ∆ϵ,δ

(
(0, 1), π1

)
= ∞. En este ejemplo, no se cumplen las

condiciones de la Suposición 1.3.2, en particular, no existe una función
W : Y → [1,∞) continua tal que |c(y, a)| ≤ W (y), para (y, a) ∈ K. En
este caso, ocurre que ∆ϵ,δ((0, 1), π1) =∞, para cualesquiera ϵ, δ > 0.

Ejemplo 1.4.4. Sean X = R, Γ = [0,∞), A = {0, 1}, ϵ, δ ∈ [0, 1] y
para i ∈ {0, 1} se define la función de costo en una etapa por

c(x, α, i) =

{
1, x ≤ 0, α ∈ Γ,
3, en otro caso.

Además, considere las ecuaciones en diferencias:

xt+1 = xtαt (at − ϵξt) ,

αt+1 = hαt − δηt,
(1.29)

t = 0, 1, ..., donde {ξt} es una sucesión de variables aleatorias con dis-
tribución normal estándar y {ηt} es una sucesión de variables aleatorias
con distribución exponencial con parámetro 1, h > 0. La aproximación
determinista al proceso (1.29) está dada por las ecuaciones:

xt+1 = αtxtat,

αt+1 = hαt,
(1.30)

t = 0, 1, .... Considere estados iniciales x0 = 1 y α0 = 1. Se puede
observar que la poĺıtica π∗

0 = {0, 0, ...} es óptima para el proceso de-
terminista (1.30) y para ϵ > 0, V̂ϵ,δ

(
(1, 1), π∗

0

)
= 1

1−β . Mientras que
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V̂ϵ,δ

(
(1, 1), π1

)
= 3

1−β , con π1 = {1, 1, ...}. Por lo tanto,

∆ϵ,δ((1, 1), π1) =V̂ϵ,δ

(
(1, 1), π1

)
− Vϵ,δ

(
(1, 1)

)
≥V̂ϵ,δ

(
(1, 1), π1

)
− V̂ϵ,δ

(
(1, 1), π∗

0

)
=

3

1− β
− 1

1− β

=
2

1− β
.

En este ejemplo, la Suposición 1.3.3 no se verifica, en particular la fun-
ción de costo c, no es una función Lipschitz. En este caso se concluye
que ∆ϵ,δ(1, 1) ≥ 2

1−α aunque δ̂ϵ,δ → 0 cuando ϵ→ 0 y δ → 0.

Tenga en cuenta que si L1 > 1 en la Suposición 1.3.3 b), no hay ga-
rant́ıa de encontrar una cota superior para ∆ϵ,δ(y, π

∗
0) ni encontrar una

tasa de convergencia para la función de valor óptimo, cuando ocurre que
βL1 > 1.

En el siguiente caṕıtulo se presenta una aplicación del enfoque de
ecuaciones en diferencias acopladas, en el que se aborda un modelo de
crecimiento económico [58]. El modelo original está dado por una ecua-
ción en diferencias que no satisface las condiciones Lipschitz establecidas
en las condiciones del modelo de control que se abordó en este caṕıtulo.
El modelo propuesto es perturbado por dos ruidos pequeños y median-
te un enfoque de ecuaciones en diferencias acopladas, se presenta un
teorema central del ĺımite.
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Caṕıtulo 2

Comportamiento normal
en un modelo de
crecimiento económico

En este caṕıtulo, se aborda un problema de crecimiento económico
que se ha estudiado ampliamente en [58]. En tal art́ıculo, los autores
muestran que las trayectorias de acumulación de capital convergen a las
trayectorias correspondientes de un modelo determinista. Otra de las
conclusiones es un teorema del ĺımite central funcional que muestra que
a una tasa σ, las trayectorias del capital centrado son asintóticamente
normales. Este resultado es válido tanto para el nivel de capital como
para su logaritmo. La convergencia mencionada se logra bajo existencia
de un estado estacionario para el sistema determinista.

Inicialmente se identificó el problema de crecimiento económico con
un Proceso de Decisión de Markov que evolucionan través de dos ecua-
ciones en diferencias acopladas como las planteadas en el Caṕıtulo 1
de este escrito, que se propusieron en [49]. Se abordó este problema de
crecimiento económico considerando la tasa de depreciación del capital
como una cantidad aleatoria, suponiendo que la depreciación del capital
se desarrolla de acuerdo con una tasa que cuenta con una ecuación en
diferencias para su evolución. Esto permitió resolver el problema usando
Aprendizaje por Refuerzo (AR), espećıficamente se utilizó la metodo-
loǵıa de Q-learning. Para lograr lo anterior, se discretizó el espacio de
estados y el espacio de acciones asociados al PDM del problema de cre-
cimiento económico. Se encontró la poĺıtica casi-óptima que proporciona
Q-learning y como consecuencia se presentan las realizaciones de la tra-
yectoria óptima del sistema estocástico cuando el estado estacionario
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del sistema determinista se considera como el estado inicial del sistema
aleatorio. Lo anterior representa una solución aproximada para el pro-
blema de crecimiento económico. Además, se presenta evidencia de la
convergencia del sistema aleatorio al estado estable determinista, como
el que se define en [15, 43]. Por otro lado, se abordó la convergencia de
las trayectorias del capital. Como resultado se obtuvo un teorema ĺımite
en el contexto de dinámicas acopladas que involucra una función de los
logaritmos de las dinámicas del capital en el modelo aleatorio y en el
determinista. Este resultado se complementa con experimentos numéri-
cos en donde se fijan los valores de los parámetros del modelo, y como
resultado se presentan algunos histogramas y pruebas estad́ısticas que
garantizan el comportamiento normal de la transformación de los loga-
ritmos de los capitales de los sistemas determinista y aleatorio.

Lo anterior corresponde a un caso particular del estudio de pequeñas
perturbaciones en PDMs, por lo que se resume brevemente el trabajo
relacionado a esta ĺınea. El estudio en [45], se consideró el problema de
aproximación de un proceso de control estocástico por un proceso de-
terminista en el caso continuo. En este art́ıculo, los autores demostraron
que el problema estocástico puede ser aproximado por un determinista
cuando el ruido es pequeño y las fluctuaciones se vuelven rápidas. En
este contexto, se demuestra que el control óptimo para el problema de-
terminista es asintóticamente óptimo para problemas estocásticos. En
el caso continuo, [23] aborda un problema similar, es decir, cuando los
efectos del ruido en un sistema f́ısico son pequeños, estos autores reali-
zaron un análisis asintótico de aproximación de difusión y usaron esto
para estimaciones deseadas del sistema original. Para PDMs a tiempo
discreto, esta clase de problemas fueron estudiados por [17,18], donde la
dinámica del sistema está descrita por una sola ecuación en diferencias.
La convergencia entre estos modelos también fue estudiada en [44]. Sin
embargo, la convergencia fue estudiada usando sucesiones que pertene-
cen al conjunto de parejas de estado-acción admisibles, que se supone es
un subconjunto de un espacio euclidiano. Además, este estudio se lleva a
cabo bajo el supuesto de que el espacio de acciones es un conjunto com-
pacto y que la función de costos es acotada. Ahora, cuando consideramos
PDMs que se desarrollan con respecto a (1.1) y (1.2), los resultados que
aparecen en [17] son generalizados.

El enfoque de ecuaciones acopladas puede aplicarse, por ejemplo,
cuando se considera un factor de descuento aleatorio [25–28], donde la
segunda ecuación en diferencias se refiere a la evolución del factor de
descuento aleatorio. Recientemente, en el contexto de ecuaciones en di-
ferencias con dinámicas acopladas, en [49] se imponen restricciones de
continuidad de Lipschitz [39, 46] sobre las componentes del modelo de
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control y se aplican técnicas de PD para obtener las conclusiones si-
guientes: una tasa de convergencia de la función de costo óptimo para el
sistema aleatorio con respecto al sistema determinista y la convergencia
uniforme de las poĺıticas estocásticas óptimas para la poĺıtica determi-
nista cuando ϵ → 0 y δ → 0, sobre subconjuntos compactos del espacio
de estados. Finalmente, aunque consideramos un enfoque de ecuaciones
en diferencias acopladas, no contamos con condiciones Lipschitz para las
componentes del modelo de crecimiento económico por lo que no pode-
mos asegurar las conclusiones dadas en [49].

El caṕıtulo está organizado como sigue. En la Sección 2.1, se establece
la teoŕıa relacionada a Q-learning que permite proporcionar una solución
aproximada al problema de crecimiento económico. En la Sección 2.2, se
presenta la formulación del problema de crecimiento económico a través
de un PDM. En la Sección 2.3, se presenta un teorema ĺımite en el con-
texto de dinámicas acopladas que involucra una función de los logaritmos
de las dinámicas del capital en el modelo aleatorio y determinista. Pos-
teriormente, en la Sección 2.4 se ilustran los experimentos numéricos en
los que se muestran como resultados la trayectoria óptima del sistema
aleatorio, histogramas y pruebas estad́ısticas que garantizan el compor-
tamiento normal de la transformación de los logaritmos de los capitales
del sistema determinista y del aleatorio.

2.1. Q-learning

En la literatura, es ampliamente reconocido que existen situaciones en
las que los PDMs presentan inconvenientes, por ejemplo, cuando se tra-
baja con altas dimensiones o cuando se tiene problemas con el modelaje,
lo que en conjunto se denomina la doble maldición de la Programación
Dinámica [33]. Una salida que se puede proporcionar para evitar la do-
ble maldición de la PD es la metodoloǵıa de Aprendizaje por Refuerzo
(AR). Esto es posible ya que el esfuerzo de modelado en AR es menor
que el de PD. Una cuestión notable es que en PDMs a gran escala, el
enfoque de PD no es factible, mientras que AR sigue siendo factible [33].
Además, para resolver problemas cuyas probabilidades de transición son
dif́ıciles de estimar, AR es un enfoque atractivo que produce soluciones
casi óptimas. La principal herramienta empleada por AR es la simula-
ción, la cual se utiliza para evitar el cálculo de las probabilidades de
transición. Sin embargo, si se tiene acceso a las matrices de costos/re-
compensas y probabilidades de transiciones, se debe usar PD porque se
garantiza que serán generadas soluciones óptimas, mientras que AR se
mantiene con soluciones casi-óptimas. Como el problema de crecimiento
económico se desarrolla en un entorno continuo, no contamos con una
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matriz de transición, por lo que usar Q-learning parece ser factible.

En [33] se establece el AR como una rama de PD, por lo que el al-
goritmo de AR se deriva de sus contrapartes de PD. En la metodoloǵıa
de PD, el primer paso es generar la matriz de probabilidad de transición
y la matriz de transición de costos/recompensas, después se usan estas
matrices en un algoritmo adecuado para generar la solución óptima. En
AR no se estima ninguna de estas matrices, lo que se hace es simular
el sistema utilizando las distribuciones de las variables aleatorias go-
bernantes. Posteriormente, dentro del simulador, se utiliza un algoritmo
adecuado para obtener la solución. A continuación, se discutirán algunos
de los conceptos clave relacionados con el AR: los llamados Q-factores,
el algoritmo de Robbins-Monro, tamaños de paso y la mezcla de estas
ideas para resolver PDMs dentro de los simuladores.

2.1.1. Q-factor

En AR, la función de valor se almacena en los denominados Q-
factores. La función de valor de costo descontado se puede definir por la
ecuación de optimización de Bellman que sigue:

J∗(i) = máx
a∈A(i)

 n∑
j=1

pij(a) [r(i, a, j) + βJ∗(j)]

 , (2.1)

para i ∈ X, donde n = |X| es el número de estados de la cadena de Mar-
kov; J∗(i) denota el i-ésimo elemento del vector de la función de valor;
A(i) es el conjunto de acciones admisibles en el estado i; pij(a) denota la
probabilidad de transición en un paso de ir del estado i al estado j bajo
la influencia de la acción a; r(i, a, j) denota la recompensa inmediata en
el estado i cuando la acción a es seleccionada y como resultado el sistema
transita al estado j y β ∈ (0, 1) es el factor de descuento.

En PD, dado un estado i ∈ X, asociamos un solo elemento de la función
de valor: J∗(i). En cambio, en el enfoque de AR se utiliza una pareja
de estado-acción para asociarlo a un vector llamado Q-factor. Para una
pareja de estado-acción (i, a) ∈ X ×A(i) se define el Q-factor mediante
la expresión:

Q(i, a) =

n∑
j=1

pij(a) [r(i, a, j) + βJ∗(j)] . (2.2)

Observe que (2.1) y (2.2) en conjunto producen lo siguiente.

J∗(i) = máx
a∈A(i)

Q(i, a). (2.3)
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La relación (2.3) se traduce en que si conocemos los valores de los Q-
factores, es posible obtener la función de valor J∗. Usando la igualdad
(2.3), la ecuación (2.2) se puede escribir como sigue.

Q(i, a) =

n∑
j=1

pij(a)

[
r(i, a, j) + β máx

a∈A(i)
Q(i, a)

]
, (2.4)

para todo (i, a) ∈ X ×A(i). La ecuación (2.4) puede interpretarse como
la versión Q-factor de la ecuación de optimalidad de Bellman para el
costo descontado de PDMs, ver ecuación (2.1). Por la expresión (2.4),
es fácil ver que el algoritmo anterior es completamente equivalente al
algoritmo de iteración de valor regular.

Es importante mencionar que los Q-factores deben ser actualizados en
cada etapa del tiempo, por ello se super indexan con el número de ite-
ración correspondiente. En PD, la actualización de Q se realiza de la
siguiente manera:

Qk+1(i, a)←
n∑

j=1

pij(a)

[
r(i, a, j) + β máx

b∈A(j)
Qk(j, b)

]
,

para k = 1, ..., kmax, donde kmax ∈ N es el número máximo de iteracio-
nes. Cuando se usa AR, se realiza un cambio en la regla de actualización
de Q que propone PD. Este cambio se logra cuando se aplica el algoritmo
de Robbins-Monro.

2.1.2. Q-factores y Robbins-Monro

El algoritmo de Robbins-Monro, es un algoritmo popular y amplia-
mente usado que puede ayudar a estimar la media de una variable alea-
toria a partir de sus muestras. Considere xi la i-ésima muestra indepen-
diente de una variable aleatoria X que tiene esperanza E[X]. Entonces,
con probabilidad 1, ocurre que

E[X] = ĺım
k→∞

∑k
i=1 xi

k
.

En esta expresión es posible descomponer la suma que aparece en el
ĺımite anterior. Denote la suma de las primeras k muestras de X por
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Sk :=
∑k

i=1 xi

k , k ≥ 1. Con esta notación, se puede escribir

Sk+1 =

∑k+1
i=1 xi

k + 1

=

∑k
i=1 xi + xk+1

k + 1

=
kSk + xk+1

k + 1

=
kSk + Sk − Sk + xk+1

k + 1

=
(k + 1)Sk − Sk + xk+1

k + 1

=Sk −
Sk

k + 1
+

xk+1

k + 1

=(1− 1

k + 1
)Sk +

1

k + 1
xk+1.

Defina αk := 1
k , para k ≥ 1, entonces la expresión anterior se escribe

como

Sk+1 = (1− αk+1)Sk + αk+1xk+1,

la cual se denomina algoritmo de Robbins-Monro y α es llamada ta-
maño de paso o tasa de aprendizaje. En la literatura, se han estudiado
diferentes reglas comúnmente usadas para α. Algunos tamaños de paso
conocidos se comentan al final de esta subsección.

Ahora, se utilizará el algoritmo de Robbins-Monro para actualizar los
Q-factores dentro de los simuladores. Se puede demostrar que cada Q-
factor se puede expresar como un promedio de una variable aleatoria.
Observe que con ayuda de la expresión (2.4) se consigue que

Q(i, a) =

n∑
j=1

pij(a)

[
r(i, a, j) + β máx

b∈A(j)
Q(j, b)

]

=E

[
r(i, a, j) + β máx

b∈A(j)
Q(j, b)

]
=E [SAMPLE] .

Por lo tanto, si se generan muestras de la variable aleatoria que apare-
ce entre corchetes en la expresión anterior, es posible usar el esquema
que proporciona el algoritmo de Robbins-Monro para actualizar los Q-
factores. De este modo, utilizando el algoritmo de Robbins-Monro se

34



2.1. Q-LEARNING

tiene que

Qk+1(i, a)← (1− αk+1)Q
k(i, a) + αk+1

[
r(i, a, j) + β máx

b∈A(j)
Qk(j, b)

]
,

(2.5)
para cada (i, a) ∈ X ×A(i).

Esta última expresión tiene la caracteŕıstica de que no se necesitan las
probabilidades de transición para la implementación del algoritmo. Note
que en este caso, únicamente se abordó el criterio descontado ya que este
es el adecuado para el problema de crecimiento económico en cuestión.
En [50] se puede consultar el algoritmo de Q-learning en el que se utiliza
el criterio promedio y con este enfoque se presentan resultados numéricos
en un modelo de ĺıneas de espera.

Para concluir esta subsección, se agregan algunos comentarios acer-
ca de los tamaños de paso [32, 33]. En Q-learning, el tamaño de paso
tiene gran impacto al desarrollar el algoritmo y obtener la solución. En
los inicios de esta técnica, se probó con la tasa 1

k , k = 1, 2, .... Sin em-
bargo, se observó que la tasa de aprendizaje decae rápidamente a cero,
lo cual podŕıa no ser satisfactorio. Como consecuencia, se propuso una
generalización de este tamaño de paso, en el que se agregaron valores
constantes A y B, de tal manera que la nueva propuesta tiene la forma
A

k+B , k = 1, 2, .... Otro tipo de paso conocido es la regla logaŕıtmica,

esta es log(k)
k , k = 1, 2, .... Finalmente, se cuenta con el tamaño de paso

dado por A
V (i,a) , donde A es una constante y V (i, a) denota el número

de visitas a la pareja estado-acción (i, a) ∈ X × A(i). En general, para
obtener la convergencia al óptimo de las soluciones, es necesario que los
tamaños de paso cumplan las siguientes condiciones

∞∑
k=1

αk =∞ y

∞∑
k=1

(αk)2 <∞.

Adicionalmente, se han realizado algunos trabajos donde se comparan
las soluciones obtenidas por Q-learning, cuando se prueban con las tasas
antes mencionadas. Lo que se encontró es que el tamaño de paso A

k+B
produce las mejores soluciones para A = 100 y B = 150. Basado en lo
anterior, la implementación numérica de este trabajo se desarrolló con
la tasa de aprendizaje A

k+B , k = 1, 2, ..., con A y B constantes.

35
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2.2. El modelo de crecimiento identificado
con un PDM

El modelo de referencia para el análisis es una economı́a especializada
de [10] con producción, acumulación de capital y crecimiento estocástico
de la productividad.
Se supone que la producción se realiza por una función de producción
Coob-Douglas de rendimientos constantes a escala con parámetro α;

F (K,L) = Kα(AL)1−α,

donde K es el stock de capital, L es la oferta de mano de obra y A es el
parámetro tecnológico de aumento de la mano de obra. Para simplificar
se fija L = 1. Además, se supone que A evoluciona exógenamente como
sigue:

log(At+1) = κ+ log(At) + σZt+1,

donde Z ∼ N(0, 1) y κ ≥ 0 es la tasa media de crecimiento tecnológi-
co. Sea δ la tasa de depreciación del capital y Ct denota el consumo.
Entonces la ecuación de la evolución del capital está dada por:

Kt+1 = A1−α
t Kα

t − Ct + (1− δ)Kt. (2.6)

Resulta que los cocientes de capital y tecnoloǵıa, kt = Kt/At y la del
consumo a la tecnoloǵıa, ct = Ct/At, son estacionarios. Por lo tanto,
se presenta el problema en términos de variables estacionarias. Norma-
lizando el nivel de tecnoloǵıa la expresión (2.6) produce la ecuación de
la evolución del capital que sigue:

kt+1 = θZσ
t+1 (k

α
t − ct + (1− δ)kt) , (2.7)

donde θ = e−κ y Zσ tiene distribución lognormal. Un agente represen-
tativo tiene preferencias de consumo separables en el tiempo, con una
utilidad periódica:

U(C) =
C1−γ

1− γ
= A1−γ c1−γ

1− γ
,

con γ ∈ (0, 1). El problema del planificador social consiste en elegir una
sucesión de consumo que maximice la utilidad descontada esperada del
agente representativo. Por lo tanto, resolvemos

sup
Ct

E

∞∑
t=0

βtU(Ct), (2.8)

sujeto a (2.7).
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En [58], se muestra que este problema de optimización de Markov tiene
una solución que es un control de retroalimentación de la forma ct =
cσ(kt). De esta manera se puede escribir la evolución del capital óptimo
como

kt+1 = θZσ
t+1 (k

α
t − ct + (1− δ)kt)

≡ f
σ (

Zσ
t+1, kt, c

σ
)
,

donde la notación en la segunda ĺınea remarca la dependencia de la
poĺıtica de consumo desconocido cσ. Esta poĺıtica satisface la ecuación
estocástica de Euler que sigue:

cσ(k)−γ

= β

∫
(θZσ)γ cσ

(
f
σ
(Zσ , k, cσ)

)−γ [
αf

σ
(Zσ , k, cσ)α−1 + 1− δ

]
dGσ(Zσ),

(2.9)

donde Gσ es la función de distribución log-normal.

El correspondiente modelo determinista está descrito por la evolución
del capital dada por:

kt+1 = θ
(
kαt − c0t + (1− δ)kt

)
:= f

0
(kt)

2, (2.10)

que se obtiene al reemplazar σ por 0 en (2.7). Cálculos muestran que este
problema tiene una solución que es un control de retroalimentación de la
forma ct = c0(kt). La poĺıtica de consumo óptimo satisface la ecuación
de Euler análoga a (2.9):

c0(k)−γ = βθγc0
(
f
0 (

k, c0
))−γ [

αf
0 (

k, c0
)α−1

+ 1− δ
]
. (2.11)

Ahora, será derivada una expresión anaĺıtica para determinar el estado
estable del sistema determinista (2.10). En la ecuación de Euler que
aparece en la expresión (2.11), sustituya k∗ en vez de k, entonces se
obtiene que

c0(k∗)−γ = βθγc0 (k∗)
−γ [

α(k∗)α−1 + 1− δ
]
.

Despejando a k∗ se consigue que el único estado estable determinista
interior es:

k∗ =

(
1 + (δ − 1)βθγ

αβθγ

) 1
α−1

. (2.12)

Finalmente, se puede observar en el caso determinista, que si se toma
k = k∗ en la expresión (2.10) y se despeja a c0(k∗) se obtiene que

c0(k∗) = (k∗)α +
θ(1− δ)− 1

θ
k∗.
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La expresión anterior y la representación del estado estable en (2.12)
permitirán realizar una comparación entre el modelo determinista y el
estocástico cuando σ → 0. Tal comparación se realizará a través de simu-
lación. En lo que sigue se identifica el problema de crecimiento económico
con un PDM discreto.

El espacio de estados será considerado como XC = [0,K], el espacio
de acciones es AC = [0,K] con K > 0. Además, el conjunto de acciones
admisibles cuando el sistema se encuentra en el estado k ∈ X es AC(k) =

[0, k]. La función de utilidad está definida por u(c) = c1−γ

1−γ , para c ∈
AC(k), k ∈ XC , note que por esta condición c depende del estado actual
k. La ley de transición denotada por Ql se asume está inducida por la
ecuación en diferencias (2.7). De esta manera, el PDM con el que se
trabaja está definido por

M =
{
XC , AC , {AC(k) | k ∈ X}, Ql, u

}
.

Como el modelo estudiado es continuo, se discretizan las componentes
y se obtiene lo siguiente. Se considera el conjunto finito de estados X =
{k0, k1, ..., kn}, con k0 < k1 < · · · < kn donde k0 = 0 y kn = K,
n ∈ N fijo. El espacio de acciones se toma como A = {c0, c1, ..., cm}, con
c0 < c1 < · · · < cm donde c0 = 0 y cm = K, m ∈ N fijo. De manera
que el conjunto de acciones admisibles cuando el sistema se encuentra
en el estado k ∈ X es A(k) = {0, c1, ..., cj}, con cj = k. La función de

utilidad está definida de la misma manera por u(c) = c1−γ

1−γ , γ ∈ (0, 1)

para c ∈ A(k), k ∈ X. Para completar el PDM necesitamos de las
probabilidades de transición controladas, denotadas por pkl(c), donde
k, l ∈ X y c ∈ A(k), tales entradas corresponden a la probabilidad de
encontrarse en el estado k aplicar la acción c y transitar al estado l. De
manera clara se puede observar que no tenemos a la mano la matriz de
transición, por lo que una opción factible es utilizar Q-learning. Por lo
tanto, únicamente se necesita una trayectoria del proceso dado en (2.7).

2.3. Teorema del ĺımite central

En esta sección presentamos una versión ligeramente generalizada del
teorema del ĺımite central en un contexto de ecuaciones en diferencias
acopladas. Se inicia reescribiendo el modelo de crecimiento económico
cuando la tasa de depreciación del capital es aleatoria.

Normalizando el nivel de tecnoloǵıa y considerando a δ como un valor
aleatorio, (2.6) produce las ecuaciones de la evolución del capital y de la
evolución del parámetro τ , el cual interviene en la tasa de depreciación
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del capital, que siguen

kt+1 = θZσ
t+1

(
kαt − ct + (1− e−St)kt

)
, (2.13)

τt+1 = τt + ηt+1(ϵ), (2.14)

donde θ := e−κ y Zσ tiene distribución log-normal, Zσ es un elemen-
to genérico de {Zσ

t }, e−St es la tasa de depreciación del capital con

St =
∑t−1

i=0 τi y τ0 = τ > 0 y ηt(ϵ) es una sucesión de variables alea-
torias independientes e idénticamente distribuidas tales que ηt(ϵ) → 0
cuando ϵ → 0. La representación de la tasa de depreciación del capital
se consideró como la mostrada en [28], en el que se aleatorizó el factor
de descuento.

Las expresiones (2.7) y (2.16) se pueden identificar con las dinámicas de
los x-estados y los α-estados, las cuales aparecen en las expresiones (1)
y (2) de [49], respectivamente como sigue:

kt+1 = F (kt, τt, ct, ξt+1(σ))

:= θZσ
t+1

(
kαt − ct + (1− e−St)kt

)
,

(2.15)

τt+1 = G(τt, ηt+1(ϵ)) := τt + ηt+1(ϵ), (2.16)

donde ξt+1(σ) := exp(−σZt+1) = Zσ
t+1. Observe que cuando σ → 0, se

cumple que ξt(σ)→ 1.

En lo que sigue es conveniente descomponer la evolución del capital en
su esperanza condicional y su componente martingala. De esta manera,
se define la esperanza del lado derecho de (2.15) condicionada a kt = k
como:

fσ,ϵ(k) := θe
σ2

2

(
kα − cσ(k) + (1− e−τE[e−nξ(ϵ)])k

)
, (2.17)

y la componente aleatoria es

νσ,ϵ(k) := θe−σZt+1−σ2

2

(
kα − cσ(k) + (1− e−τE[e−nξ(ϵ)])k

)
. (2.18)

Observe que en (2.17) y (2.18) se supone que la esperanza E[e−nξ(ϵ)]
existe y es finita.
Si se define (lt, ιt) := (log(kt), log(τt)), es posible reescribir las expresio-
nes (2.15) y (2.16) como

lt+1 = gσ,ϵ(lt)− σZt+1,

ιt+1 = log(τt),
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donde
gσ,ϵ(lt) = log(eαlt − cσ(elt) + (1− e−Stelt))− κ. (2.19)

Además, las ecuaciones en diferencias acopladas para el correspondiente
modelo determinista son:

kt+1 =F (kt, τt, ct, 1)

:=θ
(
kαt − c0t + (1− e−τ )kt

)
=f0,0(kt)

2,

(2.20)

τt+1 = G(τt, 0) := τt, (2.21)

con τ0 = τ > 0, que se obtiene al reemplazar σ por 0 en (2.15) y ξt+1(ϵ)
por 1 en (2.16). El problema de crecimiento óptimo es el análogo de-
terminista de (2.8) con la ley de movimiento dada por (2.20) y (2.21).
Además, la expresión correspondiente a (2.19) para ϵ = 0 y σ = 0 es la
siguiente.

lt+1 = g0,0(lt) = log(eαlt − c0(elt) + (1− e−τelt))− κ. (2.22)

En lo que sigue se busca comparar el modelo estocástico y el modelo
determinista.

2.3.1. Comparación de los modelos estocásticos y de-
terministas

Para la comparación de modelos considere {(kσt , τ ϵt )} una realización
de la trayectoria del stock del capital y del parámetro con el cual evolu-
ciona la tasa de depreciación del capital para el modelo de crecimiento
estocástico y {(k0t , τ0t )} una realización de la trayectoria del stock del
capital y del parámetro con el cual evoluciona la tasa de depreciación
del capital para el modelo determinista. Además, considere {(lσt , ιϵt)}
y {(l0t , ι0t )} los logaritmos de la trayectoria del stock del capital y del
parámetro con el cual evoluciona la tasa de depreciación del capital, pa-
ra el modelo estocástico y determinista, respectivamente. Cuando ϵ→ 0
y σ → 0 esperamos que, tomando el mismo valor inicial, las trayectorias
de la solución del modelo de crecimiento estocástico podŕıan aproximar-
se a las del modelo determinista. En efecto esto es lo que ocurre.
En los resultados propuestos se considera la expresión de diferencias nor-
malizadas que sigue:

Xσ,ϵ
t :=

(lσt − l0t ) + (ιϵt − ι0t )

σ
. (2.23)

Ahora veremos algunos de los supuestos sobre las componentes del mode-
lo para presentar un teorema ĺımite central funcional en el que intervenga
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la expresión Xσ,ϵ
t . A causa del amplio estudio de este modelo, se sabe que

se requieren de algunas condiciones de suavidad, estabilidad y conver-
gencia uniforme de las poĺıticas, las cuales son adaptadas al contexto de
una dinámica acoplada como sigue. Considere l ∈ L ⊂ R y k ∈ K ⊂ R+

con L,K compactos. En lo que sigue, denotamos la primera derivada de
gσ,ϵ y fσ,ϵ por fk y gl.

Suposición 1. Sobre cualesquiera conjuntos compactos L,K, las fun-
ciones gσ,0 y fσ,0 son continuas, de clase C2 y tienen primera y segunda
derivadas acotadas para todo σ ≥ 0.

Suposición 2. Sobre cualesquiera conjuntos compactos L,K, las funcio-
nes gσ,0 → g0,0 y fσ,0 → f0,0 uniformemente cuando σ → 0.

Suposición 3. Sobre cualesquiera conjuntos compactos L,K, las fun-
ciones g0,0 y f0,0 tienen un único punto fijo l∗ y k∗, respectivamente,
el cual es estable, i.e. |g0,0l (l∗)| < 1 y |f0,0

k (k∗)| < 1, y cuyo dominio de
atracción incluye todo L y K, respectivamente.

Lo anterior, permite establecer los siguientes resultados.

Teorema 2.3.1. Si las Suposiciones 1 y 2 se cumplen para gσ,0, enton-
ces las diferencias normalizadas {Xσ,ϵ

t } convergen débilmente al proceso
{X0,0

t }, cuando ϵ→ 0 y σ → 0. El proceso ĺımite sigue la auto-regresión
lineal gaussiana, dependiente del proceso determinista {l0t }:

X0,0
t+1 = g0,0l (l0t )X

0,0
t + Zt+1, (2.24)

donde {Zt+1} es una sucesión de variables aleatorias normales indepen-
dientes e idénticamente distribuidas.

Además, si existe un único estado de equilibrio del modelo determinis-
ta, el Teorema 2.3.1 implica que las diferencias con respecto al estado
estacionario son asintóticamente normales. Lo anterior se establece en el
siguiente corolario.

Corolario 2.3.2. Si las Suposiciones 1-3 se cumplen para gσ,0. Enton-
ces, cuando ϵ, σ → 0 y t→∞ se cumple asintóticamente lo siguiente

lσt+1 = g0,0l (l∗)(lσt − l∗) + σZt+1.

Por lo tanto, cuando ϵ→ 0, σ → 0 y t→∞, {lσt } converge a un proceso

gaussiano estacionario con media l∗ y varianza σ2

1−g0,0
l (l∗)2

.

Este resultado muestra que el logaritmo del stock de capital sigue asintóti-
camente una auto-regresión lineal gaussiana centrada en el estado esta-
cionario determinista.
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Demostración del Teorema 2.3.1. Por las ecuaciones de evolución para
τ y l, que se encuentran en (2.16) y (2.22) respectivamente, la segunda
diferencia que aparece en el numerador de la expresión (2.23) se escribe
como sigue:

ιϵt − ι0t = log(τ ϵt )− log(τ0t )

= log(τ +

t−1∑
i=1

ξi(ϵ))− log(τ)

= log

(
1 +

∑t−1
i=1 ξi(ϵ)

τ

)
.

(2.25)

Cuando ϵ→ 0 la expresión (2.25) converge a 0, por la continuidad de la
función logaritmo y por la suposición de que ξ(ϵ)→ 0, cuando ϵ→ 0.
Por lo tanto, cuando ϵ→ 0, se obtiene que

{Xσ,ϵ
t } → {X

σ,0
t },

donde Xσ,0
t :=

lσt −l0t
σ . Por el Teorema 3.1 de [58], se sabe que cuando

σ → 0, {Xσ,0
t } converge débilmente al proceso {X0,0

t }, y la expresión
(2.24) se cumple.
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2.4. Experimentos numéricos

En esta sección se presentan los experimentos numéricos que utilizan
el modelo discretizado de la sección anterior. Los experimentos numéricos
se dividen en dos etapas. La primera consiste en determinar la solución
del modelo de crecimiento económico cuando la tasa de depreciación del
capital es aleatoria. La segunda etapa consiste en exhibir la conclusión
del Teorema 2.3.1 a través de algunos histogramas que fueron generados
por datos simulados. Adicionalmente, se realizaron pruebas estad́ısti-
cas que garantizan, a un nivel de significancia α =0.1, que los datos
generados por el proceso Xσ,ϵ

t tienen un comportamiento normal. Es-
pećıficamente, nos interesa el comportamiento de la trayectoria óptima
del proceso estocástico y el comportamiento de una transformación de
los logaritmos de las expresiones que modelan la evolución del capital y
la evolución de la tasa de depreciación del capital cuando σ → 0 y ϵ→ 0.

Para conseguir lo anterior se implementaron los procedimientos descritos
en la Sección 2.1. Con AR, el procedimiento central para obtener la
solución para el problema de optimización v́ıa Q-learning consta de los
siguientes 6 pasos.

1. Inicialice los Q-factores en 0, es decir, establezca Q(i, j) = 0 para
todo i ∈ X y j ∈ A(i). Defina el tamaño de paso α a utilizar,
introduzca kmax: número de iteraciones máximo (suficientemente
grande) y considere i el estado inicial. Iniciar con k = 1.

2. Simule una acción a ∈ A(i) con probabilidad 1
|A(i)| .

3. El siguiente estado, digamos j, se obtiene con la expresión (2.7)
considerando los respectivos ajustes para obtener un elemento de
X. De esta manera, obtenemos la utilidad u(i, a, j).

4. Para (i, a) ∈ X ×A(i), calcule

Qk+1(i, a)← (1− α)Qk(i, a) + α

[
u(i, a, j) + β máx

b∈A(j)
Qk(j, b)

]
.

5. Actualice k ← k+1. Si k < kmax entonces i← j y regrese al paso
2, en otro caso vaya al punto 6.

6. Para cada i ∈ X, calcule

d(i) = arg máx
b∈A(i)

Q(i, b),

donde d denota la ϵ-óptima poĺıtica y pare.
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Los procedimientos desarrollados en este caṕıtulo se muestran en los
Algoritmos 1-3 que se encuentra en la Subsección 2.4.1 y fueron imple-
mentaron en el lenguaje de programación de R [52].
El Algoritmo 1 se presenta como una función principal que nos devuelve
la trayectoria óptima del proceso, el capital promedio, genera un his-
tograma y realiza una prueba estad́ıstica para los datos configurados
mediante la expresión Xσ,ϵ

t+1 − gx(l
0,0
t )Xσ,ϵ

t que aparece en el Teorema
2.3.1.
El procedimiento numérico para obtener la solución al problema de cre-
cimiento económico puede consultarse en el Algoritmo 2, aqúı es donde
se desarrolla la implementación de Q-learning para encontrar la poĺıtica
casi óptima. El Algoritmo 3 proporciona una trayectoria del proceso es-
tocástico que modela el capital cuando la tasa de depreciación del capital
es aleatoria.

Para los resultados de los experimentos se consideran los valores numéri-
cos que se describen en la Tabla 2.1. La mayoŕıa de estas estimaciones se
tomaron del estudio [58], únicamente se ajustaron los valores del factor
de descuento y del parámetro γ. Esta modificación se realizó ya que con-
siderando el valor original de γ, la función de utilidad resultaba negativa.

Parámetro Valor numérico

α 0.65
κ 0.0176
δ 0.0517
γ 0.4
β 0.7638761

Tabla 2.1: Valores numéricos de los parámetros.

Se puede observar que sustituyendo los valores de la Tabla 2.1 en la
expresión (2.12) el valor del estado estable determinista es k∗ = 5. En
la Figura 2.1, se muestran las simulaciones de la trayectoria óptima del
proceso conjunto dado por las expresiones (2.13) y (2.14) para un perio-
do de 43 unidades de tiempo. Los resultados arrojan aproximaciones del
capital promedio de 7.77057 y 8.12322, para las representaciones (I) y
(II), respectivamente. Además, en las Figura 2.2, se observa el compor-
tamiento de la trayectoria óptima del capital en el modelo estocástico
para un periodo de 300 unidades de tiempo. Las gráficas fueron obteni-
das con los valores que siguen: iteración máxima 1000, la discretización
del espacio de estados y el espacio de acciones se tomó con incrementos
de 0.75 unidades para la Figura 2.1, mientras que para la Figura 2.2,
los incrementos fueron de 0.1 unidades. En ambos casos se realizaron
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2.4. EXPERIMENTOS NUMÉRICOS

1000 trayectorias para promediar y conseguir la trayectoria óptima pro-
medio. Particularmente, en la Figura 2.2, se observa que cuando σ y ϵ,
los parámetros que intervienen en el grado de estocasticidad del sistema
convergen a cero, la trayectoria se comporta de manera determinista.

Figura 2.1: Realización de la trayectoria óptima del capital que
se desarrolla mediante (2.13) y (2.14): (I) σ =4.92×10−3 y
ϵ =1×10−3, (II) σ =4.92×10−6 y ϵ =1×10−6.

Figura 2.2: Realización de la trayectoria óptima del capital que
se desarrolla mediante (2.13) y (2.14): (I) σ =4.92×10−6 y
ϵ =1×10−6, (II) σ =4.92×10−11 y ϵ =1×10−11.
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En la figura 2.3, se muestran los histogramas generados por el proceso
Xσ,ϵ

t+1, para distintos valores de σ y ϵ. Adicionalmente, con los datos ge-
nerados se realizó una prueba de Kolmogorov-Smirnov, para verificar la
normalidad de Xσ,ϵ

t+1 − gx(l
0,0
t )Xσ,ϵ

t . La prueba se realizó fijando el valor
α =0.1, como resultado de la prueba se obtuvieron los p-valores que se
muestran en la Tabla 2.4, de modo que la normalidad se verifica tal como
lo establece el Teorema 2.3.1. En la última columna de la Tabla 2.4, po-
demos observar que cuando ϵ y σ convergen a cero, el valor promedio del
capital se aproxima al valor del estado estable del sistema determinista
que es 5. Esto fue posible ya que, los valores en Tabla 2.1, satisfacen que
existe un único estado estable del sistema determinista.

Figura 2.3: Histogramas: (I) σ =4.92×10−6 y ϵ =1×10−6, (II)
σ =4.92×10−11 y ϵ =1×10−11, (III) σ =4.92×10−21 y ϵ =1×10−21,
(IV) σ =4.92×10−31 y ϵ =1×10−31 .
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σ ϵ α p-valor Capital promedio

4.92×10−6 1×10−6 α =0.1 0.5765 7.51682
4.92×10−11 1×10−11 α =0.1 0.2091 5.11794
4.92×10−21 1× 10−21 α =0.1 0.5764 7.104244
4.92×10−31 1× 10−31 α =0.1 0.2023 5.352499

Tabla 2.2: Capital promedio y p-valores obtenidos para la prueba
de Kolmogorov-Smirnov, para distintos valores de σ y ϵ.
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2.4.1. Algoritmos

Algorithm 1: Main function

Datos α, β, δ, γ, κ, max.ite, ∆e, ∆a, k0, Max.aver, σ, ϵ;
Resultado Average Capital, Optimal Capital trajectory and
Histogram;

Pol = GeneratePolicy(α, β, δ, γ, κ,max.ite,∆e,∆a, k0, σ, ϵ);
N = length(Pol);
for 1 ≤ j < M do

T = matrix(0, N,M);
Tau = matrix(0, N,M);
T [1, j] = k0;
Tau[1, j] = −log(δ);
T [2, j] = e−σrnorm(1)−κ (kα0 − pol[1] + (1− e−τ0)k0);
Tau[1, j] = −log(δ);
for 2 ≤ i < N do

Tau[i, j] = Tau[i− 1, j] + ϵrnorm(1);

T [i+ 1, j] = e−σrnorm(1)−κ (kα0 − pol[i] + (1− e−τ0)k0);

for 1 ≤ i ≤ N do
Ta[i] = mean(T [i]); Tac[i] = mean(Tau[i]);

plot(Ta): genera la trayectoria óptima;

X = log(Ta)−log(k0)+log(Tac)−log(−log(δ))
σ

for 1 ≤ i ≤ N − 1 do
Z[i] = X[i+ 1]− gxX[i];

print(mean(A)): muestra el capital promedio;
Histograma(Z): crea el histograma;
ks.test(Z, prnom, µ, σ) realiza la prueba de
Kolmogorov-Smirnov con los datos generados.
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Algorithm 2: Generate Policy

Datos α, β, δ, γ, κ, max.ite, ∆e, ∆a, k0, Max.aver, σ, ϵ;
ResultadoOptimal policy;

r(i, c) = c1−γ

1−γ : función de utilidad;

for 1 ≤ j ≤ 100 do
T = matrix(0, 2,max.ite);
T = Trajectory(100, 000, α, σ, ϵ, κ, δ, γ, k0);
Ne: Número de estados;
Na: Número de acciones;
Q = matrix(0, Ne + 1, Na + 1);
αt = 150/300;
i = (trunc(k0) + 1)/∆e;
p = array(1/(i+ 1), i+ 1);
a = sample(c(0 : i), 1, replace = T, prob = p): genera un
número aleatorio entre 0 e i;

τ0 = −log(δ);
j = trunc

(
e−σrnorm(1)−κ

(
kα
0 − a∆a + (1− e−τ0)k0

)
+ 1

)
/∆e;

Q[i, a] = (1− αt)Q[i, a] + αt (r(i∆e, a∆a) + βmáx(Q[j, ]));
for 1 ≤ s < max.ite do

τ0 = τ0 + ϵrnorm(1);
i = j;
p = array(1/(i+ 1), i+ 1);
a = sample(c(0 : i), 1, replace = T, prob = p);
j =

trunc
(
e−σrnorm(1)−κ

(
kα
0 − a∆a + (1− e−τ0)k0

)
+ 1

)
/∆e;

αt = 150/(300 + s);
Q[i, a] = (1−αt)Q[i, a]+αt (r(i∆e, a∆a) + βmáx(Q[j, ]));

for 1 ≤ s < max.ite do
pol[s] = which.max(Q[s, ]);

return pol: genera la poĺıtica óptima.
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Algorithm 3: Trajectory

Datos N,α, σ, ϵ, κ, γ, k0;
Resultado Trajectory;
T = array(0, N);
A = array(0, N);
τ0 = −log(δ);
T [1] = k0;
A[1] = runif(1, 0, T [1]);
genera un número aleatorio en el intervalo (0, k0);

T [2] = e−σrnorm(1)−κ (kα0 −A[1] + (1− e−τ0)k0);
A[2] = runif(1, 0, T [2]);
genera un número aleatorio en el intervalo (0, T [2])
for 2 ≤ i < N do

τ0 = τ0 + ϵrnorm(1);

T [i+ 1] = e−σrnorm(1)−κ (T [i]α −A[i] + (1− e−τ0)k0);
A[i+ 1] = runif(1, 0, T [i+ 1]);

Ta = matrix(0, 2, N);
Ta[1, ] = T ;
Ta[2, ] = A;
return(T ): genera una trayectoria del proceso estocástico.
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Caṕıtulo 3

Cadenas de decisión de
Markov promedio: caso
propenso al riesgo

En este caṕıtulo abordamos un tema independiente de procesos de
decisión que evolucionan mediante un par de ecuaciones en diferencias
acopladas y se da paso para trabajar con cadenas de decisión de Mar-
kov dotadas de un espacio de estados numerable, con función de cos-
to acotada y criterio de rendimiento promedio propenso al riesgo. Las
condiciones estructurales en la ley de transición garantizan que el cos-
to promedio es constante, sin embargo, no es posible garantizar que la
ecuación de optimalidad tenga solución. En esta situación se obtienen
aproximaciones convergentes al costo promedio óptimo y se determinan
aproximadamente las poĺıticas estacionarias óptimas usando los puntos
fijos de una familia de operadores contractivos. Esto representa una ex-
tensión del clásico enfoque descontado, en el caso neutral al riesgo. Las
conclusiones son presentadas en el Teorema 3.2.1.

El estudio de cadenas de decisión de Markov con un criterio sensible
al riesgo se remonta a los art́ıculos proporcionados por Howard y Mathe-
son [40], donde se analizaron cadenas de decisión de Markov con espacio
de estados finito y el costo promedio óptimo fue caracterizado v́ıa una
ecuación de optimalidad. Modelos con espacio de estados finito o infinito
son considerados, por ejemplo, en [11, 12], [55, 56] mientras que cadenas
de decisión de Markov sobre espacios de estado de Borel fueron analiza-
dos en [20–22], [41,42] y [54]. Juegos estocásticos con criterio sensible al
riesgo son estudiados en [3].
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CAPÍTULO 3. CADENAS DE DECISIÓN DE MARKOV
PROMEDIO: CASO PROPENSO AL RIESGO

Este caṕıtulo está organizado como sigue. En la Sección 3.1 se des-
cribe el modelo de decisión, se define el criterio promedio y se establecen
las principales suposiciones sobre el modelo. En la Sección 3.2 se intro-
duce una familia de operadores contractivos y se presenta el resultado
principal de este caṕıtulo en el Teorema 3.2.1. Las herramientas que se
utilizarán para establecer dicho resultado se establecen en la Sección 3.3,
y la demostración del resultado principal se presenta en la Sección 3.4.

Notación. En todo el caṕıtulo, N denota el conjunto de enteros no
negativos y dado un espacio topológico S, el espacio de Banach de todas
las funciones acotadas H : S → R es denotado por B(S), la norma del
supremo de H ∈ B(S) es denotada por ∥H∥ := supx∈S |H(x)|. Por otro
lado, cada (des) igualdad que involucra variables aleatorias es válida casi
seguramente con respecto a la medida de probabilidad subyacente.

3.1. Modelo de decisión

Sea M := (S,A, {A(x)}x∈S , C, [px,y(a)]) una cadena de decisión de
Markov, un modelo para un sistema dinámico cuyas componentes son
las siguientes: El espacio de estados S es un conjunto numerable dotado
con la topoloǵıa discreta, el espacio métrico A es el conjunto de accio-
nes, mientras que para cada estado x ∈ S, A(x) ⊂ A es la clase de
acciones admisibles (controles) en el estado x. Por otro lado C : K→ R
es la función de costo, donde K = {(x, a) |x ∈ S, a ∈ A(x)} es la fami-
lia de parejas admisibles y, finalmente [px,y(a)]x,y∈S,a∈A(x) es la ley de
transición controlada. La interpretación de M es la siguiente: en cada
tiempo t ∈ N el controlador observa el estado del sistema Xt = x ∈ S,
y entonces elige y aplica una acción At = a ∈ A(x). Como consecuencia
de esta intervención, (i) se incurre en un costo C(x, a), y (ii) el sistema
se mueve a un nuevo estado Xt+1 ∈ S donde, de acuerdo con los estados
y acciones previos, el evento [Xt+1 = y] es observado con probabilidad
px,y(a), donde

∑
y∈S px,y(a) = 1; esta es la propiedad de Markov del

proceso de decisión.

Suposición 3.1.1. (i) Para cada x ∈ S, A(x) es un subconjunto
compacto de A.

(ii) Para cada x, y ∈ S, el mapeo a 7→ px,y(a) y a 7→ C(x, a) son
continuos en a ∈ A(x).

(iii) La función de costo es acotada, i.e., C ∈ B(K).

Poĺıticas. Una poĺıtica de control es una regla para elegir acciones, la
cual en cada tiempo de decisión n ∈ N podŕıa depender del estado actual,
aśı como de los estados y acciones anteriores. Formalmente, para cada
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3.1. MODELO DE DECISIÓN

n ∈ N defina el espacio Hn de posibles historias hasta el tiempo n por
H0 := S y Hn := Kn × S para n = 1, 2, 3, . . .; un elemento genérico
de Hn es denotado por hn = (x0, a0, x1, a1, ..., xn−1, an−1, xn), donde
(xk, ak) ∈ K para k < n y xn ∈ S. Con esta notación, una poĺıtica
de control π = {πn} es una sucesión de kernels estocásticos πn sobre
A dado Hn, que satisfacen πn(A(xn)|hn) = 1, para cada hn ∈ Hn y
n ∈ N. La familia de todas las poĺıticas es denotada por P. Luego,
establezca F :=

∏
x∈S A(x), el cual es un espacio métrico compacto,

por la Suposición 3.1.1, y consiste de todas las funciones f : S → A
que satisfacen f(x) ∈ A(x) para cada x ∈ S. Una poĺıtica π ∈ P es
estacionaria si existe f ∈ F tal que la igualdad πn({f(xn)}|hn) = 1
siempre es válida: la clase de poĺıticas estacionarias es naturalmente
identificada con F, una convención que permite escribir F ⊂ P. Dado un
estado inicial X0 = x y la poĺıtica π ∈ P usada para manejar el sistema,
la distribución del proceso estado-acción {(Xt, At)}t∈N está determinado
únicamente y es denotado por Pπ

x [1, 35, 51], mientras que Eπ
x denota el

correspondiente operador esperanza. A lo largo del caṕıtulo, se utilizará
la siguiente notación, para cada n ∈ N, establezca

Hn := (X0, A0, . . . , Xn−1, An−1, Xn) y Fn := σ(Hn), (3.1)

mientras que para cada F ⊂ S el primer tiempo de retorno al conjunto
F está definido por

TF := mı́n{n ≥ 1 | Xn ∈ F}. (3.2)

Cuando F = {x} es un conjunto singular, se considera la siguiente no-
tación

Tx := T{x}. (3.3)

Note que TF es un tiempo de paro respecto a la filtración {Fn}, es decir,
[TF = n] ∈ Fn para cada n ∈ N.

Criterio promedio. En el desarrollo del trabajo, se supone que el con-
trolador tiene un coeficiente de sensibilidad al riesgo λ que satisface
λ < 0. Esto significa que el controlador evalúa un costo aleatorio Y , a
través del valor esperado de Uλ(Y ), donde la función de (des-)utilidad
Uλ : R→ (−∞, 0) está definida por

Uλ(x) = −eλx, x ∈ R. (3.4)

Note que Uλ(·) es estrictamente creciente y satisface la relación

Uλ(a+ b) = eλaUλ(b), a, b ∈ R. (3.5)

Cuando el decisor se enfrenta a la posibilidad de elegir entre dos cos-
tos aleatorios C0 y C1, el controlador preferirá pagar C0 si E [Uλ(C1)] >
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E [Uλ(C0)], mientras que es indiferente entre ambos costos si E [Uλ(C1)] =
E [Uλ(C0)]. El (λ−)equivalente seguro de un costo Y , es denotado por
Eλ[Y ] y está determinado por U (Eλ[Y ]) = E [Uλ (Y )] , de modo que el
controlador es indiferente entre pagar la cantidad fija Eλ(Y ) o hacer fren-
te al costo aleatorio Y . Note que Uλ (·) es una función cóncava, aśı que
por la desigualdad de Jensen se tiene que Eλ(Y ) ≤ E[Y ]. Ahora, observe
que

ϵλ[Y ] = U−1 (E [Uλ(Y )]) =
1

λ
log
(
E
[
eλY

])
, (3.6)

una expresión que inmediatamente produce

P [|Y | ≤ b] = 1⇒ |ϵ (Y ) | ≤ b. (3.7)

Luego, suponga que el controlador elige la acción π ∈ P iniciando en
X0 = x ∈ S. La aplicación de las primeras n acciones A0, A1, ..., An ge-
nera el costo

∑n−1
k=0 C(Xk, Ak) y por (3.6) el equivalente seguro asociado

está dado por

Jn(π, x) :=
1

λ
log
(
Eπ
x

[
eλ

∑n−1
t=0 C(Xt,At)

])
, n = 1, 2, 3, ..., (3.8)

que representa un promedio de Jn(π, x)/n por decisión. El (ĺımite inferior
λ-sensible) ı́ndice de rendimiento promedio de la poĺıtica π ∈ P en el
estado x ∈ S bajo la poĺıtica π está dado por

J(π, x) := ĺım inf
n→∞

1

n
Jn(π, x), (3.9)

y
J∗(x) := ı́nf

π∈P
J(π, x), x ∈ S, (3.10)

es la correspondiente función de valor óptimo. Una poĺıtica π∗ ∈ P es
(λ-)promedio óptima si J(π∗, x) = J(π∗, x) para cada x ∈ S.

Condiciones de recurrencia-comunicación. En el caso neutral al
riesgo, se sabe que la condición simultánea de Doeblin, la cual se establece
en la Suposición 2.2 (i) que aparece abajo, es suficiente para asegurar
que el costo promedio óptimo es constante y es caracterizado v́ıa una
ecuación de optimalidad [1, 35, 51]. En el presente contexto sensible al
riesgo, la ecuación de optimalidad promedio λ-sensible está dada por

Uλ(g + h(x)) = ı́nf
a∈A(x)

∑
y∈S

px,y(a)Uλ ((C(x, a) + h(y))

 , x ∈ S,

(3.11)
donde g es un número real y h : S → R es una función. Cuando esta
ecuación admite una solución (g, h(·)) y h(·) es un mapeo acotado, se sabe
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que la función de costo λ-promedio óptima J∗(·) es constante e igual a
g, y si f ∈ F es tal que para cada estado x, la acción f(x) minimiza
el término dentro del paréntesis en (3.11), entonces f es λ-promedio
óptima; ver, por ejemplo, [11], [34], o [40]. Note que por (3.4) la ecuación
de optimalidad anterior puede ser escrita de manera equivalente como

eλg+λh(x) = sup
a∈A(x)

eλC(x,a)
∑
y∈S

px,y(a)e
λh(y)

 , x ∈ S. (3.12)

En contraste con el contexto neutral al riesgo, en el presente contex-
to donde el controlador propenso al riesgo, las condiciones de Doeblin
simultáneas no son suficientes para asegurar incluso que la función de
costo promedio óptimo sea constante [11], [13]. Por esta razón, en este
trabajo la condición de Doeblin simultánea será complementada con un
requerimiento de comunicación.

Suposición 3.1.2. Existe z ∈ S tal que las propiedades (i) y (ii) que se
muestran a continuación son válidas:

(i) [Condición de Doeblin Simultánea.] El primer tiempo de retorno
Tz satisface

sup
x∈S,f∈F

Ef
x [Tz] <∞. (3.13)

(ii) [Accesibilidad desde z] Bajo la acción de cualquier poĺıtica esta-
cionaria, cada estado y ∈ S es accesible desde z, esto es

P f
z [Ty <∞] > 0, y ∈ S, f ∈ F. (3.14)

Observación 3.1.3. Teorema 4.1 en [12], las Suposiciones 3.1.1 y 3.1.2
implican las condiciones (i) y (ii):

(i) Para cada y ∈ S, existe una constante finita My tal que

Eπ
x [Ty] ≤My, x ∈ S, π ∈ P. (3.15)

(ii) Si x, y ∈ S con x ̸= y, entonces Pπ
x [Ty < Tx] > 0 para cada π ∈ P.

Observación 3.1.4. La Suposición 3.1.2 es, sin duda, muy fuerte. Sin
embargo, actualmente es la condición más general bajo la que está dispo-
nible una caracterización del costo promedio óptimo sensible al riesgo. El
resultado en esta dirección puede verse en [12] e involucra una extensión
de las relaciones de Collatz-Wielandt en la teoŕıa de matrices positivas.

A continuación, se presenta un ejemplo donde se cumplen las Suposicio-
nes 3.1.1 y 3.1.2.
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Ejemplo 3.1.5. Considere el siguiente sistema simple de colas con es-
pacio de estados S = N: El flujo de llegadas es {Sk}k∈N es una suce-
sión de variables aleatorias i.i.d. con distribución Poisson con esperanza
E[Sk] = λ > 0. Sean b0, b1 y c enteros positivos con b0 < b1, y cada es-
tado x ∈ S define el conjunto de acción por A(x) = {b0, b0 + 1, . . . , b1}.
El decisor controla las salidas, y si la acción a ∈ A(x), el número de
clientes que abandonan el sistema es D(x, a) = λ + (x − c) si x > c,
mientras D(x, a) = 1+λ cuando 1 ≤ x ≤ c y, por supuesto, D(x, a) = 0
en x = 0. El número de clientes Xt en el sistema al tiempo t satisface
Xt+1 = Xt + St −D(Xt, At) y entonces

E[Xt+1|Ft] = Xt+λ−D(Xt, At) = Xt+λ−(λ+(Xt−c)) = c, si Xt > c

E[Xt+1|Ft] = Xt+λ−D(Xt, At) = Xt+λ−(λ+1) = Xt−1 si 1 ≤ Xt ≤ c.

De estas relaciones se sigue que para cualquier poĺıtica π el número es-
perado de transiciones para pasar de x ∈ N al estado z = 0 está acotado
por arriba por c+ 1. Como Xt+1 = St, se puede llegar a cualquier esta-
do desde z = 0 y entonces, dotando al sistema de una función de costo
acotada, la Suposición 3.1.1 y 3.1.2 se cumplen en este contexto.

Bajo las Suposiciones 3.1.1 y 3.1.2 la función de costo promedio J∗(·) es
constante, pero la ecuación de optimalidad (3.11) no necesariamente ad-
mite una solución; un ejemplo (no controlado) que ilustra este fenómeno
se presentó en la Sección 9 de [12]. Este hecho proporciona la motivación
para analizar el siguiente problema:

Obtener aproximaciones convergentes al costo promedio óptimo, aśı co-
mo poĺıticas estacionarias casi óptimas a través de los puntos fijos de
operadores contractivos.

La respuesta a este problema permite determinar aproximaciones al costo
promedio óptimo aśı como una poĺıtica estacionaria cuyo costo promedio
es cercano al óptimo resolviendo la única ecuación que caracteriza el
punto fijo de un operador contractivo. El resultado principal sobre el
problema anterior se establece en la siguiente sección y representa una
extensión del clásico enfoque descontado en el caso neutral al riesgo [35,
51] al presente contexto propenso al riesgo. En el resto del caṕıtulo,
incluso sin referencia expĺıcita, se cumplen los Supuestos 3.1.1 y 3.1.2.

3.2. Aproximaciones contractivas

En esta sección, el resultado principal del art́ıculo se establece en el
Teorema 3.2.1. Para empezar, para cada α ∈ (0, 1) defina Tα : B(S) →
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B(S) como sigue: para cada W ∈ B(S), Tα[W ] está impĺıcitamente de-
terminado por

Uλ(Tα[W ](x)) = ı́nf
a∈A(x)

∑
y∈S

px,y(a)Uλ(C(x, a) + αW (y))

 , x ∈ S,

(3.16)
una expresión que por la expresión (3.4) conduce a

Tα[W ](x) : =
1

λ
log

 sup
a∈A(x)

eλC(x,a)
∑
y∈S

px,y(a)e
λαW (y)

 , x ∈ S.

(3.17)
Utilizando la expresión (3.7) se consigue que ∥Tα[W ]∥ ≤ ∥C∥ + α∥W∥,
aśı que Tα mapea B(S) en él mismo. Además, no es dif́ıcil verificar que Tα

es un operador monótono y α-homogéneo, i.e., para cada W,V ∈ B(S)
se tiene que

W ≥ V =⇒ Tα[W ] ≥ Tα[V ] y Tα[V +c] = Tα[V ]+αc, c ∈ R. (3.18)

Observe que V ≤ W + ∥V −W∥, entonces estas propiedades implican
que Tα[V ] ≤ Tα[W +∥V −W∥] = Tα[W ]+α∥V −W∥, e intercambiando
los roles de V y W se obtiene que

∥Tα[W ]− Tα[V ]∥ ≤ α∥W − V ∥, W, V ∈ B(S), (3.19)

aśı que Tα es un operador contractivo sobre B(S). Como B(S) dotado
con la norma del supremo es un espacio de Banach, existe un único
Vα ∈ B(S) que satisfacen

Vα = Tα[Vα], (3.20)

una ecuación que, por (3.17), es equivalente a

eλVα(x) = sup
a∈A(x)

eλC(x,a)
∑
y∈S

px,y(a)e
λαVα(y)

 , x ∈ S. (3.21)

Adicionalmente, de la Suposición 3.1.1 no es dif́ıcil ver que existe fα ∈
F tal que, para cada x ∈ S, la acción fα(x) maximiza el término en
paréntesis en la expresión anterior, aśı que

eλVα(x) = eλC(x,fα(x))
∑
y∈S

px,y(fα(x))e
λαVα(y), x ∈ S. (3.22)

El (α-)costo normalizado y las funciones (α-)relativas están definidas,
respectivamente, por

gα(x) : = (1− α)Vα(x), hα(x) : = α[Vα(x)− Vα(w)], x ∈ S, (3.23)
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donde, desde este punto en adelante, w ∈ S es un estado arbitrario
pero fijo. Cálculos directos que combinan estas definiciones con las dos
expresiones anteriores dan como resultado

eλgα(x)+λhα(x) = sup
a∈A(x)

eλC(x,a)
∑
y∈S

px,y(a)e
λhα(y)

 , x ∈ S, (3.24)

y

eλgα(x)+λhα(x) = eλC(x,fα(x))
∑
y∈S

px,y(fα(x))e
λhα(y), x ∈ S. (3.25)

Note que

∥Vα − Tα[0]∥ = ∥Tα[Vα]− Tα[0]∥ ≤ α∥Vα − 0] = α∥Vα∥.

Entonces, observando que

∥Tα[0]∥ ≤ ∥C∥,

por (3.17), se sigue que

∥Vα∥ − ∥C∥ ≤ ∥Vα∥ − ∥Tα[0]∥ ≤ ∥Vα − Tα[0]∥ ≤ α∥Vα∥,

aśı que

∥gα∥ = (1− α)∥Vα∥ ≤ ∥C∥. (3.26)

El siguiente teorema es el resultado principal de este caṕıtulo.

Teorema 3.2.1. Sea λ < 0 arbitrario, pero fijo. Bajo las Suposiciones
3.1.1 y 3.1.2. Las siguientes afirmaciones son válidas.

(i) El costo promedio óptimo es constante, digamos g∗, y ĺımα↗1 gα(x) =
g∗ = J∗(x) para cada x ∈ S.

(ii) Dado ϵ > 0, para cada x ∈ S existe αx,ϵ ∈ (0, 1) tal que la poĺıtica
fα en (3.22) es ϵ-óptima en x para α ∈ (αx,ϵ, 1), esto es,

α ∈ (αx,ϵ, 1) =⇒ g∗ + ϵ ≥ J(fα, x). (3.27)

La demostración del Teorema 3.2.1 será presentada en la Sección 3.4,
después de los resultados establecidos en la siguiente sección.
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3.3. Herramientas auxiliares

En esta sección, se analizan los instrumentos técnicos básicos que se
usarán para demostrar el Teorema 3.2.1. Estos preliminares se establecen
en los Lemas 3.3.1-3.3.3 que siguen. El primero está relacionado con las
propiedades de acotación de la familia de funciones de costo relativas
presentadas en (3.8).

Lema 3.3.1. (i) Para cada α ∈ (0, 1),

hα(·) ≤ 2∥C∥Mw, (3.28)

donde la constante finita Mw es como en (3.15).
(ii) Para cada x ∈ S, ĺım infα↗1 hα(x) > −∞.

Demostración. (i) Dado α ∈ (0, 1), defina la sucesión {Yn} de variables

aleatorias por Y0 = eλhα(X0) y Yn = eλ
∑n−1

t=0 (C(Xt,At)−gα(Xt))+λhα(Xn)

para n ≥ 1. Ahora, sea x ∈ S un estado fijo, y observe que (3.25)
implica que para cada n ∈ N

eλhα(Xn) = eλ(C(Xn,fα(Xn))−gα(Xn))
∑
y∈S

pXn,y(fα(Xn))e
λhα(y)

= Efα
x

[
eλ(C(Xn,An)−gα(Xn))+λhα(Xn+1)

∣∣∣Fn

]
, P fα

x -c. s.,

(3.29)

donde, se usó que la relación P fα
x [At = fα(Xt)] = 1 siempre es válida,

la segunda igualdad es debido a la propiedad de Markov. Observe que

eλ
∑n−1

t=0 (C(Xt,At)−gα(Xt)) es Fn-medible, por ( 3.1), la expresión anterior
produce

Yn = eλ
∑n−1

t=0 (C(Xt,At)−gα(Xt))+λhα(Xn)

= eλ
∑n−1

t=0 (C(Xt,At)−gα(Xt))Efα
x

[
eλ(C(Xn,An)−gα(Xn))+λhα(Xn+1)

∣∣∣Fn

]
= Efα

x

[
eλ

∑n
t=0(C(Xt,At)−gα(Xt))+λhα(Xn+1)

∣∣∣Fn

]
= Efα

x [Yn+1| Fn] ,

aśı que {(Yn,Fn)} es una martingala con respecto a P fα
x . Como P fα

x [X0 =
x] = 1, el Teorema de muestreo opcional concluye que, para cada estado
inicial x ∈ S y n ∈ N

eλhα(x) = Efα
x [Y0]

= Efα
x [Yn∧Tw

] = Efα
x

[
eλ

∑n∧Tw−1
t=0 (C(Xt,At)−gα(Xt))+hα(Xn∧Tw )

]
.

Ahora, observe que por (3.2) y (3.3), hα(XTw
) = hα(w) = 0 sobre el

evento [Tw <∞]. Como P fα
x [Tw <∞] = 1, por (3.15), se sigue que

ĺım
n→∞

eλ
∑n∧Tw−1

t=0 (C(Xt,At)−gα(Xt))+hα(Xn∧Tw )

= eλ
∑Tw−1

t=0 (C(Xt,At)−gα(Xt))+hα(XTw )

= eλ
∑Tw−1

t=0 (C(Xt,At)−gα(Xt)), P fα
x -c. s.

59
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Por el Lema de Fatou y por la desigualdad de Jensen, las últimas dos
expresiones implican que

eλhα(x) = ĺım inf
n→∞

Efα
x

[
eλ

∑n∧Tw−1
t=0 (C(Xt,At)−gα(Xt))+hα(Xn∧Tw )

]
≥ Efα

x

[
eλ

∑Tw−1
t=0 (C(Xt,At)−gα(Xt))

]
≥ eE

fα
x [λ

∑Tw−1
t=0 (C(Xt,At)−gα(Xt))]

≥ eE
fα
x [−

∑Tw−1
t=0 |λ(C(Xt,At)−gα(Xt))|] ≥ e2λ∥C∥Efα

x [Tw],

donde (3.26) y la negatividad de λ se usaron en el último paso. Entonces
se sigue que λhα(x) ≥ 2λ∥C∥Efα

x [Tw], aśı que hα(x) ≤ 2∥C∥Efα
x [Tw].

Dado que x fue un estado arbitrario, (3.28) se obtiene por (3.15).
(ii) Sea f̃ ∈ F fijo, y defina la sucesión {Sk} de subconjuntos del

espacio de estados S por

S0 := {w},
Sk := {y ∈ S : px,y(f̃(x)) > 0 para algún x ∈ Sk−1}, k = 1, 2, 3, . . .

Note que por la Observación 3.1.3 (ii) se tiene que
⋃∞

k=0 Sk = S. Por lo
tanto, para establecer la parte (ii) es suficiente demostrar que, para cada
k ∈ N,

ĺım inf
α↗1

hα(x) > −∞, x ∈ Sk. (3.30)

Tal afirmación será verificada por inducción. Sea f̃ ∈ F una poĺıtica fija
y note que (3.24) implica que

eλhα(x) ≥ eλC(x,f̃(x))−gα(x)
∑
y∈S

px,y(f̃(x))e
λhα(y)

≥ e2λ∥C∥
∑
y∈S

px,y(f̃(x))e
λhα(y),

(3.31)

donde la segunda desigualdad es debido a (3.26) y la negatividad de
λ. Ahora, observe que (3.30) es claramente válida para k = 0 ya que
S0 = {w} y hα(w) = 0 para cada α ∈ (0, 1). Luego, suponga que (3.30)
es válida para algún k ∈ N y sea ỹ ∈ Sk+1 arbitrario. Elija x̃ ∈ Sk tal
que

px̃,ỹ(f̃(x̃)) > 0

y note que (3.31) implica que eλhα(x̃) ≥ e2λ∥C∥px̃,ỹ(f̃(x̃))e
λhα(ỹ), aśı que

hα(x̃) ≤ 2∥C∥+ 1

λ
log(px̃,ỹ(f̃(x̃))) + hα(ỹ).
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Como x̃ ∈ Sk, la hipótesis de inducción produce que ĺım infα↗1 hα(x̃) >
−∞, y entonces las dos últimas expresiones implican que

ĺım inf
α↗1

hα(ỹ) > −∞.

Recordando que ỹ ∈ Sk+1 es arbitrario, se sigue que (3.30) es válida para
k + 1.

En el desarrollo subsecuente {αn} ⊂ (0, 1) es una sucesión fija tal que

αn ↗ 1 cuando n→∞. (3.32)

Sin pérdida de generalidad tomar una subsucesión -si es necesario- se
supone que el siguiente ĺımite existe

g(x) : = ĺım
n→∞

gαn
(x), h∗(x) : = ĺım

n→∞
hαn

(x), x ∈ S, (3.33)

donde, para cada x ∈ S,

g(x) ∈ [−∥C∥, ∥C∥], h∗(x) ∈ (−∞, 2∥C∥Mw]; (3.34)

ver (3.26) y el Lema 3.3.1. El siguiente lema establece propiedades fun-
damentales de los mapeos g(·) y h∗(·).

Lema 3.3.2. Con la notación en (3.32)–(3.34) las siguientes afirma-
ciones son válidas.
(i) El mapeo g(·) en (3.33) es constante, digamos g(x) = g∗ ∈ R para
cada x ∈ S.
(ii) Para cada x ∈ S,

eλg
∗+λh∗(x) ≥ supa∈A(x)

[
eλC(x,a)

∑
y∈S px,y(a)e

λh∗(y)
]
.

(iii) Para cada entero positivo n,

ng∗ + h∗(x)− 2∥C∥Mw ≤ Jn(π, x), x ∈ S, π ∈ P.

(iv) g∗ ≤ J∗(·).

Demostración. (i) Note que (3.18) produce que

gαn(x)− gαn(w) =
1− αn

αn
hαn(x),

para cada x ∈ S. Tomando el ĺımite cuando n tiende a∞, (3.33) y (3.34)
juntos producen que g(x) = g(w) para cada x ∈ S.
(ii) Sea (x, a) ∈ K arbitrario y note que (3.23) implica que, para cada
n ∈ N,

eλgαn (x)+λhαn (x) ≥ eλC(x,a)
∑
y∈S

px,y(a)e
λhαn (y).
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Tomando el ĺımite inferior cuando n tiende a ∞ en ambos lados de la
desigualdad, (3.21) y la parte (i) juntos implican que

eλg
∗+λh∗(x) ≥ ĺım inf

n→∞
eλC(x,a)

∑
y∈S

px,y(a)e
λhαn (y)

≥ eλC(x,a)
∑
y∈S

px,y(a) ĺım inf
n→∞

eλhαn (y),

donde el Lema de Fatou se usó en la segunda desigualdad. Por lo tanto,
(3.21) y la expresión anterior implican que

eλg
∗+λh∗(x) ≥ eλC(x,a)

∑
y∈S

px,y(a)e
λh∗(y), (x, a) ∈ K. (3.35)

(iii) Un argumento de inducción iniciando en (3.35) y usando la propie-
dad de Markov concluye que

eλng
∗+λh∗(x) ≥ Eπ

x

[
eλ

∑n−1
t=0 C(Xt,At)+λh∗(Xn+1)

]
,

para cada estado x ∈ S, π ∈ P y n ∈ N \ {0}. De la relación anterior y
como λ < 0, usando (3.34) se sigue que

eλng
∗+λh∗(x) ≥ Eπ

x

[
eλ

∑n−1
t=0 C(Xt,At)+2λ∥C∥Mw

]
= eλJn(π,x)+2λ∥C∥Mw ,

donde (3.8) se usó para establecer la igualdad. Por lo tanto, λng∗ +
λh∗(x) ≥ λJn(π, x) + 2λ∥C∥Mw, y la conclusión se sigue, ya que λ es
negativo.
(iv) Dividiendo por n en ambos lados de (3.29) y tomando el ĺımite
inferior cuando n ↗ ∞ en la desigualdad resultante, (3.9) produce que
g∗ ≤ J(π, x) para cada x ∈ S y π ∈ P. Desde este punto, (3.10) dirige a
g∗ ≤ J∗(·).

El siguiente resultado es el paso final antes de proceder a la demostración
del teorema principal.

Lema 3.3.3. Dado α ∈ (0, 1), sea fα ∈ F una poĺıtica tal que (3.22) es
válida.
(i) Para cada x ∈ S,

gα(x) ≥ (1− α)2
∞∑
k=1

αk−1Jk(fα, x).

(ii) Dado ϵ > 0 y x ∈ S, existe α̃x,ϵ ∈ (0, 1) tal que

gα + ϵ/2 ≥ J(fα, x)), α ∈ (α̃x,ϵ, 1).

(iii) g∗ ≥ J∗(·).
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Demostración. (i) Sea x ∈ S arbitrario, pero fijo. Siguiendo las ideas
en [14], se probará por inducción que para cada entero positivo n

eλVα(x) ≤ Efα
x

[
eλ

∑n−1
t=0 C(Xt,At)+λVα(Xn)

]αn n∏
k=1

eλ(1−α)αk−1Jk(fα,x).

(3.36)
Para empezar, recuerde que la igualdad P fα

x [At = fα(Xt)] = 1 siempre
es válida, aśı que la propiedad de Markov y (3.22) producen que, para
cada x ∈ S y n ∈ N,

eλVα(Xn) = Efα
x

[
eλC(Xn,An)+λαVα(Xn+1)

∣∣∣Fn

]
, P fα

x -c. s.

Estableciendo n = 0 en esta relación y utilizando que P fα
x [X0 = x], se

sigue que

eλVα(x) = Efα
x

[
eλC(X0,A0)+λαVα(X1)

]
= Efα

x

[(
eλC(X0,A0)+λVα(X1))

)α (
eλC(X0,A0)

)1−α
]

≤ Efα
x

[
eλC(X0,A0)+λVα(X1))

]α
Efα

x

[
eλC(X0,A0)

](1−α)

= Efα
x

[
eλC(X0,A0)+λVα(X1))

]α
eλJ1(fα,x)(1−α),

donde la desigualdad de Hölder se aplicó en el tercer paso, y la última
igualdad es debido a (3.8). Esto demuestra que (3.36) es válida para
n = 1. Luego, suponga que (3.36) es válida para un entero positivo n ≥ 1.
Observe que la igualdad At = fα(Xt) siempre es válida con probabilidad

uno bajo fα. Lo anterior y aprovechando que
∑n−1

t=0 C(Xt, At) es Fn-
medible, por (3.1), por la propiedad de Markov se obtiene que

Efα
x

[
eλ

∑n−1
t=0 C(Xt,At)+λVα(Xn)

∣∣∣Fn

]
= eλ

∑n−1
t=0 C(Xt,At)eλVα(Xn)

= eλ
∑n−1

t=0 C(Xt,At)Efα
x

[
eλC(Xn,An)+λαVα(Xn+1)

∣∣∣Fn

]
= Efα

x

[
eλ

∑n
t=0 C(Xt,At)+λαVα(Xn+1)

∣∣∣Fn

]
.
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Por lo tanto, de la desigualdad de Hölder y (3.8) se consigue que

Efα
x

[
eλ

∑n−1
t=0 C(Xt,At)+λVα(Xn)

]
= Efα

x

[
eλ

∑n
t=0 C(Xt,At)+λαVα(Xn+1)

]
= Efα

x

[(
eλ

∑n
t=0 C(Xt,At)+λVα(Xn+1)

)α (
eλ

∑n
t=0 C(Xt,At)

)(1−α)
]

≤ Efα
x

[
eλ

∑n
t=0 C(Xt,At)+λVα(Xn+1)

]α
Efα

x

[
eλ

∑n
t=0 C(Xt,At)

](1−α)

= Efα
x

[
eλ

∑n
t=0 C(Xt,At)+λVα(Xn+1)

]α (
eλJn+1(fα,x)

)(1−α)

.

Entonces

Efα
x

[
eλ

∑n−1
t=0 C(Xt,At)+λVα(Xn)

]αn

≤ Efα
x

[
eλ

∑n
t=0 C(Xt,At)+λVα(Xn+1)

]αn+1 (
eλJn+1(fα,x)

)(1−α)αn

= Efα
x

[
eλ

∑n
t=0 C(Xt,At)+λVα(Xn+1)

]αn+1

eλ(1−α)αnJn+1(fα,x).

Combinando esta relación con la hipótesis de inducción, se obtiene que
(3.36) es válida para n+ 1. Ahora, para establecer la parte (i) note que
para n = 1, 2, 3, . . . se tiene que∣∣∣∣∣

n−1∑
t=0

C(Xt, At) + Vα(Xn)

∣∣∣∣∣ ≤ n∥C∥+ ∥Vα(·)∥ ≤ ∥C∥(n+ (1− α)−1).

De este modo, Efα
x

[
eλ

∑n−1
t=0 C(Xt,At)+λVα(Xn)

]
≤ e|λ|∥C∥(n+(1−α)−1), y

por la expresión (3.36) se sigue que

eλVα(x) ≤ eα
n|λ|∥C∥(n+(1−α)−1)

n∏
k=1

eλ(1−α)αk−1Jk(fα,x),

una desigualdad que, recordando que λ < 0, es equivalente a

Vα(x) ≥ −αn∥C∥(n+ (1− α)−1) +

n∑
k=1

(1− α)αk−1Jk(fα, x).

Multiplicando por (1 − α) en ambos lados de esta relación y por (3.23)
se obtiene que

gα(x) ≥ −αn(1− α)∥C∥(n+ (1− α)−1) +

n∑
k=1

(1− α)2αk−1Jk(fα, x).
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La conclusión deseada se obtiene tomando el ĺımite cuando n tiende a
∞.
(ii) Sean x ∈ S y ϵ > 0 arbitrarios. Por (3.9), elija N0(x, ϵ) ∈ N tal que

1

k
Jk(fα, x) ≥ J(fα, x)− ϵ/4, k ≥ N0(x, ϵ).

Como |J(fα, x)|, k−1|Jk(fα, x)| ≤ ∥C∥ y por la parte (i) se consigue que

gα(x) ≥ (1− α)2
∞∑

k=1

kαk−1 Jk(fα, x)

k

= J(fα, x) + (1− α)2
∞∑

k=1

kαk−1

(
1

k
Jk(fα, x)− J(fα, x)

)

≥ J(fα, x) + (1− α)2
N0(x,ϵ)−1∑

k=1

kαk−1

(
1

k
Jk(fα, x)− J(fα, x)

)
− ϵ/4

≥ J(fα, x)− 2(1− α)2∥C∥
N(x0,ϵ)−1∑

k=1

kαk−1 − ϵ/4,

donde la expresión anterior se usó para establecer la primera desigualdad.

Finalmente, seleccione α̃x,ϵ tal que (1−α)2
∑N(x0,ϵ)−1

k=1 kαk−1 ≤ ϵ(8∥C∥+
1)−1 cuando α ∈ (α̃x,ϵ, 1) para concluir que

gα(x) ≥ J(fα, x)− ϵ/2, α ∈ (α̃x,ϵ, 1).

(iii) Sea x ∈ S arbitrario. Dado ϵ > 0, sea α̃x,ϵ ∈ (0, 1) como en la

parte (ii) y observe que por (3.32) existe Ñ(x, ϵ) ∈ N tal que αn > α̃x,ϵ

si n > Ñ(x, ϵ). En este caso (3.30) implica que gαn
(x) ≥ J(fαn

, x)− ϵ/2,
por lo tanto,

gαn(x) ≥ J∗(x)− ϵ/2, n > Ñ(x, ϵ).

Tomando el ĺımite cuando n tiende a ∞, esta relación conduce a g∗ ≥
J∗(x)− ϵ/2, y la condición se sigue, ya que ϵ > 0 es arbitrario.

3.4. Demostración del resultado principal

Después de los preliminares en la sección previa, las conclusiones prin-
cipales se pueden establecer como sigue.
Demostración del Teorema 3.2.1. Sea {αn}n∈N una sucesión arbitraria

que satisface (3.32) y, como antes, tome una subsucesión si es necesa-
rio, sin pérdida de generalidad suponga que (3.33) es válido, aśı que
ĺımk→∞ gαk

(·) = g∗ ∈ R, por el Lema 3.3.2(i).
(i) Combinando el Lema 3.3.2(iv) y el Lema 3.3.3(iii) se sigue que J∗(·) =
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g∗ = ĺımn→∞ gαn
(x) para cada x ∈ S. Por lo tanto, como la sucesión

{αn} es arbitraria y satisface (3.32), se sigue que ĺımα↗1 gα(·) = J∗(·) =
g∗.
(ii) Sea x ∈ S arbitrario, pero fijo. Dado ϵ > 0, por la parte (i) seleccione
α̂x ϵ ∈ (0, 1) tal que

gα(x) < g∗ + ϵ/2, α ∈ (α̂x,ϵ, 1).

Establezca αx,ϵ = máx{α̂x,ϵ, α̃x,ϵ}, esta última expresión y el Lema 3.3.3
(ii) producen que (3.27) es válida.
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Conclusiones

Se finaliza este escrito resaltando algunas de las conclusiones encon-
tradas en el estudio de la convergencia en PDMs y presentamos algunas
propuestas de investigaciones futuras que siguen esta ĺınea.

En el Caṕıtulo 1, se proporcionaron condiciones bajo las cuales existe
convergencia uniforme de las funciones de valor óptimo y poĺıtica ópti-
ma de una familia de PDMs indexados por parámetros ϵ y δ a la función
de valor óptima y poĺıtica óptima de un adecuado PDM determinista
cuando ϵ → 0 y δ → 0. Estos PDMs, evolucionan de acuerdo con dos
ecuaciones en diferencias acopladas. La primera ecuación hace referencia
a la evolución de los x-estados a través de una función F que aparece
en la ecuación (1.1), mientras que la segunda ecuación está asociada a
la evolución de algún parámetro del modelo por medio de una función
G (ver ecuación (1.2)). Los resultados principales de este caṕıtulo son
los Teoremas 1.3.7 y 1.3.10. El Teorema 1.3.7 proporciona una cota su-
perior para el ı́ndice de estabilidad. Por otra parte, el Teorema 1.3.10
establece la convergencia de las sucesiones {Vϵ,δ} y {fϵ,δ} a V y f∗, res-
pectivamente, cuando ϵ y δ tienden a cero. Finalmente, la teoŕıa desa-
rrollada fue ilustrada con dos ejemplos que muestran las conclusiones de
los resultados principales. Una consecuencia directa del Teorema 1.3.7
es que la poĺıtica óptima del problema determinista es asintóticamen-
te óptima para el problema estocástico. La teoŕıa desarrollada en este
caṕıtulo fue publicada en el art́ıculo [49]. Por otro lado, los resultados
presentados en el Teorema 1.3.10 permiten realizar aproximaciones para
sistemas estocásticos usando el método de perturbación. Tal metodoloǵıa
se encuentra bien establecida en la literatura de modelos de crecimiento
económico para sistemas estocásticos cuya dinámica está descrita solo
por una ecuación de x-estados [43].

En el Caṕıtulo 2 se utilizó el enfoque de PDMs para reescribir y dar
solución aproximada a un modelo de crecimiento económico. Se exhibe
la solución proporcionada por Q-learning y se presentan realizaciones de
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la trayectoria óptima promedio del capital. Adicionalmente, se presentó
en una versión aleatorizada del modelo: se aleatorizó la tasa de deprecia-
ción del capital, con esto se logró abordar el modelo v́ıa un sistema de
ecuaciones en diferencias acopladas como las propuestas en el Caṕıtulo 1.
Con esta identificación, se logró mostrar que a medida que la desviación
estándar del proceso de choque tecnológico se vuelve pequeña y cuando
el ruido pequeño ϵ asociado a la tasa de depreciación del capital tiende
a cero, el proceso de stock del capital converge a una auto-regresión li-
neal gaussiana. Esto fue posible al considerar la expresión (2.23) la cual
es una función del logaritmo de la dinámica del capital y del logaritmo
del parámetro con el que la tasa de depreciación del capital se desa-
rrolla. Además, con los experimentos numéricos desarrollados, se logró
ilustrar la normalidad de la expresión que establece el Teorema 2.3.1,
esto mediante histogramas y pruebas de normalidad. Adicionalmente,
bajo una suposición de unicidad del estado estacionario del modelo de-
terminista, se tiene que para ruidos pequeños σ y ϵ, el proceso de stock
del capital converge al estado estacionario determinista. Con los experi-
mentos numéricos, se pudo observar que el capital promedio del sistema
estocástico converge al estado estable del sistema determinista. Algu-
nos trabajos futuros, consideran abordar teoremas centrales del ĺımite
en contextos más generales.

Finalmente, en el Caṕıtulo 3 se estudiaron cadenas de decisión de
Markov sobre espacio de estados numerable. Se asumió que el desempeño
de una poĺıtica de decisión se mide por el criterio promedio percibido por
un controlador propenso al riesgo con sensibilidad al riesgo constante.
Bajo condiciones que aseguren que el costo promedio óptimo sea cons-
tante, pero no que la ecuación de optimalidad admita una solución, los
problemas de aproximar el costo promedio óptimo y determinar una
poĺıtica casi óptima se estudiaron a través de puntos fijos de una familia
de operadores contractivos. Los resultados en esta dirección, los cuales
están establecidos en el Teorema 3.2.1, proporcionan una extensión al
marco presente del clásico enfoque descontado en la teoŕıa de cadenas
de decisión de Markov dotadas con un ı́ndice promedio neutral al riesgo.
La teoŕıa desarrollada en este caṕıtulo fue publicada en el art́ıculo [48].
Por otra parte, extender las conclusiones del Teorema 3.2.1 a contextos
más generales, incluyendo costos no acotados o un espacio de estados
más general, parece ser un problema interesante.
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[31] Gordienko, E. I., & Salem, F. S. (1998). Robustness inequality
for Markov control processes with unbounded costs. Systems &
control letters, 33(2), 125-130.

[32] Gosavi, A. (2008). On step sizes, stochastic shortest paths,
and survival probabilities in reinforcement learning. In 2008
Winter Simulation Conference (pp. 525-531). IEEE.

[33] Gosavi, A. (2015). Simulation-based optimization (Vol. 62).
Berlin: Springer.

[34] Hernández-Hernández, D. & Marcus, S.I. (1996).Risk-
sensitive control of Markov processes in countable state space.
Systems and Control Letters 29, 147–155.

[35] Hernández-Lerma, O. (1989). Adaptive Markov Control Pro-
cesses. Springer, New York.

[36] Hernández-Hernández, D., & Minjárez-Sosa, J. A. (Eds.).
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