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Introduccion

La presente tesis se centra en una clase de juegos de suma cero a tiempo
discreto, espacio de estados numerable, transiciones Markovianas y recompensas
acotadas. En estos juegos, participan dos jugadores, denominados Jugador I y
Jugador II, quienes observan el estado actual del sistema y tienen la capacidad
de influir en su evolucién mediante la aplicacion de acciones en cada época de
decision. El proceso de toma de decisiones es secuencial, comenzando con el
Jugador II, quien puede elegir entre detener el juego o permitir que el sistema
contintie su evolucion. Si decide detenerlo, deberda pagar una recompensa
terminal al Jugador I. Si opta por continuar, el Jugador I selecciona una
accion, lo que genera dos efectos: primero, la cadena de Markov transita al
siguiente estado conforme a la ley de transicion; segundo, el Jugador II paga
una recompensa inmediata al Jugador I. El proceso anterior se repite en cada
nuevo estado al que el juego avanza. A este tipo de juegos se le conoce como
Markov stopping games, y en espanol se pueden emplear los términos juegos
markovianos con tiempos de paro o juegos de detencion de Markov.

Por otro lado, se asume que el jugador I tiene un coeficiente de sensibilidad
al riesgo constante A # 0. En consecuencia, el jugador I evalia dos recompensas
aleatorias diferentes utilizando el valor esperado de una funcién de utilidad
exponencial con este coeficiente de sensibilidad A\. El desempeno de un par
de estrategias se evaluard mediante el criterio de recompensa total sensible al
riesgo. Asi, el objetivo del Jugador I es maximizar su recompensa total sensible
al riesgo, mientras que el objetivo del Jugador II es minimizar dicha recompensa
para el Jugador I. Esta situacién implica que el juego sea de suma cero.

El objetivo general de nuestra investigacion es determinar bajo qué condicio-
nes sobre el modelo de control se garantiza la existencia de una solucién para
el juego. Ademas, se plantean los siguientes objetivos especificos:

» Caracterizar la funciéon de valor del juego, via una ecuacién de equilibrio.
= Determinar un equilibrio de Nash.

Para alcanzar estos objetivos, se supone que el espacio de acciones admisibles
para el Jugador I es un espacio métrico compacto en cada estado, y que
tanto la recompensa inmediata como las transiciones del sistema dependen de
manera continua de la accién aplicada (véase Supuesto 1.1). Esta suposicién es
esencial para garantizar la existencia de politicas 6ptimas, como se explicara
en detalle més adelante. Ademas, se han considerado dos supuestos distintos
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para el analisis del modelo: uno basado en un modelo absorbente y otro en un
modelo comunicante. En el modelo absorbente, se considera la existencia de un
estado absorbente, que se denotara por z, y que presenta dos caracteristicas
principales: (i) tanto la recompensa inmediata como la recompensa terminal
son nulas en este estado, y (i7) z es accesible desde cualquier estado inicial bajo
cualquier politica estacionaria (véase Supuesto 2.1). Un problema interesante
es explorar modelos en los que no exista algin estado absorbente. Por ello,
también se considerd el modelo de comunicacion. En este modelo, se supone que
si el Jugador II decide no detener el juego, la cadena de Markov inducida por
cualquier politica estacionaria adoptada por el Jugador I exhibe propiedades
de comunicacién y posee una distribucién estacionaria (véase Supuesto 3.1).

En general, los procesos de decisién de Markov (PDMs) pueden verse como
juegos estocasticos con un solo jugador. Se dispone de una teoria bien esta-
blecida de cadenas de Markov controladas [30, 19, 20], y se pueden encontrar
aplicaciones, por ejemplo, en el libro de Boucherie y Van Dijk [9], donde se
abordan temas relacionados con la deteccion y tratamiento de enfermedades,
transporte, produccién, comunicaciones y modelado financiero. En [6] se anali-
zan aplicaciones en el &mbito financiero, mientras que en [7] se estudian criterios
sensibles al riesgo.

En el contexto sensible al riesgo, la evaluacion de la eficiencia de las politicas
se realiza a través de la esperanza de una funcién de utilidad en lugar de
limitarse a la esperanza de una recompensa acumulada. Este enfoque permite
tener en cuenta las preferencias individuales del tomador de decisiones respecto
al riesgo, ofreciendo asi una vision mas completa sobre la toma de decisiones
en situaciones inciertas. Este concepto se fundamenta en el trabajo de Von
Neumann y Morgenstern [35], donde se formaliz6 la teoria de la utilidad. Este
libro es de gran importancia, ya que senté las bases para la toma de decisiones
en situaciones de incertidumbre y riesgo, introduciendo un marco tedrico que ha
influido profundamente en la economia, la teoria de juegos y otras disciplinas.

Por otro lado, en un contexto neutral al riesgo, el juego descrito anteriormente,
con un espacio de estados finito y utilizando el criterio de recompensa total,
fue analizado en [27]. Para el caso con espacio de estados numerable, se realizé
un andlisis en [15], considerando la existencia de un estado absorbente el
cual es accesible desde cualquier otro estado. Las conclusiones obtenidas en
estos dos articulos son extendidas en [11], donde se asume que bajo cualquier
estrategia estacionaria del jugador I, el espacio de estados numerable es una
clase recurrente positiva. Ademas, el caso descontado fue analizado en [12] y
en [13].

La teoria de juegos tiene aplicaciones relevantes en diversas areas, como se
explora en [3, 5, 17, 23]. En cuanto a la teorfa de los juegos Markovianos, sus
fundamentos se encuentran en los articulos de Shapley [33] y Zachrisson [36]. El
interés en estos juegos surge de diversas fuentes, siendo especialmente notable en
el campo de las matematicas financieras. En este contexto, muchos problemas
se reducen a identificar el momento éptimo para ejecutar un contrato y la
mejor estrategia para gestionar el riesgo asociado a la contraparte. Ademas, la
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teoria de tiempos de paro desempena un papel crucial en el andlisis estocastico.
Una descripciéon exhaustiva de esta teoria se puede encontrar en los trabajos
de Shiryaev [34] y en Peskir y Shiryaev [29]. Las aplicaciones de esta teoria en
las matemédticas financieras estdn bien documentadas en [8, 28]. En el presente
trabajo, se integran las ideas fundamentales de paro 6ptimo con los PDMs para
analizar el juego descrito anteriormente.

El enfoque de este trabajo se fundamenta en el operador T) (ver Definicién
2.1). Este operador se define sobre un espacio de funciones apropiado, donde el
principio de programacién dinamica, el problema de paro 6ptimo y la funcién
de utilidad empleada juegan un papel fundamental en su formulacién. Uno de
nuestros resultados iniciales es demostrar que este operador tiene puntos fijos.
Este punto sera crucial para definir las estrategias de los jugadores I y II, las
cuales daran lugar a un equilibrio de Nash. Nuestro principal aporte en este
trabajo es extender los resultados del caso neutral al contexto sensible al riesgo.
Se consideran los dos modelos previamente mencionados, y los resultados mas
relevantes se presentan en los Teoremas 2.5 y 3.2. Para el modelo comunicante,
ofrecemos un ejemplo ilustrativo que cumple con nuestros supuestos y, a partir
de este caso particular, presentamos un método numeérico para encontrar el
punto fijo del operador T) y, posteriormente, la estrategia que constituye un
equilibrio de Nash. Como resultado de nuestra investigacién, se publico el
articulo [25] en 2022 y, mds recientemente, el articulo [26] en 2024.

Este trabajo de tesis esta organizado en tres capitulos. En el Capitulo 1 se
presenta inicialmente la notaciéon basica utilizada, asi como una descripcién
detallada del modelo de decisién y sus componentes. Se analizan las estrategias
de decision admisibles para los jugadores, la sensibilidad al riesgo, la certeza
equivalente, el criterio de rendimiento y la definicion de un equilibrio de Nash.
En el Capitulo 2 se analiza el modelo absorbente. Se presenta el operador T y
se destacan las caracteristicas relevantes del estado absorbente z en relacién con
W, el punto fijo de este operador. Aqui se incluyen también algunos resultados
auxiliares que son fundamentales para demostrar la existencia de un equilibrio
de Nash. En el Capitulo 3 se aborda el modelo comunicante, donde lo primero
que se analiz6 fueron los resultados que se pierden al no considerar el estado
absorbente. La propiedad de comunicacion permite establecer directamente la
unicidad de W7. Ademas, el resultado principal de esta seccién es la existencia
de un equilibrio de Nash, asi como la igualdad entre la funciéon valor del juego
y W5. También se presenta un ejemplo especifico de un juego que cumple
con todos los supuestos considerados, el cual se analiza numéricamente para
complementar la parte teérica. Finalmente, se presentan las conclusiones del
trabajo y se plantean problemas futuros. Ademas, se incluye un apéndice que
recopila los teoremas y definiciones utilizadas, seguido de la bibliografia.
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Capitulo 1

Juegos Markovianos Sensibles al
Riesgo

En este capitulo se ofrece una descripcion detallada del modelo de control
analizado. Se especifican cada una de las componentes del modelo, asi como el
espacio de estrategias de los jugadores I y II. También se detalla el criterio de
rendimiento utilizado, junto con la definiciéon del equilibrio de Nash.

Antes de avanzar, resulta conveniente introducir la notaciéon bésica que se
empleara a lo largo del texto. Dado un espacio topologico X, el espacio de
Banach C(X) consta de todas las funciones continuas C': X — R cuya norma
|C|| es finita, donde ||C|| := sup,ex |C(k)|, mientras que N :={0,1,2,...}. La
funcién indicadora de un evento A se denota por I[A]. Ademas, incluso sin
mencion explicita, todas las relaciones que involucran esperanzas condicionales
son validas con probabilidad 1 con respecto a la medida de probabilidad
subyacente. Por otro lado, a A by a V b se usan como notaciones infijas para
min{a, b} y max{a, b}, respectivamente, donde a, b € R. El minimo del conjunto
vacio es +oo y, finalmente, se utilizara la siguiente convencion relativa a las

sumadtorias:
m

ZR(Xt,At) =0, m<n, m,necN. (1.1)

t=n

1.1. El Modelo de Decision

A lo largo del texto, G = (S, A, {A(z),x € S}, P, R, G) representa un juego
de suma cero en tiempo discreto de dos jugadores. Las componentes del juego
G son las siguientes:

= S es el espacio de estados, el cual es un conjunto no vacio, numerable y
esta dotado con la topologia discreta.

= A es el espacio de acciones, el cual es un espacio de Borel, es decir, un
subconjunto de Borel de un espacio métrico completo y separable.

» A(z) C A es el espacio de acciones admisibles para el jugador I en el

13
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estado z, mientras que:
K:={(z,a)|la € A(z),z €S} CSx A,

es el correspondiente espacio de parejas estado-accion admisibles.

» P = [psy()]zyes es la ley de transicion en S dado K, de modo que
Pay(a) >0y Y, csPay(a) =1 para cada (z,a) € K.

» R € C(K) es la funcién de recompensa inmediata y G € C(.S) la funcién
de recompensa terminal.

El juego G se interpreta de la manera siguiente: en cada época de decisién
t € N, los jugadores I y II observan el estado del sistema, denotado como
Xy =z € S. En este contexto, el jugador II debe elegir entre dos acciones:
detener el sistema, pagando una recompensa terminal G(x) al jugador I, o
permitir que el sistema contintie su evolucién. Si opta por esta tltima opcion,
el jugador I, utilizando el historial de estados hasta el tiempo ¢ y las acciones
anteriores a ¢, elige una accién A; = a € A(z). Esta intervencién tiene dos
efectos: el jugador I obtiene una recompensa inmediata R(x,a) del jugador 11
e, independientemente de los estados y acciones anteriores, el sistema transita
a Xyy1 =y € S con probabilidad p, ,(a); ésta es la propiedad de Markov del
proceso de decision.

Una forma efectiva de obtener ejemplos particulares de Markov stopping
games es extender el problema de paro 6ptimo. En un problema de paro 6ptimo
clasico, el sistema evoluciona como una cadena de Markov no controlada, donde
un unico jugador, en cada época de decision se enfrenta a dos acciones: detener
el sistema o continuar. Para enriquecer este escenario, podemos introducir
un segundo jugador que influya en la evolucion del sistema a través de sus
decisiones. Esta interaccion transforma la cadena en una cadena de Markov
controlada, permitiendo que las acciones de ambos jugadores afecten el estado
del juego. Esta extension abre nuevas posibilidades para aplicar los Markov
stopping games en diversos contextos, como la venta de activos, la resolucién
del problema clasico de la secretaria, y la valoracién y ejercicio de opciones
financieras, entre otros. A continuacién, se presenta un ejemplo que ilustra
cémo obtener esta extension en el contexto de la venta de un activo.

Ejemplo 1.1. Consideremos un inversor (Jugador I) que posee una propiedad
o0 activo cuyo valor espera que aumente con el tiempo, y a un futuro comprador
de dicho activo (Jugador II). En cada época de decision, el Jugador II debe
decidir si acepta la oferta que ha recibido del jugador I y compra la propiedad, o
si rechaza esta oferta y solicita nuevas. Las acciones del Jugador I influyen en
el sistema, de manera que la nueva oferta puede ser mayor, igual o menor que
la oferta anterior. El espacio de estados representa todas las posibles ofertas
que pueden surgir durante el horizonte de toma de decisiones.

En cuanto a las funciones de recompensa, consideramos que la recompensa
terminal se define como la funcion identidad, reflejando asi el valor final del
activo vendido. La recompensa inmediata se configura como una penalizacion
para el jugador II, ya que se asigna un valor positivo cuando la accion del
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Jugador I resulta en una disminucion de la oferta, indicando que ha realizado
una propuesta mas favorable para el jugador II, y lo incentiva a detener y
comprar el activo. Por otro lado, la recompensa es cero si la accion del jugador
I lleva a que la nueva oferta sea igual o mayor que la oferta actual.

Este ejemplo ilustra claramente la extensiéon mencionada anteriormente. Por
otro lado, en el contexto del modelo de juego, asumimos el siguiente supuesto
a lo largo de este trabajo.

Supuesto 1.1. (i) Para cada x € S, A(x) es un subconjunto compacto de

A,

(71) Para cada x,y € S los mapeos a — R(x,a) y a — py,(a) son continuos
en a € A(z).

(iii) Para cada x € S, a € A(z), G(z) >0 y R(z,a) > 0.

Este supuesto, ampliamente utilizado en los PDMs, nos permitira demostrar la
existencia de puntos fijos del operador de equilibrio T\ y garantizar la existencia
de la politica del jugador I, la cual se utilizara para probar la existencia del
equilibrio de Nash.

Dado que este trabajo busca extender el juego al contexto de la sensibilidad
al riesgo, es fundamental introducir conceptos clave en este a&mbito, como la
sensibilidad al riesgo y la certeza equivalente. Estos conceptos se desarrollaran
en la seccion siguiente.

1.2. Sensibilidad al Riesgo y la Certeza Equi-
valente

La sensibilidad al riesgo es un factor crucial en la toma de decisiones, ya que
influye en como los individuos evaltian y responden a situaciones inciertas. Al
considerar el nivel de aversién o propension al riesgo, los tomadores de decisiones
pueden equilibrar posibles beneficios y pérdidas, optimizando asi sus elecciones
en entornos complejos. Esta comprension es esencial no solo en contextos
financieros, sino también en una variedad de campos, desde la economia hasta
la salud publica, donde las decisiones pueden tener consecuencias significativas.

La evaluacion de las estrategias utilizadas por los jugadores en un contexto
neutral se fundamenta en la esperanza de la recompensa acumulada hasta que
se detiene el juego, sin tener en cuenta el riesgo asociado a la eleccién de dichas
estrategias. Por ejemplo, no se hace distinciéon entre garantizar una recompensa
nula de forma segura y arriesgarse a ganar o perder una cantidad positiva con
una probabilidad de % Sin embargo, es evidente que, en este caso, el jugador
enfrenta un riesgo significativo, que se manifiesta claramente en la varianza del
resultado en este ejemplo.

Para evaluar el riesgo de manera adecuada, es fundamental considerar una
funcién de utilidad, que es una representacion matematica que refleja las
preferencias de un individuo ante diferentes resultados inciertos. Esta funcién
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asigna un valor numeérico a cada posible resultado, permitiendo asi cuantificar
la satisfaccion o el bienestar que cada uno de ellos proporciona. Al modelar
cé/mo una persona valora diferentes niveles de riqueza y el riesgo asociado, la
funcion de utilidad ayuda a entender su aversion o propension al riesgo, lo
que resulta crucial para la toma de decisiones informadas en situaciones de
incertidumbre. Gracias al aporte de J. von Neumann y O. Morgenstern [35],
esta nocién se formaliza y se convierte en una herramienta clave para comparar
y elegir entre distintas alternativas, guiando al individuo hacia la opcion que
maximiza su bienestar esperado.

En este contexto, que el jugador I posea un coeficiente de sensibilidad al
riesgo constante, denotado por A # 0, implica que una recompensa aleatoria Y
es evaluada a través de la esperanza de su funcion de utilidad, expresada como

E[U\(Y)]. Para cada A # 0, la funcién de utilidad asociada, Uy : R — R, se
define de la siguiente manera:

Us(u) == sgn(N)e  u € R, (1.2)
donde sgn(\) es la funcion signo de A (Definicién A.1).

Es importante destacar que Uy(+) es una funcién estrictamente creciente,
lo que asegura que un aumento en la recompensa conlleva un incremento
correspondiente en la utilidad. Esta funcién de utilidad cumple con la siguiente
propiedad:

Ux(u+w) = eUy(w), u,w € R. (1.3)

Esta propiedad implica que la utilidad de una suma de recompensas puede
descomponerse de manera exponencial y se utilizara en diversas ocasiones a lo
largo del texto.

La eleccion de esta funcion de utilidad exponencial se justifica por la suposi-
cién de que el jugador I tiene un coeficiente de sensibilidad constante al riesgo.
Al ser constante, la sensibilidad riesgo no se ve afectada por el tamano de las
recompensas, lo cual es 1til en situaciones donde se quiere modelar de manera
uniforme cémo un individuo reacciona ante la incertidumbre. Ademés, U, tiene
propiedades como la (1.3) que facilitan considerablemente los calculos en las
demostraciones y permiten reducir las expresiones algebraicas a formas mas
manejables.

El signo de A indica la actitud del jugador I frente al riesgo: si A > 0, el
jugador I es propenso al riesgo, lo que significa que esta dispuesto a asumir
riesgos a cambio de una posible mayor recompensa; en cambio, si A < 0, el
jugador I es averso al riesgo, prefiriendo certezas a resultados inciertos. Si el
jugador I tiene la opciéon de elegir entre dos recompensas aleatorias Y; y Yp,
prefiere recibir Yy cuando se cumple la condicion E[U,(Yy)] > E[Ux(Y1)]. En
caso de que ambas recompensas proporcionen la misma utilidad esperada, es
decir, E[Ux(Yy)] = E[Ux(Y1)], el jugador I se mostrara indiferente entre Y y
Y.

La certeza equivalente de una recompensa aleatoria acotada Y con respecto
a la funcion de utilidad Uy se define como la constante £,(Y) € RU {—o00, 00},
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que satisface la relacion:
Ur(Ex(Y)) = E[UAY)],

lo que implica que el jugador I es indiferente entre recibir una recompensa
aleatoria Y o la correspondiente certeza equivalente £,(Y'). Obsérvese que la
certeza equivalente puede expresarse de la siguiente manera:

E\(Y) = ilog(E[e)‘Y]). (1.4)

La certeza equivalente es crucial en la toma de decisiones porque proporciona
una forma de cuantificar la percepcion del riesgo. Un individuo que prefiere la
certeza a la incertidumbre mostrara una certeza equivalente que es menor o
igual al valor esperado de la variable aleatoria Y. Este comportamiento se puede
corroborar utilizando la desigualdad de Jensen (Teorema A.1) y la propiedad
(1.4), ya que si A < 0, se tiene que &,(Y) < E[Y].

Esta preferencia destaca la importancia de la funcién de utilidad en la
toma de decisiones, ya que su forma determina la naturaleza de la certeza
equivalente. Funciones de utilidad concavas, como las que a menudo se utilizan
para representar la aversion al riesgo, resultaran en certezas equivalentes mas
bajas en comparacién con aquellas funciones que representan una actitud
neutral o favorable hacia el riesgo.

Antes de presentar el criterio de rendimiento que se considerara en este
trabajo, es fundamental definir el espacio de estrategias de los jugadores I y II.

1.3. Estrategias de Decisién

Para cada t € N, el espacio de historias admisibles hasta el tiempo ¢, denotado
como Hl, se define de la siguiente manera: para t = 0, tenemos Hy := S, y
para t > 0, se establece que H; := K x H;_;. Un elemento genérico de H;, se
representa como hy = (g, ag, - . ., T;, a;, . .., x;), donde a; € A(x;). Una politica
m = {m} o estrategia de decision para el jugador I es una sucesién especial
de kérneles estocasticos definidos en el espacio de acciones A dado Hl;, donde
para cada t € Ny hy € H, se tiene que m(+|h;) es una medida de probabilidad
sobre A concentrada en A(x;), y para cada subconjunto Borel B C A el mapeo
hy — m(B|hy), hy € H;, es Borel medible. La clase de todas las politicas
constituye la familia de estrategias admisibles para el jugador I y se denota por

P.

Por otro lado, cuando el jugador I maneja el sistema mediante 7, el control
A; aplicado en el tiempo t pertenece a B C A con probabilidad m;(B|h;),
donde h; € H; es la historia observada del proceso hasta el tiempo t. Dados
m € P y el estado inicial Xy = x, se determina de manera tinica una medida
de probabilidad P en la o-algebra de Borel del espacio H := [[;2, K, que
incluye todas las realizaciones posibles del proceso estado-accion {(X;, A;)}.
El operador esperanza correspondiente se denota por E7. A continuacion,
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definimos I := [],cq A(z) y observamos que F es un espacio métrico compacto,
compuesto por todas las funciones f : S — A tales que f(x) € A(z) para cada
x € S. Una politica 7 es estacionaria si existe f € F tal que la medida de
probabilidad m;(|h;) estd siempre concentrada en f(z;); en este caso, my f se
identifican naturalmente. Con esta convencién, tenemos que F C P.

Asimismo, el espacio T de estrategias del jugador II esta formado por todos
los tiempos de paro 7 : H — NU {oco} con respecto a la filtracion {F;} definida
por:

]:t = O'(Xo,Am"' aXt—l)At—17Xt)7 (15)

lo que implica que el evento [r = t] € F; para cada ¢t € N. Intuitivamente,
esta condicién significa que la decision de parar o no al tiempo n debe basarse
unicamente en la informacion disponible en ese momento, sin considerar ninguna
informacion futura.

Una vez definidos los espacios de las estrategias de los jugadores I y II, es
momento de presentar el criterio de rendimiento sensible al riesgo utilizado en
este trabajo.

1.4. Criterio de Rendimiento

Dado el estado inicial Xy = = € S, supongamos que los jugadores I y II
conducen el sistema utilizando las estrategias m € P y 7 € T, respectivamente.
La recompensa total (aleatoria) obtenida por el jugador I hasta que el sistema
es detenido en el tiempo 7 por el jugador II viene dada por:

T—1
> R(Xy, Ay) + G(X,) [T < o0, (1.6)
t=0
y la correspondiente certeza equivalente es el indice de rendimiento V) (x; 7, T)
asociado con el par (m,7) € P x T en el estado x € S, el cual estd dado por:

Vi(z;m, 1) = /1\10g (E;cr [6)\(2;01 R(Xt’AtHG(XT)I[KOO])D . (1.7)

Este indice de rendimiento se obtiene a través de la expresion de la certeza
equivalente (1.4), considerando la recompensa total (1.6). Dado que tanto R
como (G son no negativas, se tiene que:

Wi(z;m, 1) > 0. (1.8)

Cuando el jugador IT emplea la estrategia 7, el mayor valor de la certeza
equivalente que puede alcanzar el jugador I es sup,.p Vi(z;m,7), el cual es
una funciéon de z y 7, digamos ¢(z; 7). Se supone que el objetivo principal
del jugador II es minimizar la utilidad esperada del jugador I, por lo que el
jugador II se esforzara en emplear un tiempo de paro 7 tal que ¢(z;7) sea lo
mas cercano posible a inf, 7 ¢(x; 7). Esta ultima cantidad es el valor superior
del juego y esta determinado explicitamente por:

Vy(z) := inf

TE

sup V)\(m;W,T)l ,x € S. (1.9)

TeP
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Intercambiando el orden en que se toman el supremo y el infimo, se obtiene
la siguiente funcién de valor inferior del juego:

Vi«(z) = sup {inf V,\(x;W,T)} ,x €S. (1.10)
rep LT€T

Dado que fH;V)\(l’;ﬂ',T) < Wi(z;m,7) < supVi(z;m, 1), estas definiciones
TE TeP
conducen inmediatamente a que:

Vi) SVY() . (1.11)

Por lo que vemos que la desigualdad anterior entre el valor superior e inferior
del juego siempre se cumple. Uno de nuestros objetivos es demostrar que bajo
ciertas condiciones, también se cumple la desigualdad contraria, lo cual implica
la existencia de un tunico valor del juego. Para concluir este capitulo, hace falta
introducir el concepto del equilibrio de Nash, el cual es uno de los elementos
mas importantes en este trabajo.

1.5. Estrategias de Equilibrio.

El principal objetivo de este trabajo es establecer la existencia de un par de
estrategias (7%, 7%) € P x T que sea un equilibrio de Nash para el juego, cuya
definicién se presenta a continuacién.

Definicién 1.1. El par (7*,7*) € P X T es un equilibrio de Nash si para cada
estado x € S

Wxym, ) < V(z; 7", 7°) < V\(z;7n*, 1), m€eP,TE€T. (1.12)

Analicemos el como se interpretan las dos desigualdades presentes en la
definicién de un equilibrio de Nash. Cuando las estrategias 7* y 7* realmente
usadas por los jugadores I y II forman un equilibrio de Nash, de la primera
desigualdad en (1.12) se deduce que, si el jugador IT contintia usando la estrategia
7*, entonces el jugador I no tiene ningiin incentivo para cambiar a otra politica.
Esto se debe a que si decide hacerlo se vera perjudicado ya que obtendria
una recompensa menor. De manera similar, la segunda desigualdad en (1.12)
implica que, si el jugador I continia usando 7*, entonces el jugador II no tiene
ninguna motivacion para cambiar la estrategia 7* en uso. Si decidiera hacerlo,
la recompensa que tendria que pagarle al jugador I seria mayor.

Ademads, ndtese que si (7*,7) es un equilibrio de Nash, entonces (1.12)
implica que:

VX0 ssupVa(sm 7)) < VaGin', 77) < I Va(s 77, m) < VA (o),
TeP T

donde las desigualdades de la izquierda y de la derecha se deben a (1.9) y (1.10),

respectivamente, por lo que a través de (1.11) se deduce que las funciones de

valor superior e inferior son iguales y coinciden con V) (-; 7*, 7).
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En el siguiente capitulo se aborda el problema de encontrar un par de
estrategias que sea un equilibro de Nash. Para ello en primer lugar se definira
un operador cuyo punto fijo se utiliza para definir las estrategias de los jugadores
que conforman un equilibro de Nash. El analisis se lleva a cabo bajo los Supuestos
1.1y 2.1.



Capitulo 2

Modelo con un Estado
Absorbente

En este capitulo se presentan los primeros resultados obtenidos en la investi-
gacion. Se estudia el modelo considerando el supuesto de la existencia de un
estado absorbente (Supuesto 2.1) y se demuestra la existencia de un equilibrio
de Nash. Los resultados presentados han sido publicados en el articulo [25]. La
principal condicién estructural es la existencia de un estado absorbente que,
independientemente de las estrategias de los jugadores, puede ser alcanzado
eventualmente desde cualquier estado inicial. Lo cual se establece en el siguiente
supuesto.

Supuesto 2.1. Fxiste un estado z € S para el cual se cumplen las siguientes
condiciones:

(i) Para cada x € Sy f €T,
Plr. < o] =1, (2.1)

donde
7. == min{n | X,, = z}. (2.2)

(i) G(2) =0=R(z,a) yp..(a) =1, a € A(z).

Nétese que 7, es un tiempo de paro con respecto a la filtracién {F;} dada en
(1.5), por lo que una consecuencia directa de esto es que 7, € 7. Por otro lado,
una vez que el sistema alcance el estado z, no podra salir de alli y la recompensa
acumulada a partir de ese momento serd cero. Ademas, es importante senalar
que:

X,. =z enel evento [7, < o0]. (2.3)

A continuacion, se define el operador de equilibrio, el cual es crucial para
determinar las estrategias 6ptimas de los jugadores I y II.

21
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2.1. Operador de Equilibrio

Para encontrar el equilibrio de Nash, en primer lugar se introduce un sub-
conjunto de C(S) y se define un operador sobre este subconjunto.

Definicion 2.1. (i) Sea G la funcion de recompensa terminal. El espacio

[0,G]] C C(S) se define como:
[0,G] :=={h€C(5)|0<h(x) <G(x), xS} (2.4)

(it) El operador T) : [0,G] — [0, G] es determinado de la siguiente manera:
Para cada W € [0,G] y x € S,

Ux(TA[W](x))

:= min {U,\(G(q:)), sup [Z Pay(@)Ur(R(x,a) + W(y))] } . (2.5)

acA(x) y€eS

El operador T\ modela la decision secuencial del jugador 11, quien debe elegir
entre parar, pagando la recompensa terminal G(x), o continuar, lo que implica
pagar la recompensa inmediata R(z,a) junto con las recompensas futuras que
tendra que pagar en el nuevo estado y, las cuales dependen de las acciones del
jugador I.

Este operador tiene algunas propiedades importantes, las cuales se presentan
a continuacion.

» T\[W] € [0,G], para toda W € [0, G]. Esto lo podemos verificar usando
que U,(+) es creciente y que R y G son no negativas.

= La relacion entre el estado absorbente z y T) es la siguiente:

T\W](z) = W(z) =0, W e [0,G]. (2.6)

» Definimos el orden < en el espacio de funciones [0, G] de la siguiente
manera: V. < W si y solo si V(z) < W(z) para todo x € S. Con
esta definicion, T es un operador monotono creciente, es decir, para
V,W € [0, G] se tiene que:

V<W = T\[V] < ThW]. (2.7)

Para demostrar esta iltima propiedad, sean y € S,(z,a) € Ky V,W € [0, ]
tales que V' < W. Asi, obtenemos que:

sup |:Z;qp:ry<a>U)\(R(x7 a)+V(y))
< azljg) > pay(a)Ur(R(z,a) + W(Z/))] :
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|

< min {UA(G(x)), sup pryy(a)U,\(R(:v, a) + W(y))] }

a€A(z) |yes

Por otro lado,

acA(x) yeS

Un(Th[V](z)) = min{UA(G(x)), sup pr’y(a)U,\(R(x,a)ﬁLV(y))

= U(D[W](2)),
de donde se sigue que T)[V] < TA[W].

Otra caracteristica importante de T es que este operador tiene puntos fijos.
Para demostrarlo, se necesitan un par de resultados previos: el Lema 2.1 y el
Teorema 2.1, los cuales se presentan a continuacion.

Lema 2.1. (i) Consideremos una familia {Sy} de subconjuntos finitos de S
tal que:

S:USk,SkCSkJrl,kGN, (28)
k=1
y para cada x € S, k € N definimos:

Ok(x) := sup [1— pry(a)] = sup Z Pay(@), (2.9)

a€A(x) yES) a€A(x) yeS\Sk
entonces,

lim §x(x) =0, z € S.

k—o0
(ii) Si {W,} C C(S) es tal que:

c:=sup||[Wy||<oo y lim W,(y)=0,y€S. (2.10)

En este caso, para cada x € S

sup M= N p o (a)[Wa(y)]| = 0 cuando n — oo.
a€A(z) yes

Demostracion. (i) Dado que los conjuntos Sy son finitos, del Supuesto 1.1
se obtiene que para cada k € Ny x € S el mapeo a — Y, cg, Pz y(a) es
continuo en el compacto A(x), mientras que utilizando las condiciones en
(2.8) se deduce que:

Z Pay(a) / mey(a> =1 cuando k — o0,

YyESk yeS

de modo que el Teorema de Dini (Teorema A.2) implica que la conver-
gencia es uniforme en el espacio A(x), es decir:

sup [1 -> pxy(a)] — 0 cuando k — 0.

acA(x) yESK
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(17) Fijemos x € Sy para cada k € N se tiene que:

sup @D (@)W (y)]

a€A(x) yes

< sup M) N (@)|Wa(y)| + sup XD ST p(0)|Wa(y)|
acA(x) yESK a€A(x) yES\ Sy

< IR [ 4
<e 2%%§|Wn(y>|+c sup D Payla)

a€A(2) ye 5\,

— IR (m%x (W (y)| + cék(a?)) )

ye

donde (2.10) se utiliz6 para establecer la segunda desigualdad, y la igualdad se
debe a (2.9). Recordando que los conjuntos S son finitos, la convergencia en
(2.10) produce que:

sup M@ N7 (@)W (y)]| < ePMIBlesy(z), =€ S,

a€A(x) yeS

lim sup
n—oo

y entonces, como k € N es arbitrario, la conclusion se desprende de la parte
(2). O

El siguiente resultado establece que T} es un operador continuo con respecto
a la topologia de la convergencia puntual en el espacio [0, G].

Teorema 2.1. Supongamos que la sucesion {W,} C [0,G] converge puntual-
mente a una funcion V : S — R, esto es,

lim W, (z) =V(z),z€ S. (2.11)

n—oo

Entonces se tiene que:

Vel0,G]y ,}H&TA[Wn](x) =T\[V](z),z€ S.

Demostracion. Noétese que (2.4) y (2.11) implican que V' € [0, G]. Sea

Dp(x) = sup MDY (@)|UNWaly)) — UN(V())I| - (2.12)
a€A(z) yeS
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Luego, usando (1.3) observe que:

sup Zp:cy ZB a) + Wn(y))
a€A(z) yes
= sup MDY (a)Ur(Wa(y))
acA(x) i yeS

= sup e’\R(x’a)pr,y@)U/\(V(y))

a€A(z) L yeSs

+ e E(z50) pry U,\(W ( )) — UA(V(?/>>]

yeSs

< sup [e’\R(”C’G)pr,y(a)U/\(V(y))

a€A(z) yes

Y

- [ S (@0 (Waly)) — Un(V (1)
acA(x) yeSs

y una aplicacion adicional de (1.3) conduce a

sup pry x a>+Wn<y))
a€A(z) yes
< sup Y pey(@)Ur(R(x,a) + V(y)) + An(), (2.13)
a€A(z) yes

mientras que la desigualdad

sup > puy(a)Ur(R(z,a) + V(y))

acA(x) yeS

< sup pry UA(R(xva)+Wn<y)) +AN($)a
a€A(z) yes

puede establecerse de forma similar. Combinando la definicién de T} en (2.5)
con (2.13) y la desigualdad anterior, resulta que:

U\ Wol(z)) < UN(Th[V](2)) + An(2)
y

UA(Th[V](z)) < UN(TZ[Wal(2)) + An(z),
de modo que:

|UN(TA[Wa](x)) — Ux(Ta[V](z))] < An(w). (2.14)

Observe ahora que (1.2) y (2.11) implican que:
lim [U\(Wa(y)) —Ux(V(y))] =0, yeS.

n—oo

Ademas, utilizando que [|[W]| < ||G]| < oo, si W € [0,G], las inclusiones
W,,V € [0,G] y (1.2) dan como resultado que [|[Ux(W,,(:)|, |[UN(V ()| <
eMIGH Por 1o tanto, se tiene que:

IUAWa () = UV ()] < 2eMT90L
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Utilizando el Lema 2.1(ii) con Uy\(W,) — Ux(V) en lugar de W,, los dos
hechos anteriores y (2.12) implican que lim,, ., A,(-) = 0, una convergencia
que a través de (2.14) conduce a que:

para cada x € S. Por otro lado, como U, (-) es estrictamente creciente y continua,
se deduce que Th[W,](x) — TA[V](x) cuando n — oo para todo estado z. [

2.2. Existencia de puntos fijos

El resultado que demuestra la existencia de puntos fijos del operador T} se
presenta a continuacién, y la prueba estda apoyada en la propiedad presentada
en el Teorema 2.1.

Teorema 2.2. Bajo el Supuesto 1.1, se tiene que existe un punto fijo del
operador Ty, esto es, existe una funcion W5 € [0, G] que satisface que:

Wi = Th[W;]. (2.15)

Demostracion. Definimos W,y := 0 para n = 0y W, \ := T{[0] para n €
N\ {0}. Observemos que, para cada n € N, se tiene que:

Wn+1,)\ - T;—H[O]
= T[1Y[0]]
= T\[Wasl. (2.16)

Por otro lado, Wy x =0 € [0,G]] y Wi, = T,[0] € [0, G], de donde se deduce
que Wy < Wi . Ahora supongamos que esta propiedad se cumple para n € N,
es decir W, x < W41 y probemos que se cumple para n + 1.

Wor < Whpin = DaiWoal < Ta[Wiiaa]
= Whiix < Wihian,

donde se utiliz6 las propiedades en (2.7) y (2.16). Ademads, como las funciones
Wi A pertenecen a [0, G] se sigue que:

0 < Wor < W, <G.

Asi, para cada y € S la sucesién {W,, \(y)} es creciente, acotada y por la
tanto convergente. Luego por el Lema 2.1, existe W € [0, G] tal que:

nliargo Wn,)\(y) = W(y)v ) € 57

y ademas

A

lim TA[Wool(z) = Th[W](z), 2 € S.

n—o0
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Luego, tomando limite cuando n tiende a oo, en ambos lados de (2.16), junto
con lo mostrado previamente, nos conduce a que:

W =T\[W].
Esto muestra que W es un punto fijo de T. O

Mediante la Definicién 2.1, la expresion presentada en (2.5) puede escribirse
de forma equivalente como sigue: Para todo x € 9,

Urx(W(z))

= min {U,\(G(x)), sup > puy(a)Ur(R(z,a) + W;(y))} . (217)

a€A(x) ye s

Ademas, utilizando que G estd acotada, la inclusién W5 € [0, G] v el Supuesto
1.1 implican que existe una politica f* € [F tal que, para todo z € S,

> Pay(fT(@)UA(R(, f7(2)) + W3 (y))

yes

= sup
a€A(x)

> pey(a)Ur(R(x,a) + W;(y))] . (2.18)

yeS

Asimismo, observando que W3 > 0, el Supuesto 2.1(i7) y (2.17) implican que
Ux(Wi(2)) = Ux(G(2)) = Ux(0), y entonces

Wi(z) = 0= G(2). (2.19)

Las estrategias para los jugadores I y II que conforman un equilibrio de Nash
se definen utilizando el punto fijo W, para ello definimos el subconjunto S*
del espacio de estados como sigue

S*i={x eS| Wi(z)=G(z)}, (2.20)
y sea 7* el tiempo de alcance al conjunto S*, esto es:
" :=min{n e N| X, € S}, (2.21)

de modo que 7* es un tiempo de paro con respecto a la filtracion {F;} en (1.5),
es decir, 7" pertenece al espacio T de estrategias admisibles para el jugador
IT. A partir de este punto, cuando se aparezcan f* y 7%, se entenderd que nos
referimos a las definidas en (2.18) y (2.21) respectivamente.

Por otro lado, se tiene que bajo el Supuesto 2.1, S* # (), ya que z € S*, por
(2.19) y (2.20), y entonces

<7, (2.22)
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2.3. Equilibrio de Nash

En el marco determinado por los Supuestos 1.1 y 2.1, se demostrara que
existe un equilibrio de Nash con respecto al indice de recompensa total sensible
al riesgo (1.7). Antes de presentar el resultado principal, nuestra atencién estara
centrada en algunos resultados auxiliares que se utilizaran en la demostracion
de este.

El inciso (i7) del Lema 2.2 extenderd la propiedad del inciso (7) en el Supuesto
2.1 a la clase de todas las politicas del jugador 1.

Lema 2.2. Para cada x € S, y n € N, definimos

M, (x) :=sup PI[r, > n| € [0,1]. (2.23)

TeP
Con esta notacion, las siguientes afirmaciones son vdilidas:
1) lim M,(x) =0, x .
(i) Jim M, () =0, v € §

(it) PIt, < ool =1 para cada x € S ym € P.

Demostracion. Obsérvese que la inclusion [r, > n+ 1] C [r, > n] y (2.23)
conducen a

My <M, néeN, (2.24)
y entonces
M(z) = nl1_>11010 M, (z) € ]0,1] (2.25)

existe para todo z € S; como PI[r, = 0] = 1 para todo 7 € P, por (2.2), se
sigue que M, (z) = 0 para todo n positivo, asi que

M(z) = 0. (2.26)

Dado (z,a) € K y una politica 7 € P, definimos la nueva politica 7, ; =
{Tzan} como sigue: para cada t € Ny hy € Hy, mpa.(-|ht) = ma (-2, @, he).
Luego, usando (2.2), observemos que [1, >n+ 1] = [X; #2,0<k<n+1]y
que una aplicacion de la propiedad de Markov nos da que para cada w € P,
neNy (z,a) € Kconx # 2

Prlm, >n+ 1|4y =al = Z Day(@ P”“[Tz>n]
yeS\{z}
Z px,y(&)Mn(y)

yesS\{z}

< sup > pry(a)Ma(y),
a€A(x) yeS\{z}

donde la primera desigualdad se debe a (2.23). Por lo tanto,

PIlr.>n+1]< sup > poy(a)M,(y), z# =
a€A(x) yesS\{z}
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Utilizando el teorema de convergencia dominada (Teorema A.3), junto con
(2.23) vy (2.25), se deduce que:

M(z) < sup > poy(a)M(y), z€S.
a€A() yes\{z}

Ahora, usando que M(-) estd acotado, observemos que el Supuesto 1.1
implica que existe una politica f € F tal que sup,e 4(z) 2yes\ (2} Py (@) M (y) =

A

>yes\(z} Pay(f (7)) M(y) para todo estado x, y entonces
M) < 3 pey(F@)M(y) = pay(f(2))M(y), € S;
yeS\{z} yes

ver (2.26) para la igualdad. Combinando esta relacién con la propiedad de
Markov, se deduce que para cada estado inicial z € S y n € N,

M(X,) < E[[M(X,11)| X)) = E{[M(X,11)|F), Plcs.,

por lo que {(M(X,,), F,)} es una submartingala con respecto a P/. Dado que
M (-) estéa acotado, el teorema de paro opcional da como resultado que, para
cadaxz € SyneN,

M(z) < BI[M (X, p0)] = BI[M(X,) I[r. > n]] < PI[r, >,

x

donde, recordando que M(z) = 0, la igualdad se obtuvo de (2.3), y la inclusién
en (2.25) se utilizo en el ultimo paso. Dado que:

JL%PJ[TZ >n] = Pj[TZ =o00] =0,

por el Supuesto 2.1(z), lo anterior da como resultado que M (-) = 0, estableciendo
la parte (7). Para establecer la afirmacién (i¢), combinamos (2.23) con la parte
(1) para obtener:

Pilr. =oc] = lm PI[r. > n]
< lim M,(x)
n—oo
= M(x)
= 0,VeeSyVreP.
O
El Lema 2.3 a continuaciéon muestra que el espacio de estrategias del jugador
IT puede reducirse a la clase de tiempos de paro finitos.
Lema 2.3. Para todo (w,7) € P X T,
W, m,1)=WV\(,m, T AT). (2.27)
Demostracion. Sean v € S'y (m,7) € P x T. Usando que PJ[r, < oco| = 1, por

el Lema 2.2, los Supuestos 1.1(i7) y 2.1 junto con (2.2) dan como resultado que:

en 1, <o0|, X, =2y R(X,,A,) =G(X,) =0 para n>r7,. (2.28)

Ahora, consideremos los siguientes escenarios:
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[T =00]N [T, < 0]

En este caso tenemos que 7 A 7, = 7,, y ademads se tiene que R(X;, A;) =0
parat > T AT, vy G(X;ar) =0, asi que

T7—1 TAT,—1
Z R(Xt, At> - R(Xt7 At)
t=0 t=0

G(X )T <o) =0=G(Xpr) [T AT, < .

Por lo tanto,

7—1
> R(Xy, Ay) + G(X,) [T < o0
=0
TAT,—1
= > R(Xy, A) 4+ G(Xonr )I[T AT, <00] en [r=o00,T, < o0;
=0

como PT[r, < oo] = 1, por el Lema 2.2(i7), se sigue que
T—1

E;r [I[T = OO]U)\ (Z R(Xt, At) + G(XT)I[T < OO]) ‘|
t=0

:E;r

I[r = oo]U, <TAT§1 R(X0, A) + G(Xop V[T ATs < oo]ﬂ .

=0
w7, <7 <o

En este caso 7, = 7 A 7, y mediante (2.28) se deduce que

G(X)[r < o] = G(X,) =0 = G(X..) = G(Xop ) [T AT, < 0]

asi como
T—1 T—1 TAT,—1
Z R(Xt, At) - Z R(Xt7 At) — Z R(Xt, At)7
t=0 t=0 t=0

de modo que

ET [I[TZ <7< 00] Uy (f R(X,, A) + G(X)I[r < oo]ﬂ

t=0

= E"

I, <7 < 0] Uy <T/\TZZ_1 R(Xy, Ay) + G(Xoa ) I[T AT, < oo])] :

t=0
[T < 00,7 < T
En este dltimo caso 7 = 7 A 7., por lo que
—1 TAT,—1

SOR(X, A) + GX)I[r <ool= Y R(X,, A) + G(Xonr )I[r AT < 00,

t=0 t=0
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y entonces

B

I[T < 00,7 < 1,] Uy (Tz:l R(Xy, Ay) + G(XA)I[T < OO])}

t=0

:E;r

TAT,—1
I[T < 00,7 < 1,] Uy ( > R(Xy, A) 4+ G(Xopr )T AT, < oo])] :

t=0

Yaque 1l = I[1 =oo|+ [, <7 < 00|+ [T < 00,7 < T,], las tres igualdades
de los casos anteriores implican que:

ET lUA (f R(X,, A) + G(X)[r < oo])]

t=0

_E [UA (TAfjl R(X0, A) + G(Xop V|7 ATs < oo]ﬂ .

t=0

A través de (1.2) y (1.7), esta relacién conduce a que
Ux(Vi(x;m, 7)) = Ux(Va(z; w1, 7 A T2)),

y (2.27) se deduce utilizando que U,(-) es estrictamente creciente. O

Lema 2.4. Para todone N,z € SyteT,

Ux(Wx(x))
< an EI [UA (z_j R(X;, Ay) + W5 (Xk)> IT = K]
+Ef [UA (zn: R(X,, A)) + W;(X,Hl)) Ilr>n+ 1]] . (2.29)

Demostracion. Para empezar, obsérvese que (2.17) y (2.18) implican que, para
cada estado z,

U(W3(2)) < 3 poy(f* (@) Ur(R(, £7(2)) + W3 (y)), (2.30)

yeSs

una relacion que mediante la propiedad de Markov implica que, para cada
reSyneN,

UAW3(Xa)) < BI [UA(R(Xn, An) + W3 (Xag1))| Fal (2.31)

A continuacién, la desigualdad en (2.29) se verificard mediante induccién.
Sean x € Sy 7 € T arbitrarios. Combinando la convencién (1.1) con las
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relaciones 7 > 0y P/ [Xy = x] = 1, se deduce que:
Ur(W3(2))
= Us(WX(Xo)I[r = 0] + Ux(WX (X)) [T = 1]

= U, (02—:1 R(X:, Ar) + W;(X@) I = 0] + Ux(Wx(Xo))I[r > 1]

< U, <Oz_:: R(X;, Ay) + WA*(XO)> I[r =]
+ I[r > 1B [UA(R(Xo, Ag) + W(X1))| Fol

= U, (021 R(X,, Ay) + W;(X@) I[r = 0]

t=0

+ B [UA(R(Xo, Ao) + Wi(X)I[r > 1]| Fy), Pl -c.s.

donde la desigualdad se debe a (2.31) con n = 0, y la inclusién [7 > 1] € F
se utilizé para establecer la dltima igualdad. Después de tomar esperanza con

respecto a P/”, la desigualdad anterior muestra que se cumple (2.29) para el

caso n = 0. Ahora supongamos que (2.29) es valida para n € N y observemos
que:

U, (an R(Xy, Ay) + W;(Xn+1)> It >n+1]

— U, (f} R(X,, A) + W;(Xn+1)> I =n+1]

t=0

+ U\ (ZR X, Ay) + W,\(Xn—l-l)) It >n+ 2]
=0
mientras que, utilizando (1.3),

Uy (i R(X,, A) + W;(Xnﬂ)) Ilr >n+2

t=0
= e*ZZL:o R(Xt’At)[[T >n—+ 2} Ux (W; (Xn+1>>
< e im0 R(X“At)][T >n+ Q]EQJ:* [Ux(B(Xop1, Angr) + Wi (Xop2))| Fria]

t=0

n+1
_ gy [UA (Z ROX,. A) + W;‘(XHH)) >0t 2]| an]

donde (2.31) con n+ 1 en lugar de n se utilizé para establecer la desigualdad, y
la segunda igualdad se obtuvo combinando (1.3) con el hecho de que la variable

aleatoria ¢ 2o BX0A) [[7 > n 4 2] es F,,1-medible. Estos dos tltimos hechos
implican que:

Ef lUA (i R(Xy, Ay) + W;(Xnﬂ)) Ilr>n+ 1]]

t=0

<El [ : (i (X, Ay) + WA(XnH)) I[r=n+ 1]]

+EI [UA <t§% R(X,, A) + W;(XW)) It >n+ 2]] .
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Combinando esta relacién con la hipétesis de induccién, se deduce que (2.29)
se cumple con n+ 1 en lugar de n, completando el argumento de inducciéon. [

Lema 2.5. Dado x € S, sean f € F y 1 €T tales que
Pllr<ool=1 y Vi(a; f,7) < oo.

En este caso

lim E7 l
n— oo

U, (i R(X,, At)> ‘ IIr>n+ 1]] = 0. (2.32)

k=0

Demostracion. Como G es acotada, de (1.7) y (1.8) se deduce que la condicién
Vi(z; f,7) < oo es equivalente a que:

o [e’\ Yic BXA) | € (0, 00), (2.33)

por lo que PJ[e* koo RXAD o oo] = 1. Combinando este hecho con la condi-
cion Pf[T < oo] = 1 resulta que:

(1v A X RXCANTT >n4+1] =0 cuandon — oo Pl-c.s.,

y entonces (2.33) y el teorema de convergencia dominada implican que:

E! [(1 Ve Xico RXCANT 7 > n + 1]} — 0 cuando n — oc;

Esta convergencia y la desigualdad 1V A L R > e Dokmo R(XeAr)
conducen a lim E! {e)‘zkzo RXAD T >+ 1]} =0, y la conclusién deseada
(2.32) se sigue via (1.2). O

Lema 2.6. (i) Para todox € S, t€Pyn=12,...

ET [UA Cz_é R(X:, Ar) + W;‘(X,J) I[T" > n]

> ET [ \ (zan (X4, Ag) + WA(X,LH)) I[r* =n+ 1]1

t=0

+ET lUA (ZR Xy, A) + W (Xnﬂ)) I[7* >n+ 1]]
t=0

(it) Para todon € N, x € S\ S* ym € P,

Un(W; (x Z ET lUA (ER (X;, A) + WA(X,C)> I[r* = k]]

k=1 t=0

+ET lUA Cz_é R(X,, A) + W;‘(X,J) I >n]|. (2.34)
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Demostracion. En primer lugar, observemos que Uy(W5(z)) < Ux(G(x)) cuan-
do x ¢ S*, como se deduce de (2.15) y (2.20). Por lo tanto,

Ux(W(2))
= sup > pay(a)Ux (R(x,a) + W (y))
a€A(T) yes
> 3 pey @)Uy (R(z,0) + Wi(y)), ¢ €S\S", acAd). (2.35)
yes

(1) Sea m € P arbitrario y, usando que X; ¢ S* para 0 <t < 7*, por (2.21),
lo anterior y la propiedad de Markov dan como resultado que para cada n € N
la siguiente relacién se mantiene casi seguramente con respecto a Pr:

U(WX(Xn) =2 D Py (An)Un (R(Xn, An) + W3(y))

yes

= E7 [Ux (R(Xy, An) + W (Xps1))| Fu, An] en [77 > n).

Multiplicando ambos lados de esta desigualdad por e Y RXeA) [7* > n),
la cual es una variable aleatoria F,,-medible, una aplicacién de (1.3) conduce a:

U\ Cz_é R(Xy, Ay) + W;‘(Xn)> I[T* > n]

> ET lUA (ij R(X,, Ay) + W;(Xn+1)> I[7* > n]

t=0

'/T-.n;An‘| N

A partir de este punto, la conclusion sigue tomando esperanza con respecto
a PJ y utilizando la igualdad I[7* > n] =I[7* =n+ 1]+ I[7* > n+1].

(77) El argumento es por induccion sobre n. Sean z € S\ S* y m € P arbitra-
rios, y observemos que (2.35) conduce a Uy (W5 (x)) > ET [Uy (R(Xo, Ao) + W3 (X1))];
ya que PT[t* > 0] = 1, por (2.21) se deduce que:

Ux (WX(z)) = E7 [Ux (R(Xo, Ag) + WX(X1)) I[7" = 1]]
+ E;r [U)\ (R(Xo, Ao) + W;(Xl)) ][7'* > 1]] ,
una expresion equivalente a (2.34) con n = 1. Supongamos ahora que (2.34) es
valida para algiin n € N. En este caso, los cédlculos directos que combinan la

parte (i) con la hipétesis de inducciéon muestran que (2.34) también se cumple
con n + 1 en lugar de n, completando el argumento de induccion. O]

La prueba de la verificacion de la existencia de un equilibrio de Nash es
bastante técnica y para facilitar la presentacion los pasos esenciales se han
establecido por separado en los Teoremas 2.3 y 2.4 a continuacién.

Teorema 2.3. Para cada 7 € T,

Wi() S VA f5,7). (2.36)
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Demostracion. Por el Lema 2.3, sin pérdida de generalidad 7 puede ser susti-
tuido por 7 A 7, y entonces el Supuesto 2.1 arroja que es suficiente establecer
la conclusion bajo la condicién de que 7 es un tiempo de paro finito:

Pl'lr<oo]=1, z€8. (2.37)

T

Como (2.36) ciertamente se cumple si Vi(-; f*,7) = oo, en el siguiente
argumento se supondra que:

W 1) < 0. (2.38)
Obsérvese que (1.3) y la inclusiéon Wy € [0, G] dan como resultado que:

AWE K1) 7, (Z R(Xt,At))>‘

t=0

Uy (ZR (Xt Ay) )‘
t=0

U (i: R(X:, Ar) + Wf(XnH)) ‘ =

t=0

< MGl

Noétese que, a través del Lema 2.5, (2.37) y (2.38) implican que:
lim EI [UA <Z R(X,, At)> Ir>n+ 1]] =0,
t=0
y combinando esta convergencia con la desigualdad anterior se deduce que:

B [U,\ (Z R(Xy, Ay) + W;(Xnﬂ)) It >n+ 1]] — 0 cuando n — 0.

t=0

Por otro lado, como U,(+) tiene signo constante, el teorema de convergencia
mondétona (Teorema A.4) arroja inmediatamente que:

k-1

lim Z Ef [UA (Z R(X;, Ay) + Wy (Xk)> I = k]]

- Z E U [ (go (X, A + Wi (Xk)> I[r = k:]]

_ Bl lUA (Z (Xi, Ap) + WE(X, )) I[r < 0]

< EI [UA <f R(Xy, Ay) + G(XT)> It < o9

t=0

= Ux(Va(z, f*, 7)),

donde la desigualdad se debe a la inclusion Wy € [0, G] y a la monotonia de
Ux(+) vy, utilizando (2.37), la tdltima igualdad se debe a (1.2) y (1.7). Tomando
limite cuando n tiende a oo en el lado derecho de (2.29), las dos expresiones
anteriores dan como resultado que Uy(W;(z)) < Ux(Vi(z, f*,7)) y entonces
(2.36) sigue usando que U, (+) es estrictamente creciente. O
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Teorema 2.4. Para todo x € S

Wz;m, ) < Wi(x), weP. (2.39)

Demostracion. En primer lugar, nétese que (2.22) y Lema 2.2(i7) implican que:

Pl <oo]=1, z€S8. (2.40)

Ahora, sea m € P arbitrario y supongamos que x € S*, de modo que (2.20)
y (2.21) dan como resultado que:

Wilz) =G(z) y Pl =0 =1,

mientras que (1.1) y (1.7) conducen a que V) (x;m,7°) = W;(z), y entonces
(2.39) se cumple con igualdad. A continuacién, se verificara la conclusion
deseada cuando el estado inicial  no pertenece a S*. Consideremos la siguiente
afirmacion:

Para todo x € S\ S*, y 7 € P,
n—1
lim inf £ [UA (Z R(X,, A) + W;(Xn)> I[r* > n]

t=0

>0, (2.41)

Observando que Uy(+) > 0 cuando A es positivo, queda claro que la afirmacién
anterior se cumple si A > 0. Para completar la prueba de (2.41), supongamos
que A < 0 y observemos que (1.2) y la no negatividad de R y Wy dan como
resultado que ‘U,\ (Z?:_OI R(X:, Ar) + W;‘(Xn)) I > n]‘ < I[t* > n], por
(1.2), y mediante (2.40) se deduce que como n — oo,

|

una convergencia que produce inmediatamente que (2.41) se cumple con igual-
dad cuando A es negativo. A continuacién, utilizando que la funcion U, () no
tiene cambios de signo para A fijo, el teorema de convergencia mondtona da
como resultado que:

U>\ (nzl R(Xt, At) + W:(X,J) ][T* > n]

t=0

< PIm* >n|—0,

n k—1
7}220 Z E7 [UA ( R(Xy, Ay) + WY (Xk>> I = k]]

_y EZ [UA (klR(Xt,At) + W;(X;Q) I = k:]]

*—1

— BT [UA (Tz R(X,, Ar) + W;(XT*)> I[7* < o]

donde la tltima igualdad se deriva de la combinaciéon de (1.7) y (2.40). Para
concluir, tomamos limite inferior cuando n tiende a oo en el lado derecho de
(2.34) para obtener, a través de la igualdad anterior y (2.41), que

Ux(Wx(z)) > Ux(Va(z; 7, 77)),



2.3. EQUILIBRIO DE NASH 37

una desigualdad que usando que U, estrictamente creciente conduce a que
Wi(z) > Vi(x;m, 7%), mostrando que (2.39) también es vélida para z € S\
S*. m

Por dltimo, se utilizaran los dos teoremas anteriores para establecer la
existencia de un equilibrio de Nash.

Teorema 2.5. Bajo los Supuestos 1.1 y 2.1, se cumplen las siguientes afirma-
clones:

(i) Para todo x € S,
Vala; f*,77) = W3(x).

(it) El par (f*,7%) € F x T constituye un equilibrio de Nash.

Demostracion. Por los Teoremas 2.3 y 2.4 se tiene que:

W(m, ™) < W () < W(s f57), (mT1)eP xT.

Fijando (m,7) = (f*, 7%) se deduce que W3 (-) = Vi (-; f*,7"), estableciendo
la parte (i), y combinando este hecho con las desigualdades anteriores se deduce
de la Definiciéon 1.1 que (f*,7*) es un equilibrio de Nash, completando la
prueba. O

Un hecho importante en el Teorema anterior es que dado que la funcién de
valor del juego V)\(+; f*,7") es igual a W3 (z), se tiene inmediatamente que el
operador T tiene un punto fijo tinico.

En esta seccion se presento el resultado principal considerando el supuesto
de la existencia un estado absorbente. Para una mejor presentacion de la
prueba, se utilizaron resultados auxiliares relacionados con los espacios de
estrategias de los jugadores y algunas desigualdades importantes. Ademads, los
teoremas de convergencia como el teorema de convergencia dominada y el
teorema de convergencia mondétona, junto con el teorema del paro opcional,
fueron herramientas claves que nos permitieron concluir nuestra investigacion
de manera exitosa. La funcién valor del juego fue caracterizada mediante una
ecuacion de equilibrio y se determiné un equilibrio de Nash para el juego. En
el proximo capitulo, consideramos el modelo comunicante con el objetivo de
analizar un supuesto mas general, ya que en muchos casos no siempre es posible
garantizar la existencia de un estado absorbente.
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Capitulo 3

Modelo Comunicante

En este capitulo, consideramos el modelo del juego reemplazando el Supuesto
2.1 por el supuesto de comunicaciéon (Supuesto 3.1). Se demuestra que el juego
tiene solucién, es decir, existe un equilibrio de Nash para el juego. Ademas, se
proporciona un ejemplo especifico de un juego en donde se cumplen nuestros
supuestos, y se trabaja con este ejemplo de manera numérica. Los resultados
presentados han sido publicados en el articulo [26].

Estudiar la existencia de equilibrios de Nash para juegos Markovianos con
tiempos de paro en modelos mas generales que no satisfacen el Supuesto 2.1,
es un problema interesante, ya que, al considerar un supuesto mas general, se
puede determinar si los resultados obtenidos son especificos del caso absorbente
o si son aplicables a una variedad mas amplia de situaciones. Ademaés, en
la practica, puede que en las aplicaciones no se tengan las condiciones que
garanticen la existencia de un estado absorbente. Es por ello que el analisis
posterior viene determinado por el siguiente requisito: Si el jugador II no detiene
el juego, la cadena de Markov inducida por cualquier politica estacionaria del
jugador I es comunicante, lo cual es formalizado en el siguiente supuesto.

Supuesto 3.1. (i) Para cada f € F, la cadena de Markov inducida por f
es comunicante, esto es, dados cualesquiera x,y € S, existe un entero
positivo n (n =n(x,y, f)) y estados x1,x5...,x,-1 € S tales que:

To=2,Tn =Y Y pwifl,xi(f(‘rifl)) > 07 L= 1727 ceey T

(it) Para cada f € F, existe una distribucion de probabilidad p¢(-) en S tal
que:

pr(y) =S pr(@)pey(f(z)), y€S.

TE€S

(1ii) Eziste un estado zy tal que R(zp,a) > 0 para toda a € A(zp).

El Supuesto 3.1(4) es bien conocido en la literatura sobre PDMs sensibles
al riesgo (ver, por ejemplo, [11] y [32]). En particular, en [32] se emplea para
garantizar la unicidad de las soluciones de la ecuacién de optimalidad asociada
con el criterio de costo promedio, siempre que la ecuacion admita una solucion

39
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acotada. En este trabajo, se aplica en las demostraciones de los Teoremas 3.1 y
3.2 para garantizar la finitud de los tiempos de paro.

El supuesto 3.1(7i) requiere una distribucién invariante. Esta condicién se ha
utilizado en este tipo de juegos para el caso neutral (ver [11]) para demostrar
la existencia de un equilibrio de Nash. De manera similar, en este documento
se adopta esta misma condicién con el mismo objetivo. La existencia de una
distribucion invariante de este tipo se puede garantizar mediante el teorema de
Perron-Frobenius en el caso finito o aplicando una condicién de Harris en el
caso numerable (véase [21]). Ademads, observe que la propiedad de comunicacién
del inciso (¢) implica que la distribucion invariante py de la cadena de Markov
inducida por cualquier f € FF satisface que:

pr(z) >0, z€8. (3.1)

El Supuesto 3.1(447) desempena un papel fundamental en la obtencién de los
dos resultados principales de este trabajo, como lo son la unicidad del punto
fijo del operador de equilibrio y la existencia de un equilibrio de Nash para
el juego. En el ejemplo siguiente, verificamos que los Supuestos 1.1 y 3.1 se
cumplen para un juego G en especifico.

Ejemplo 3.1. Sea N un entero positivo fijo y consideremos un juego G con
las componentes siguientes:

» Fspacio de estados S = N.

» Espacio de acciones A = {by,by,...,bx}, donde 0 < by < by < -+ <
bN<1 be+b1<1

» A(x) = A, para todo x € S.

» Las funciones de recompensa inmediata y recompensa terminal vienen
dadas por

R(z,a) :{
ar + 1

para todo x € S.

0 six > N
N o bara todo (x,a) € K y G(x) =

six < r+1’

= La ley de transicion controlada es descrita como sigue:
po(a) =1,

p.t,at—l—l(a) = a,
pm,xfl(a) =1~ a,
para todo x # 0 y a € A.

Para este juego, se observa que el Supuesto 1.1 se cumple. Por otro lado, la
funcion de transicion de una cadena de nacimiento y muerte en los enteros no
negativos es de la forma:

q: Sty=x—1
P(z,y) =4 74 siy==x
Pe Sty=z+1,
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donde qo =0, pr + @z + 7. =1, para x € N y la cadena es recurrente positiva si

Z Po- - Pz—1 < 00, (3.2)
=1 d1° "4z

Basado en la ley de transicion controlada del juego, se tiene que cada f € F
induce una cadena de nacimiento y muerte irreducible. Esto es debido al hecho
de que b; > 0 para todo i € {1,2,..., N}, asi se cumple el inciso (i) del Supuesto
3.1. Ademas, la cadena inducida también serd recurrente positiva ya que la
expresion equivalente a (3.2) para este juego es la siguiente

- JS)---flz-1) L& by \°
Z(1—f(1))"'(1—f(fiﬁ)) = bzvm:1<1—bl>

r=1
< 090,

donde la desigualdad se debe a que by < f(x) < by, Vo € S, y la convergencia
es debida a que by +by < 1. Por lo tanto, el inciso (ii) del Supuesto 3.1 también
se cumple porque una cadena de Markov irreducible y recurrente positiva tiene
una unica distribucion estacionaria.

3.1. Unicidad del punto fijo

En la Seccion 2.2 se demostré que bajo el Supuesto 1.1 se tiene que el
operador T) tiene puntos fijos. En esta seccion se prueba la unicidad del punto
fijo del operador T}, cuya prueba no depende de la existencia del equilibrio de
Nash. Esta es una de las primeras diferencias que se tienen es esta seccién con
respecto a la anterior.

El argumento de la prueba de unicidad se basa en los dos lemas auxiliares
presentados a continuacion, los cuales que se apoyan en gran medida en el
Supuesto 3.1.

Lema 3.1. (i) Los siguientes limites ezisten:

Wy, = lim T0[0], Wy, := lim TP[G]. (3.3)

Ademas,
(i) Wy = Tx[Wx,] y Wx, =Ty [Wy,].

(1i1) Si W5 € [0,G] es un punto fijo del operador Ty, es decir, Wy = T\[W;],
entonces
Wy, < W3 < Wy,. (3.4)

Demostracion. (i) Definimos Wy y, := 0, Wy, := Gy Wy, :==T{[0], Wy, =
T}|G] paran € N\ {0} y observemos que:

Wn-&-l,)\o = T)\[Wn’)\o], Wn+1,>\1 = T)\[Wn,)\l], n € N. (35)
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Como W(),)\O =0, Wl,)\o = T)\[O} € [[0, G]] y W07,\1 = G, Wl,)\l = T/\[G] € [[O, Gﬂ
se deduce que Wy, < Wiy, ¥y Wia, < W, , entonces combinando esto con
un argumento de induccién y la propiedad (2.7) produce inmediatamente que:

0 S WTL,AO S Wn+1,)\0 S G y 0 S WTL—‘,—I,)\l S Wn,)q S G; nc N7

donde las desigualdades extremas se deben a que las funciones W, n, y Wy .z,
pertenecen a [0, G] para todo n € N. De ello se deduce que las sucesiones
{Wano (W) bnen ¥ {Whr (¥) bnen son mondtonas y acotadas, de modo que:

Im TY[0)(y) == Wy (y) v lm TY[G)(y) == Wy, (y)
existen para todo y € S.

(77) El Teorema 2.1 permite afirmar que:

W)\oa Wy, € [[0, G]] (36)
y ademas
dim Ty[Wo, (@) = TAWa,(2) g lim Ti[Way](z) = Th[Wh,](2),

para todo x € S. Asi, tomando limite cuando n tiende a oo en ambos lados
de las igualdades en (3.5), junto con lo anterior se tiene que Wy, = T\[W,,] ¥
Wy, = T\[Wy,], mostrando que Wy, y W), son puntos fijos del operador T).

(i71) Sea W5 € [0, G] tal que W3 = Ty\[Wy] y observe que:
Wy =13[Wy], neN.

Combinando las desigualdades 0 < W} < G con la propiedad (2.7) del
operador T}, resulta que T7[0] < T{[Wy] < TY[G] para todo n € N, una
relacién que a través de lo observado anteriormente y (3.3) conduce a Wy, <
Wi < Wy,. O

Observacién 3.1. Notemos que si existe & € S tal que W, (%) = G(2),
entonces por (3.6) y (3.4) se tiene que Wy, (%) = Wy, (2) = G().

En el Lema 3.1 hemos caracterizado a los puntos fijos del operador T a
través de (3.4). Con lo que para probar la unicidad bastaria con mostrar que
Wy, > Wy,. Por otro lado, bajo el supuesto absorbente tenfamos que S* # (),
ya que z € S*. Al eliminar este supuesto no podemos garantizar que esta
condicién se cumpla. Sin embargo, en el siguiente resultado se demuestra que
con el supuesto de comunicacion también se tiene S* es distinto de vacio.

Lema 3.2. Bajo los Supuestos 1.1 y 3.1, se tiene que S* # ().

Demostracion. El argumento de la prueba es por contradiccién. Asi, suponga-
mos que S* = (), de modo que G(x) # W;(x) = Th[W;](z) para todo z € S.
En este caso la igualdad

Ux(WX(x)) = sup | pey(@)Un(R(z,a) + WS (y))
a€A(z) |yes

= D Pay(f7 (@) Un(R(z, f(2)) + W (1)),

yeS



3.1. UNICIDAD DEL PUNTO FIJO 43

es siempre valida por (2.5) y (2.18). Esta ltima expresién la podemos reescribir
como:

Ux(Wx(z) — R(z =D Pay (" (@) UA(WS (y)), (3.7)

yeSs

utilizando (1.3). Luego, como la funcién Uy(-) es estrictamente creciente y R
no negativa, se tiene que:

Ux(Wx(x)) =2 Ux(Wx(z) — R(z, f*(x))),
lo que nos conduce a la siguiente desigualdad:

Ux( ) Z D pay(f7 (@) UN(WR (1))

yes

De la desigualdad anterior obtenemos la siguiente expresion:

Un(Wx(x) Zspmy 2))Ur(W5 (), (3.8)
donde
pry ) U\Wx(y)) — Ux(Wx(z)) <0, € S.
yes

El Supuesto 3.1 (i¢) nos garantiza la existencia de ps«(-), la distribucién
invariante de la cadena de Markov inducida por f* y se sigue que:

g (@) [UNW(2) +0(x)] = D ppela [pry z))Ur(W5 (y ))]

= Z[pr* )Py (f ())1 Ux(Wx(y))
yeS LzeS
= Zsﬂf* UNWX(Y)),

de donde se obtiene que:

> ppe(x)d(x) =0.

zeSsS

Como 6(+) < 0, esta ultima igualdad y (3.1) dan como resultado que §(-) = 0,
por lo que (3.7) y (3.8) implican que:

Ux(WX(z) = Rz, f*(x))) = Ux(WX(x)).

Usando que U,(+) es estrictamente creciente se tiene que R(z, f*(x)) =0
para todo x € S, en contradiccién con el Supuesto 3.1(iii). O]

Una vez demostrados los dos lemas anteriores, ahora presentamos el resultado
de unicidad de W7.
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Teorema 3.1. Bajo los Supuestos 1.1 y 3.1, se tiene que existe un unico punto
fijo del operador Ty, esto es, existe una unica funcion W5 € [0, G] que satisface
que:

W5 =TW;]. (3.9)

Demostracion. Sean Wy, y W), los puntos fijos del operador T definidos en
(3.3). Por demostrar tenemos que

Wy, > Wi, (3.10)

Sea x € S, entonces se tiene que:

Ur(W),())
= Ux(Tx [Wh,] (2))

:min{UA(G(x)), sup | Y Pey(a)Ur(R(z,a) + Wy (y)) }

a€A(z) | yes

< min {U,\(G(m)), sup pr,y(a)U,\(R(x, a) + Wy, (v)) }

a€A(x) LyeS

+ sup
acA(x)

M@ N g (@) UN(Wiy (y ))_UA(W/\1(y))|]

yeSs

= U\(T5 [W,] (z)) + sup

acA(x)

ARED S (@) Us(Way (1)) _UA(WA1(y))|]

yes

S UA(WM ($)) + el/\lHR” sup [Z pa:y |U/\ W)\g( )) - U/\(W)\1(y))|] .

acA(x) yeS

~ Como Ux(W,) —Ux(W),) estd acotada, del Supuesto 1,1 se deduce que existe
f € F tal que:

Zspa:y )| Ux(Wio (y)) — Ux(Wi, (y))]
= sup [mey NUA(Wo(v)) —UA(WM(?J)H] , TES,
a€A(z) | yes
de modo que:
Un(Wiy () — Un(Wi, () < eMIFES™ o (F(@) UMW, () — Un(Wa, (9)).
yes

Mientras que la desigualdad
Us(Wi, () = Ux(Way (@) < MUY (F@))|UN(Wag () — Ux(Wa, ()],

yes

se obtiene intercambiando los roles de W, y W,\l, por lo tanto, concluimos que:

|Ux(Wxo(2)) — Ux(Wi, (2))] < elMIE ZP (@)U\(Wx,(y)) = Ux(Wi, (9))]-

yeS
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Luego, como W), < W,,, se tiene que:

Us(Wxo(z)) = Ux(Wy,(2)) = eMFEES™ p (F@)U(Wao () — Us(Wa, ()
yeS
> ngxy 2))Ux(Wio (y)) — Ux(Wi, (y))-

Esta relacion y la propiedad de Markov implican que para todo z € Sy
n € N,

Un(Wio (X)) — Ux(Wx, (Xa)) =3 oy (F(X)) U (Wi () — Us(Wa, ()

yes

= Ef [U/\(W)\O(Xn+1)) - U)\(WM (Xn+1))|‘;rn] ’

asi se tiene que {Ux(Wy,(X,)) — Ux(Wy,(X»)), Fn} es una supermartingala
con respecto a P,

Sea 7y el tiempo de alcance al conjunto S5 = {z € S | Wy, = G(2)}, es
decir
7o =min{n e N| X,, € S} },

de modo que 7y es un tiempo de paro con respecto a la filtracién {F;} definida
n (1.5), esto es, [1p = k] € F}, para todo k € N. Por otro lado, se tiene que

Pxf[TO < OO] = 1,

por el Supuesto 3.1. Luego utilizando que la funcién Uy(Wy,(+)) — Ux(Wx,(+))
esta acotada, el teorema del muestreo opcional conduce a que:

Un(Wao(2)) — Ux(Wa, (2)) 2 B [Uy(Wi (X)) — Ur(Wa, (X)), 2 € S,

Dado que X, € S5, en el evento [7y < oo], por la Observacién 3.1 se tiene
que:
Ux(Wio(z)) — Usx(Wy, () 20,z € S.

Por lo que (3.10) se obtiene usando que U, (+) es estrictamente creciente. [

3.2. Equilibrio de Nash

Ahora bajo los Supuestos 1.1 y 3.1, se demostrara que existe un equilibrio
de Nash con respecto al indice de recompensa total sensible al riesgo (1.7). En
primer lugar, tenemos que el Lema 3.2 garantiza que:

ST #0,

donde S* es el conjunto definido en (2.20).

Por otro lado, recordando que la cadena de Markov asociada a cualquier
f € F es comunicante y tiene una distribucion invariante, por el Supuesto 3.1,
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se tiene que el conjunto S* es accesible desde cualquier estado inicial bajo cada
politica estacionaria, es decir:

Pllr*<oo]=1, 2€ 8, feF, (3.11)

ademas de que:
Wz, f,7") <o0, €S8, feF. (3.12)

La propiedad (3.11) al igual como se hizo en el Lema 2.2 se puede extender
a la clase de todas las politicas del jugador I. Esto implica que se cumple la
siguiente propiedad:

Pl <oo]l=1, z€8, meP. (3.13)

Para la prueba de la existencia de un equilibrio de Nash necesitamos probar
bajo los Supuestos 1.1 y 3.1 las desigualdades presentadas en los Teoremas 2.3 y
2.4. La desigualdad (2.39) del Teorema 2.4 es vélida en este caso debido a (3.13).
Para probar la desigualdad (2.36), tomamos x € S arbitrario y consideremos
las dos siguientes posibilidades para el par (z, 7):

(i) PI'[r<oc]=1,2€ 8.
Para este caso la conclusién ya fue probada previamente.
(ii) P/ [r=00]>0,2€S.

Sea el estado zp como en el Supuesto 3.1(ii7) y observemos que la propiedad
de comunicacién da como resultado que:

Pl X, =z io0]=1,

donde i.0. significa infinitamente a menudo. Ahora, dado que R es no negativa
y que R (29, f*(20)) > 0, se deduce que:

Pl lz R(X,, A,) = oo] =1,
n=0

y entonces, como el evento [T = oo| tiene probabilidad positiva, se tiene que:

Voo 177) = Liog (1 [ me o))

log (Ef* {ek(( T R(Xt,A)+G(X7) ) T <ool+3°5% R(Xt,At)I[T—oo])D

por lo que la desigualdad en (2.36) también se cumple en este caso.

Se enuncia a continuacién el resultado correspondiente al caso comunicante
y la prueba de la igualdad de la funcién valor del juego con el punto fijo es
independiente de la existencia de un equilibrio de Nash. Otra caracteristica que
distingue los resultados de esta seccién con respecto a la anterior.
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Teorema 3.2. Bajo los Supuestos 1.1 y 3.1, se cumplen las siguientes afirma-
clones:

(i) Para todo x € S,
Vala; f5,77) = Wi(x).

(17) El par (f*,7°) € F x T constituye un equilibrio de Nash.

Demostracion. (i) Sea x € S*, entonces (3.11), (2.20) y (2.21) dan como
resultado que:

Wi(z)=G(x) y Pl[r=01=1,
mientras que (1.1) y (1.7) conducen a que Vy(z; f*,7*) = W(x). Ahora se
probard que la siguiente igualdad se cumple para todon € N\{0} y x € S\{S*}:

Ux(W5(z)) = kz:jl EI lUA (l:i: R(Xy, Ay) + W;(Xk)> I[t* = k]]
+ Ef [UA (S R(X;, Ay) + W;(Xn)> I >n]|.

t=0

(3.14)

El argumento es por inducciéon sobre n. En primer lugar, observemos que
Ux(Wi(z)) < Ux(G(x)) cuando = ¢ S*, por (3.9) y (2.20), y entonces se cumple
que:

U\(Wi(x)) = sup > puy(a)Ux(R(z,a) + Wi(y))

a€A(T) yes

= N ey (f*(2))Un (R(z, f*(2)) + W5 (y))

yeSs

= EI[ULN(R(Xo, Aog) + W5 (X1))], z€S\S* (3.15)

Como PI"[t* > 0] = 1, por (2.21), se sigue que:
Un(W3(2)) = EL [Ux (R(Xo, Ag) + W3 (X1)) I[r* = 1]]
+ BT [Uy (R(Xo, Ao) + WX ) T[T > 1]].
una expresion que es equivalente a (3.14) con n = 1. Por otro lado, usando
que X; ¢ S* para 0 <t < 7%, por (2.21), la igualdad en (3.15) y la propiedad

de Markov dan como resultado que para cada n € N la siguiente relacion se
cumple casi seguramente con respecto a P :

U\(Wi (X)) = EL7 [Uy (R(Xn, Ay) + Wi (Xi1))| Fy An] en [7% > n).

Multiplicando ambos lados de esta desigualdad por e* 2y R(XeAd [7* > n),
la cual es una variable aleatoria JF,-medible, una aplicacién de (1.3) nos lleva a
que:

U)\ (nzl R(Xt, At) + W;(Xn)> I[T* > TL]

t=0

= Ef [UA <an R(Xy, Ay) + W;‘(Xn+1)> I[T* > n]

t=0

Fo, An] :
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Ahora tomando esperanza con respecto a P{" y utilizando la igualdad I[7* >
n] = I[t" =n+ 1]+ I[7* > n + 1] se tiene que:

EI [UA (S R(Xy, Ay) + W;(Xn)) I[7* > n]

t=0

=E/ [ A(Zn:R (X, Ar) +WA(Xn+1)> ][T*:n—i—l]}

t=0

+ B [UA (Z R(X;, Ay) + W;(Xnﬂ)) I >n+ 1]] :

t=0

Luego, combinando esta igualdad con la hipdtesis de induccion, se sigue que
(3.14) es valida con n + 1 en lugar de n. Ademads, usando que U, () tiene signo
constante, el teorema de convergencia monétona da como resultado que:

lim Z Ef [UA CzéR (X, Ap) + W5 (Xk)> I = k]]

— ;Eg{f* [UA (Sjl R(Xy, Ay) + W;(Xk)> I = k}]

t=0

_ gl [UA (Zl R(X,, A)) + W;(XT*)> I < o]

t=0

= Ux(Va(z; f,77)),

donde la dltima igualdad se deriva de la combinacién de (1.7) y (3.11). También
se tiene que a través del Lema 2.5, (3.11) y (3.12) implican que:

lim EI [
n—oo

U, (fj R(X,. Ag) | I >n+ 1]] ~0.

k=0

Al tomar el limite cuando n tiende a +o00 en el lado derecho de (3.14), las
dos tltimas convergencias implican que U)(W;(x)) = Ux(Vi(z; f*,7%)), una
igualdad que usando que U, estrictamente creciente conduce a que Wi (z) =
Vi(z; f*,7%), con x € S\ {S*}.

(1) Por las desigualdades (2.36) y (2.39), las cuales se cumplen bajo el modelo
comunicante que estamos considerando, se tiene que:

V)\(';’/RT*) S W)T() S V)\(';f*aT)> (W,T) € P X T7

y combinando esto con la parte (i) se deduce de la Definicién 1.1 que (f*, 7*)
es un equilibrio de Nash, completando la prueba. O

Para complementar la parte tedrica, en la siguiente secciéon presentamos
un ejemplo numérico que ilustra un método para identificar el punto fijo del
operador T) y, posteriormente, la estrategia que constituye un equilibrio de
Nash.
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3.3. Un ejemplo numérico

Consideramos el Ejemplo 3.1 e introducimos el Algoritmo 1, que describe
los pasos para calcular el punto fijo Wy. El algoritmo especifica cudles son
los datos de entrada necesarios para su ejecucion y detalla los elementos que
genera como salida.

Algoritmo 1 Método para encontrar el equilibrio de Nash en el Ejemplo 3.1.

Requiere: A\ # 0, {by,bs,...,bn}, S = {1,2,...,§}, with S € N, G(x),
R(z,a), €.
Asegura: Iter, Wy, f*, S*.

LW+ O, W<«1,s< 0 ( donde O y 1 representan matrices de ceros y de
unos, respectivamente)

2: Tter « 0, norm « || — W/||, m « 0.
3: while norm > € do

4: for(=1: N do

5: s(l) = Ux(R(0,1) + W(1)).

6: end for

7 m = min{U,(G(0)), max(s)}.

8 W(0) = log(m/sign(\))/A.

9: fork=1:5—1do

10: for(=1: N do

11: s(l) = b(1)-Ux(R(k, ))+W (k+1))+(1=0b(1))-Ur(R(k, 1)+ W (k—1))
12: end for

13: m = min{U,(G(k)), méx(s)}.
14: W (k) = log(m/sign(\))/A.

15: end for

16: for{=1: N do

17: s(l) = Ux(R(S,1) + W(S — 1)).
18: end for

190 m = min{U,(G(S)), mix(s)}.

200 W(S) = log(m/sign(\))/\.

21: norm = ||V — W|.

22 W W.

23: Iter < Iter+1.

24: end while

25 Wi =W.

26: Calcula f* y S* de acuerdo con (2.18) y (2.20), respectivamente.

Implementamos el Algoritmo 1 en MATLAB, y los resultados numéricos
del experimento se presentan en las Tablas 3.1 y 3.2. Es evidente que tanto el
nimero de iteraciones como el tamano del conjunto S* aumentan a medida
que N crece. Ademas, se observa una discrepancia notable entre el nimero de
iteraciones para los valores positivos y negativos de A, y que el tamano del
conjunto S* varia significativamente al cambiar los valores de A (ver Figura
3.1). Los resultados permanecen sin cambios a medida que los valores de S



50 CAPITULO 3. MODELO COMUNICANTE

aumentan, manteniendo fijos N y A\. En cuanto a la estrategia f*, se observd
que, para valores positivos de A\, f* generalmente adopta dos valores: el minimo
y el maximo del espacio de acciones. En contraste, para valores negativos de A,
f* se mantiene practicamente constante, asumiendo el valor minimo del espacio
de acciones.

Tabla 3.1: Desempeno numérico del Algoritmo 1 para diferentes valores de N,
manteniendo fijos S'y A.

N 2 3 4 5 6
00000 Iter 372 601 665 831 974

IS 10 14 22 29 27
$=100000 Iter 13 19 19 29 73
A=-1 1S 4 8 10 13 19

Tabla 3.2: Desempeno numérico del Algoritmo 1 para diferentes valores de A,
manteniendo fijos S y N.

X 1/2 -1/2 3/2 -3/2 5/2 -5/2
5$=100000 Iter 780 775 816 11 881 9
N=4 S 10 10 28 5 54 7
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Figura 3.1: Resultados numéricos de la implementacién del Algoritmo 1 del
Ejemplo 3.1.
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Resumen, Conclusiones y
Trabajo Futuro

En este trabajo de tesis, se estudié una clase de juegos de suma cero en
tiempo discreto, espacio de estados numerable, transiciones Markovianas y
recompensas acotadas, mediante el criterio de recompensa total sensible al
riesgo. La sensibilidad al riesgo es una caracteristica muy importante que debe
tomarse en cuenta en la toma de decisiones. Por lo que es de vital importancia
extender los trabajos que se tienen en el caso neutral al caso sensible.

Estudiamos el juego G considerando dos modelos diferentes como lo fueron el
modelo absorbente y el modelo comunicante. Una vez explicada la dindmica del
juego, lo siguiente fue enfocarse en el operador de equilibrio. Vimos cudles eran
sus caracteristicas importantes y nuestro primer resultado fue demostrar que
este operador tiene puntos fijos. Esta caracteristica es primordial ya que a partir
de este punto fijo definimos las estrategias de los jugadores que constituyen un
equilibrio de Nash. Lo siguiente fue utilizar las desigualdades de los Teoremas
2.3 v 2.4, para en base a éllas, enfocar la prueba de la existencia del equilibrio
de Nash.

En el modelo absorbente, la prueba de la existencia del equilibrio de Nash
permitié demostrar de inmediato la igualdad de la funcion valor con el punto fijo,
asi como la unicidad de dicho punto fijo. En el caso del modelo comunicante,
se caracterizaron a los puntos fijos del operador T) y se demostrdé que S*
es distinto del conjunto vacio, una propiedad que se habia perdido al no
considerar el supuesto de la existencia de un estado absorbente. Ademas, se
demostro la unicidad sin depender de la igualdad entre la funciéon valor y Wy,
cuya demostracion también es independiente de la existencia de un equilibrio
de Nash. Se presenté un ejemplo especifico de un juego que cumple con los
supuestos y que, ademas, se analizé6 numéricamente. Por lo tanto, en ambos
modelos se obtuvieron los resultados esperados y en el modelo comunicante
las demostraciones difieren ligeramente en su enfoque con respecto al modelo
absorbente.

Cuando un modelo cuenta con méas de un estado absorbente, el espacio
de estados se divide en estados transitorios y recurrentes, lo que resulta en
multiples clases de comunicacion. Este caso fue analizado en el contexto de los
PDMs [1], donde el tomador de decisiones es averso al riesgo y el desempeno
de una politica de control se mide mediante el criterio del costo promedio a
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largo plazo. En [1] no se imponen condiciones de comunicacién a la ley de
transicién, por lo que la funciéon de valor 6ptimo puede no ser constante. Para
abordar esta situacion, se introduce el concepto de sistema de optimalidad, que
extiende la nocién de ecuacién de optimalidad y permite caracterizar la funcion
de valor 6ptimo a través de un sistema de ecuaciones. Considerar este caso en
el contexto de los Markov stopping games resulta un tema interesante, y podria
explorarse en trabajos futuros.

Es importante sefialar que una extension a casos mas generales con respecto
al espacio de estados es una tarea complicada, ya que como se sabe a partir de la
literatura sobre PDMs sensibles al riesgo, no siempre es posible. Un ejemplo de
esto se puede ilustrar en la siguiente situacion. En 1972 [22], Howard y Matheson
demostraron que el costo promedio sensible al riesgo 6ptimo se determina
mediante una ecuaciéon de optimalidad en modelos finitos y comunicantes.
Cuarenta anos después, se demostré en [14] que el resultado pionero de Howard
y Matheson no se puede extender al caso de un espacio de estados numerable.
Por lo tanto, un problema futuro interesante es investigar la extension factible
de los resultados presentados en este trabajo a espacios mas generales, como los
espacios de Borel, y considerar la opcion de incorporar posibles recompensas
no acotadas.

En el futuro, se podrian considerar otros criterios de rendimiento. Uno
de ellos seria la recompensa total descontada sensible al riesgo, que no solo
incluiria un coeficiente de sensibilidad, sino también un factor de descuento
para tener en cuenta el valor temporal de las recompensas. Este criterio ha
sido estudiado en el contexto de los PDMs [18], y en el caso de juegos, se
analiz6 en [37], donde los dos jugadores tienen la posibilidad de detener el
juego. Por otro lado, una situacién comtn que se presenta en las matematicas
aplicadas es que los datos necesarios para proponer un modelo matematico
presentan ambigiiedad, vaguedad o caracteristicas aproximadas del problema
en estudio. Una posibilidad para abordar esta situacion es utilizar la teoria
difusa. Las recompensas difusas han sido analizadas en el contexto de los PDMs,
considerando tanto espacio de estados finito [10] como numerable [16]. Este
enfoque resulta particularmente 1til en entornos reales, donde las recompensas
pueden depender de factores impredecibles o subjetivos. En este sentido, como
extension de este trabajo, se espera ampliar los resultados al a&mbito difuso.



Apéndice A

Definiciones y Teoremas
Auxiliares

A.1. Definiciones

Definicién A.1. (Funcion signo [2]) La funcion signo, sgn : R — {—1,0,1} de
un numero real es una funcion por partes que se define de la siguiente manera:

-1, =<0,
sgn(z) = 0, x=0,
1, z>0.

A.2. Teoremas

Teorema A.l. (Desigualdad de Jensen [/]) Sea g una funcion convera definida
en un intervalo abierto I de nimeros reales, el cual puede ser acotado o no.
Sea X una variable aleatoria definida en el espacio de probabilidad (2, F, P),
tal que X (w) € I, para todo w. Supongamos que E[X]| es finita. St H es una
sub o-dlgebra de F, entonces E[g(X)|H] > g(E[X|H]) c.s.. En particular,
Elg(X)] > g(E[X]).

Teorema A.2. (Teorema de Dini [24]) Si la sucesion de funciones continuas
fn : X = R converge mondtonamente a la funcion continua f : X — R en el
conjunto compacto X, entonces la convergencia es uniforme.

Teorema A.3. (Teorema de convergencia dominada [31]) Sea X1, Xa, ... una
sucesion de variables aleatorias tales que lim,, .. X, = X casi sequramente,
y para cada valor de n, |X,| <Y, para alguna variable Y con E[|Y|] < oco.

Entonces,
lim F[X,] = E| li_>m X,

n—oo
Teorema A.4. (Teorema de convergencia mondtona [31]) Sea X1, Xa, ... una
sucesion de variables aleatorias tales que 0 < X7 < Xo < -+ ylim, .o X, = X

casi sequramente. Entonces,

lim F[X,] = E[lim X,].

n—oo n—0o0
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