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Presenta: M.C. Jaicer Jonás López Rivero.
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generación y del Laboratorio de Probabilidad y Estad́ıstica.

A los profesores de la FCFM, quienes me brindaron una formación de
excelencia, especialmente al Dr. Hugo Cruz, mi asesor, por su orientación,
apoyo y dedicación a lo largo de este proceso.

A los integrantes de mi jurado de tesis, por sus valiosas observaciones y
contribuciones, las cuales fueron fundamentales para enriquecer mi trabajo.

Al CONAHCYT, por su valioso apoyo económico, y al personal de la FCFM,
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Introducción

La presente tesis se centra en una clase de juegos de suma cero a tiempo
discreto, espacio de estados numerable, transiciones Markovianas y recompensas
acotadas. En estos juegos, participan dos jugadores, denominados Jugador I y
Jugador II, quienes observan el estado actual del sistema y tienen la capacidad
de influir en su evolución mediante la aplicación de acciones en cada época de
decisión. El proceso de toma de decisiones es secuencial, comenzando con el
Jugador II, quien puede elegir entre detener el juego o permitir que el sistema
continúe su evolución. Si decide detenerlo, deberá pagar una recompensa
terminal al Jugador I. Si opta por continuar, el Jugador I selecciona una
acción, lo que genera dos efectos: primero, la cadena de Markov transita al
siguiente estado conforme a la ley de transición; segundo, el Jugador II paga
una recompensa inmediata al Jugador I. El proceso anterior se repite en cada
nuevo estado al que el juego avanza. A este tipo de juegos se le conoce como
Markov stopping games, y en español se pueden emplear los términos juegos
markovianos con tiempos de paro o juegos de detención de Markov.

Por otro lado, se asume que el jugador I tiene un coeficiente de sensibilidad
al riesgo constante λ ̸= 0. En consecuencia, el jugador I evalúa dos recompensas
aleatorias diferentes utilizando el valor esperado de una función de utilidad
exponencial con este coeficiente de sensibilidad λ. El desempeño de un par
de estrategias se evaluará mediante el criterio de recompensa total sensible al
riesgo. Aśı, el objetivo del Jugador I es maximizar su recompensa total sensible
al riesgo, mientras que el objetivo del Jugador II es minimizar dicha recompensa
para el Jugador I. Esta situación implica que el juego sea de suma cero.

El objetivo general de nuestra investigación es determinar bajo qué condicio-
nes sobre el modelo de control se garantiza la existencia de una solución para
el juego. Además, se plantean los siguientes objetivos espećıficos:

Caracterizar la función de valor del juego, v́ıa una ecuación de equilibrio.

Determinar un equilibrio de Nash.

Para alcanzar estos objetivos, se supone que el espacio de acciones admisibles
para el Jugador I es un espacio métrico compacto en cada estado, y que
tanto la recompensa inmediata como las transiciones del sistema dependen de
manera continua de la acción aplicada (véase Supuesto 1.1). Esta suposición es
esencial para garantizar la existencia de poĺıticas óptimas, como se explicará
en detalle más adelante. Además, se han considerado dos supuestos distintos
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para el análisis del modelo: uno basado en un modelo absorbente y otro en un
modelo comunicante. En el modelo absorbente, se considera la existencia de un
estado absorbente, que se denotará por z, y que presenta dos caracteŕısticas
principales: (i) tanto la recompensa inmediata como la recompensa terminal
son nulas en este estado, y (ii) z es accesible desde cualquier estado inicial bajo
cualquier poĺıtica estacionaria (véase Supuesto 2.1). Un problema interesante
es explorar modelos en los que no exista algún estado absorbente. Por ello,
también se consideró el modelo de comunicación. En este modelo, se supone que
si el Jugador II decide no detener el juego, la cadena de Markov inducida por
cualquier poĺıtica estacionaria adoptada por el Jugador I exhibe propiedades
de comunicación y posee una distribución estacionaria (véase Supuesto 3.1).

En general, los procesos de decisión de Markov (PDMs) pueden verse como
juegos estocásticos con un solo jugador. Se dispone de una teoŕıa bien esta-
blecida de cadenas de Markov controladas [30, 19, 20], y se pueden encontrar
aplicaciones, por ejemplo, en el libro de Boucherie y Van Dijk [9], donde se
abordan temas relacionados con la detección y tratamiento de enfermedades,
transporte, producción, comunicaciones y modelado financiero. En [6] se anali-
zan aplicaciones en el ámbito financiero, mientras que en [7] se estudian criterios
sensibles al riesgo.

En el contexto sensible al riesgo, la evaluación de la eficiencia de las poĺıticas
se realiza a través de la esperanza de una función de utilidad en lugar de
limitarse a la esperanza de una recompensa acumulada. Este enfoque permite
tener en cuenta las preferencias individuales del tomador de decisiones respecto
al riesgo, ofreciendo aśı una visión más completa sobre la toma de decisiones
en situaciones inciertas. Este concepto se fundamenta en el trabajo de Von
Neumann y Morgenstern [35], donde se formalizó la teoŕıa de la utilidad. Este
libro es de gran importancia, ya que sentó las bases para la toma de decisiones
en situaciones de incertidumbre y riesgo, introduciendo un marco teórico que ha
influido profundamente en la economı́a, la teoŕıa de juegos y otras disciplinas.

Por otro lado, en un contexto neutral al riesgo, el juego descrito anteriormente,
con un espacio de estados finito y utilizando el criterio de recompensa total,
fue analizado en [27]. Para el caso con espacio de estados numerable, se realizó
un análisis en [15], considerando la existencia de un estado absorbente el
cual es accesible desde cualquier otro estado. Las conclusiones obtenidas en
estos dos art́ıculos son extendidas en [11], donde se asume que bajo cualquier
estrategia estacionaria del jugador I, el espacio de estados numerable es una
clase recurrente positiva. Además, el caso descontado fue analizado en [12] y
en [13].

La teoŕıa de juegos tiene aplicaciones relevantes en diversas áreas, como se
explora en [3, 5, 17, 23]. En cuanto a la teoŕıa de los juegos Markovianos, sus
fundamentos se encuentran en los art́ıculos de Shapley [33] y Zachrisson [36]. El
interés en estos juegos surge de diversas fuentes, siendo especialmente notable en
el campo de las matemáticas financieras. En este contexto, muchos problemas
se reducen a identificar el momento óptimo para ejecutar un contrato y la
mejor estrategia para gestionar el riesgo asociado a la contraparte. Además, la
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teoŕıa de tiempos de paro desempeña un papel crucial en el análisis estocástico.
Una descripción exhaustiva de esta teoŕıa se puede encontrar en los trabajos
de Shiryaev [34] y en Peskir y Shiryaev [29]. Las aplicaciones de esta teoŕıa en
las matemáticas financieras están bien documentadas en [8, 28]. En el presente
trabajo, se integran las ideas fundamentales de paro óptimo con los PDMs para
analizar el juego descrito anteriormente.

El enfoque de este trabajo se fundamenta en el operador Tλ (ver Definición
2.1). Este operador se define sobre un espacio de funciones apropiado, donde el
principio de programación dinámica, el problema de paro óptimo y la función
de utilidad empleada juegan un papel fundamental en su formulación. Uno de
nuestros resultados iniciales es demostrar que este operador tiene puntos fijos.
Este punto será crucial para definir las estrategias de los jugadores I y II, las
cuales darán lugar a un equilibrio de Nash. Nuestro principal aporte en este
trabajo es extender los resultados del caso neutral al contexto sensible al riesgo.
Se consideran los dos modelos previamente mencionados, y los resultados más
relevantes se presentan en los Teoremas 2.5 y 3.2. Para el modelo comunicante,
ofrecemos un ejemplo ilustrativo que cumple con nuestros supuestos y, a partir
de este caso particular, presentamos un método numérico para encontrar el
punto fijo del operador Tλ y, posteriormente, la estrategia que constituye un
equilibrio de Nash. Como resultado de nuestra investigación, se publicó el
art́ıculo [25] en 2022 y, más recientemente, el art́ıculo [26] en 2024.

Este trabajo de tesis está organizado en tres caṕıtulos. En el Caṕıtulo 1 se
presenta inicialmente la notación básica utilizada, aśı como una descripción
detallada del modelo de decisión y sus componentes. Se analizan las estrategias
de decisión admisibles para los jugadores, la sensibilidad al riesgo, la certeza
equivalente, el criterio de rendimiento y la definición de un equilibrio de Nash.
En el Caṕıtulo 2 se analiza el modelo absorbente. Se presenta el operador Tλ y
se destacan las caracteŕısticas relevantes del estado absorbente z en relación con
W ∗

λ , el punto fijo de este operador. Aqúı se incluyen también algunos resultados
auxiliares que son fundamentales para demostrar la existencia de un equilibrio
de Nash. En el Caṕıtulo 3 se aborda el modelo comunicante, donde lo primero
que se analizó fueron los resultados que se pierden al no considerar el estado
absorbente. La propiedad de comunicación permite establecer directamente la
unicidad de W ∗

λ . Además, el resultado principal de esta sección es la existencia
de un equilibrio de Nash, aśı como la igualdad entre la función valor del juego
y W ∗

λ . También se presenta un ejemplo espećıfico de un juego que cumple
con todos los supuestos considerados, el cual se analiza numéricamente para
complementar la parte teórica. Finalmente, se presentan las conclusiones del
trabajo y se plantean problemas futuros. Además, se incluye un apéndice que
recopila los teoremas y definiciones utilizadas, seguido de la bibliograf́ıa.
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Caṕıtulo 1

Juegos Markovianos Sensibles al
Riesgo

En este caṕıtulo se ofrece una descripción detallada del modelo de control
analizado. Se especifican cada una de las componentes del modelo, aśı como el
espacio de estrategias de los jugadores I y II. También se detalla el criterio de
rendimiento utilizado, junto con la definición del equilibrio de Nash.

Antes de avanzar, resulta conveniente introducir la notación básica que se
empleará a lo largo del texto. Dado un espacio topológico X, el espacio de
Banach C(X) consta de todas las funciones continuas C : X → R cuya norma
∥C∥ es finita, donde ∥C∥ := supk∈X |C(k)|, mientras que N := {0, 1, 2, . . .}. La
función indicadora de un evento A se denota por I[A]. Además, incluso sin
mención expĺıcita, todas las relaciones que involucran esperanzas condicionales
son válidas con probabilidad 1 con respecto a la medida de probabilidad
subyacente. Por otro lado, a ∧ b y a ∨ b se usan como notaciones infijas para
mı́n{a, b} y máx{a, b}, respectivamente, donde a, b ∈ R. El mı́nimo del conjunto
vaćıo es +∞ y, finalmente, se utilizará la siguiente convención relativa a las
sumatorias:

m∑
t=n

R(Xt, At) := 0, m < n, m, n ∈ N. (1.1)

1.1. El Modelo de Decisión
A lo largo del texto, G = (S, A, {A(x), x ∈ S}, P, R, G) representa un juego

de suma cero en tiempo discreto de dos jugadores. Las componentes del juego
G son las siguientes:

S es el espacio de estados, el cual es un conjunto no vaćıo, numerable y
está dotado con la topoloǵıa discreta.

A es el espacio de acciones, el cual es un espacio de Borel, es decir, un
subconjunto de Borel de un espacio métrico completo y separable.

A(x) ⊂ A es el espacio de acciones admisibles para el jugador I en el
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estado x, mientras que:

K := {(x, a)|a ∈ A(x), x ∈ S} ⊂ S × A ,

es el correspondiente espacio de parejas estado-acción admisibles.

P = [px,y(·)]x,y ∈S es la ley de transición en S dado K, de modo que
px,y(a) ≥ 0 y ∑y∈S px,y(a) = 1 para cada (x, a) ∈ K.

R ∈ C(K) es la función de recompensa inmediata y G ∈ C(S) la función
de recompensa terminal.

El juego G se interpreta de la manera siguiente: en cada época de decisión
t ∈ N, los jugadores I y II observan el estado del sistema, denotado como
Xt = x ∈ S. En este contexto, el jugador II debe elegir entre dos acciones:
detener el sistema, pagando una recompensa terminal G(x) al jugador I, o
permitir que el sistema continúe su evolución. Si opta por esta última opción,
el jugador I, utilizando el historial de estados hasta el tiempo t y las acciones
anteriores a t, elige una acción At = a ∈ A(x). Esta intervención tiene dos
efectos: el jugador I obtiene una recompensa inmediata R(x, a) del jugador II
e, independientemente de los estados y acciones anteriores, el sistema transita
a Xt+1 = y ∈ S con probabilidad px,y(a); ésta es la propiedad de Markov del
proceso de decisión.

Una forma efectiva de obtener ejemplos particulares de Markov stopping
games es extender el problema de paro óptimo. En un problema de paro óptimo
clásico, el sistema evoluciona como una cadena de Markov no controlada, donde
un único jugador, en cada época de decisión se enfrenta a dos acciones: detener
el sistema o continuar. Para enriquecer este escenario, podemos introducir
un segundo jugador que influya en la evolución del sistema a través de sus
decisiones. Esta interacción transforma la cadena en una cadena de Markov
controlada, permitiendo que las acciones de ambos jugadores afecten el estado
del juego. Esta extensión abre nuevas posibilidades para aplicar los Markov
stopping games en diversos contextos, como la venta de activos, la resolución
del problema clásico de la secretaria, y la valoración y ejercicio de opciones
financieras, entre otros. A continuación, se presenta un ejemplo que ilustra
cómo obtener esta extensión en el contexto de la venta de un activo.

Ejemplo 1.1. Consideremos un inversor (Jugador I) que posee una propiedad
o activo cuyo valor espera que aumente con el tiempo, y a un futuro comprador
de dicho activo (Jugador II). En cada época de decisión, el Jugador II debe
decidir si acepta la oferta que ha recibido del jugador I y compra la propiedad, o
si rechaza esta oferta y solicita nuevas. Las acciones del Jugador I influyen en
el sistema, de manera que la nueva oferta puede ser mayor, igual o menor que
la oferta anterior. El espacio de estados representa todas las posibles ofertas
que pueden surgir durante el horizonte de toma de decisiones.

En cuanto a las funciones de recompensa, consideramos que la recompensa
terminal se define como la función identidad, reflejando aśı el valor final del
activo vendido. La recompensa inmediata se configura como una penalización
para el jugador II, ya que se asigna un valor positivo cuando la acción del
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Jugador I resulta en una disminución de la oferta, indicando que ha realizado
una propuesta mas favorable para el jugador II, y lo incentiva a detener y
comprar el activo. Por otro lado, la recompensa es cero si la acción del jugador
I lleva a que la nueva oferta sea igual o mayor que la oferta actual.

Este ejemplo ilustra claramente la extensión mencionada anteriormente. Por
otro lado, en el contexto del modelo de juego, asumimos el siguiente supuesto
a lo largo de este trabajo.

Supuesto 1.1. (i) Para cada x ∈ S, A(x) es un subconjunto compacto de
A.

(ii) Para cada x, y ∈ S los mapeos a 7→ R(x, a) y a 7→ px,y(a) son continuos
en a ∈ A(x).

(iii) Para cada x ∈ S, a ∈ A(x), G(x) ≥ 0 y R(x, a) ≥ 0.

Este supuesto, ampliamente utilizado en los PDMs, nos permitirá demostrar la
existencia de puntos fijos del operador de equilibrio Tλ y garantizar la existencia
de la poĺıtica del jugador I, la cual se utilizará para probar la existencia del
equilibrio de Nash.

Dado que este trabajo busca extender el juego al contexto de la sensibilidad
al riesgo, es fundamental introducir conceptos clave en este ámbito, como la
sensibilidad al riesgo y la certeza equivalente. Estos conceptos se desarrollarán
en la sección siguiente.

1.2. Sensibilidad al Riesgo y la Certeza Equi-
valente

La sensibilidad al riesgo es un factor crucial en la toma de decisiones, ya que
influye en cómo los individuos evalúan y responden a situaciones inciertas. Al
considerar el nivel de aversión o propensión al riesgo, los tomadores de decisiones
pueden equilibrar posibles beneficios y pérdidas, optimizando aśı sus elecciones
en entornos complejos. Esta comprensión es esencial no solo en contextos
financieros, sino también en una variedad de campos, desde la economı́a hasta
la salud pública, donde las decisiones pueden tener consecuencias significativas.

La evaluación de las estrategias utilizadas por los jugadores en un contexto
neutral se fundamenta en la esperanza de la recompensa acumulada hasta que
se detiene el juego, sin tener en cuenta el riesgo asociado a la elección de dichas
estrategias. Por ejemplo, no se hace distinción entre garantizar una recompensa
nula de forma segura y arriesgarse a ganar o perder una cantidad positiva con
una probabilidad de 1

2 . Sin embargo, es evidente que, en este caso, el jugador
enfrenta un riesgo significativo, que se manifiesta claramente en la varianza del
resultado en este ejemplo.

Para evaluar el riesgo de manera adecuada, es fundamental considerar una
función de utilidad, que es una representación matemática que refleja las
preferencias de un individuo ante diferentes resultados inciertos. Esta función
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asigna un valor numérico a cada posible resultado, permitiendo aśı cuantificar
la satisfacción o el bienestar que cada uno de ellos proporciona. Al modelar
cómo una persona valora diferentes niveles de riqueza y el riesgo asociado, la
función de utilidad ayuda a entender su aversión o propensión al riesgo, lo
que resulta crucial para la toma de decisiones informadas en situaciones de
incertidumbre. Gracias al aporte de J. von Neumann y O. Morgenstern [35],
esta noción se formaliza y se convierte en una herramienta clave para comparar
y elegir entre distintas alternativas, guiando al individuo hacia la opción que
maximiza su bienestar esperado.

En este contexto, que el jugador I posea un coeficiente de sensibilidad al
riesgo constante, denotado por λ ̸= 0, implica que una recompensa aleatoria Y
es evaluada a través de la esperanza de su función de utilidad, expresada como
E[Uλ(Y )]. Para cada λ ̸= 0, la función de utilidad asociada, Uλ : R → R, se
define de la siguiente manera:

Uλ(u) := sgn(λ)eλu , u ∈ R, (1.2)

donde sgn(λ) es la función signo de λ (Definición A.1).

Es importante destacar que Uλ(·) es una función estrictamente creciente,
lo que asegura que un aumento en la recompensa conlleva un incremento
correspondiente en la utilidad. Esta función de utilidad cumple con la siguiente
propiedad:

Uλ(u + w) = eλuUλ(w), u, w ∈ R. (1.3)

Esta propiedad implica que la utilidad de una suma de recompensas puede
descomponerse de manera exponencial y se utilizará en diversas ocasiones a lo
largo del texto.

La elección de esta función de utilidad exponencial se justifica por la suposi-
ción de que el jugador I tiene un coeficiente de sensibilidad constante al riesgo.
Al ser constante, la sensibilidad riesgo no se ve afectada por el tamaño de las
recompensas, lo cual es útil en situaciones donde se quiere modelar de manera
uniforme cómo un individuo reacciona ante la incertidumbre. Además, Uλ tiene
propiedades como la (1.3) que facilitan considerablemente los cálculos en las
demostraciones y permiten reducir las expresiones algebraicas a formas más
manejables.

El signo de λ indica la actitud del jugador I frente al riesgo: si λ > 0, el
jugador I es propenso al riesgo, lo que significa que está dispuesto a asumir
riesgos a cambio de una posible mayor recompensa; en cambio, si λ < 0, el
jugador I es averso al riesgo, prefiriendo certezas a resultados inciertos. Si el
jugador I tiene la opción de elegir entre dos recompensas aleatorias Y1 y Y0,
prefiere recibir Y0 cuando se cumple la condición E[Uλ(Y0)] > E[Uλ(Y1)]. En
caso de que ambas recompensas proporcionen la misma utilidad esperada, es
decir, E[Uλ(Y0)] = E[Uλ(Y1)], el jugador I se mostrará indiferente entre Y0 y
Y1.

La certeza equivalente de una recompensa aleatoria acotada Y con respecto
a la función de utilidad Uλ se define como la constante Eλ(Y ) ∈ R ∪ {−∞,∞},
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que satisface la relación:

Uλ(Eλ(Y )) = E[Uλ(Y )],

lo que implica que el jugador I es indiferente entre recibir una recompensa
aleatoria Y o la correspondiente certeza equivalente Eλ(Y ). Obsérvese que la
certeza equivalente puede expresarse de la siguiente manera:

Eλ(Y ) = 1
λ

log(E[eλY ]). (1.4)

La certeza equivalente es crucial en la toma de decisiones porque proporciona
una forma de cuantificar la percepción del riesgo. Un individuo que prefiere la
certeza a la incertidumbre mostrará una certeza equivalente que es menor o
igual al valor esperado de la variable aleatoria Y . Este comportamiento se puede
corroborar utilizando la desigualdad de Jensen (Teorema A.1) y la propiedad
(1.4), ya que si λ < 0, se tiene que Eλ(Y ) ≤ E[Y ].

Esta preferencia destaca la importancia de la función de utilidad en la
toma de decisiones, ya que su forma determina la naturaleza de la certeza
equivalente. Funciones de utilidad cóncavas, como las que a menudo se utilizan
para representar la aversión al riesgo, resultarán en certezas equivalentes más
bajas en comparación con aquellas funciones que representan una actitud
neutral o favorable hacia el riesgo.

Antes de presentar el criterio de rendimiento que se considerará en este
trabajo, es fundamental definir el espacio de estrategias de los jugadores I y II.

1.3. Estrategias de Decisión
Para cada t ∈ N, el espacio de historias admisibles hasta el tiempo t, denotado

como Ht, se define de la siguiente manera: para t = 0, tenemos H0 := S, y
para t > 0, se establece que Ht := K × Ht−1. Un elemento genérico de Ht se
representa como ht = (x0, a0, . . . , xi, ai, . . . , xt), donde ai ∈ A(xi). Una poĺıtica
π = {πt} o estrategia de decisión para el jugador I es una sucesión especial
de kérneles estocásticos definidos en el espacio de acciones A dado Ht, donde
para cada t ∈ N y ht ∈ Ht, se tiene que πt(·|ht) es una medida de probabilidad
sobre A concentrada en A(xt), y para cada subconjunto Borel B ⊂ A el mapeo
ht → πt(B|ht), ht ∈ Ht, es Borel medible. La clase de todas las poĺıticas
constituye la familia de estrategias admisibles para el jugador I y se denota por
P .

Por otro lado, cuando el jugador I maneja el sistema mediante π, el control
At aplicado en el tiempo t pertenece a B ⊂ A con probabilidad πt(B|ht),
donde ht ∈ Ht es la historia observada del proceso hasta el tiempo t. Dados
π ∈ P y el estado inicial X0 = x, se determina de manera única una medida
de probabilidad P π

x en la σ-álgebra de Borel del espacio H := ∏∞
t=0 K, que

incluye todas las realizaciones posibles del proceso estado-acción {(Xt, At)}.
El operador esperanza correspondiente se denota por Eπ

x . A continuación,
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definimos F := ∏
x∈S A(x) y observamos que F es un espacio métrico compacto,

compuesto por todas las funciones f : S → A tales que f(x) ∈ A(x) para cada
x ∈ S. Una poĺıtica π es estacionaria si existe f ∈ F tal que la medida de
probabilidad πt(·|ht) está siempre concentrada en f(xt); en este caso, π y f se
identifican naturalmente. Con esta convención, tenemos que F ⊂ P .

Asimismo, el espacio T de estrategias del jugador II está formado por todos
los tiempos de paro τ : H→ N∪ {∞} con respecto a la filtración {Ft} definida
por:

Ft := σ(X0, A0, · · · , Xt−1, At−1, Xt), (1.5)
lo que implica que el evento [τ = t] ∈ Ft para cada t ∈ N. Intuitivamente,
esta condición significa que la decisión de parar o no al tiempo n debe basarse
únicamente en la información disponible en ese momento, sin considerar ninguna
información futura.

Una vez definidos los espacios de las estrategias de los jugadores I y II, es
momento de presentar el criterio de rendimiento sensible al riesgo utilizado en
este trabajo.

1.4. Criterio de Rendimiento
Dado el estado inicial X0 = x ∈ S, supongamos que los jugadores I y II

conducen el sistema utilizando las estrategias π ∈ P y τ ∈ T , respectivamente.
La recompensa total (aleatoria) obtenida por el jugador I hasta que el sistema
es detenido en el tiempo τ por el jugador II viene dada por:

τ−1∑
t=0

R(Xt, At) + G(Xτ )I[τ <∞], (1.6)

y la correspondiente certeza equivalente es el ı́ndice de rendimiento Vλ(x; π, τ)
asociado con el par (π, τ) ∈ P × T en el estado x ∈ S, el cual está dado por:

Vλ(x; π, τ) = 1
λ

log
(

Eπ
x

[
eλ(∑τ−1

t=0 R(Xt,At)+G(Xτ )I[τ<∞])
])

. (1.7)

Este ı́ndice de rendimiento se obtiene a través de la expresión de la certeza
equivalente (1.4), considerando la recompensa total (1.6). Dado que tanto R
como G son no negativas, se tiene que:

Vλ(x; π, τ) ≥ 0. (1.8)

Cuando el jugador II emplea la estrategia τ , el mayor valor de la certeza
equivalente que puede alcanzar el jugador I es supπ∈P Vλ(x; π, τ), el cual es
una función de x y τ , digamos φ(x; τ). Se supone que el objetivo principal
del jugador II es minimizar la utilidad esperada del jugador I, por lo que el
jugador II se esforzará en emplear un tiempo de paro τ̃ tal que φ(x; τ̃) sea lo
más cercano posible a ı́nfτ∈T φ(x; τ). Esta última cantidad es el valor superior
del juego y está determinado expĺıcitamente por:

V ∗
λ (x) := ı́nf

τ∈T

[
sup
π∈P

Vλ(x; π, τ)
]

, x ∈ S. (1.9)
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Intercambiando el orden en que se toman el supremo y el ı́nfimo, se obtiene
la siguiente función de valor inferior del juego:

Vλ,∗(x) = sup
π∈P

[
ı́nf
τ∈T

Vλ(x; π, τ)
]

, x ∈ S. (1.10)

Dado que ı́nf
τ∈T

Vλ(x; π, τ) ≤ Vλ(x; π, τ) ≤ sup
π∈P

Vλ(x; π, τ), estas definiciones
conducen inmediatamente a que:

Vλ,∗(·) ≤ V ∗
λ (·) . (1.11)

Por lo que vemos que la desigualdad anterior entre el valor superior e inferior
del juego siempre se cumple. Uno de nuestros objetivos es demostrar que bajo
ciertas condiciones, también se cumple la desigualdad contraria, lo cual implica
la existencia de un único valor del juego. Para concluir este caṕıtulo, hace falta
introducir el concepto del equilibrio de Nash, el cual es uno de los elementos
más importantes en este trabajo.

1.5. Estrategias de Equilibrio.
El principal objetivo de este trabajo es establecer la existencia de un par de

estrategias (π∗, τ ∗) ∈ P × T que sea un equilibrio de Nash para el juego, cuya
definición se presenta a continuación.

Definición 1.1. El par (π∗, τ ∗) ∈ P × T es un equilibrio de Nash si para cada
estado x ∈ S

Vλ(x; π, τ ∗) ≤ Vλ(x; π∗, τ ∗) ≤ Vλ(x; π∗, τ) , π ∈ P , τ ∈ T . (1.12)

Analicemos el cómo se interpretan las dos desigualdades presentes en la
definición de un equilibrio de Nash. Cuando las estrategias π∗ y τ ∗ realmente
usadas por los jugadores I y II forman un equilibrio de Nash, de la primera
desigualdad en (1.12) se deduce que, si el jugador II continúa usando la estrategia
τ ∗, entonces el jugador I no tiene ningún incentivo para cambiar a otra poĺıtica.
Esto se debe a que si decide hacerlo se verá perjudicado ya que obtendŕıa
una recompensa menor. De manera similar, la segunda desigualdad en (1.12)
implica que, si el jugador I continúa usando π∗, entonces el jugador II no tiene
ninguna motivación para cambiar la estrategia τ ∗ en uso. Si decidiera hacerlo,
la recompensa que tendŕıa que pagarle al jugador I seŕıa mayor.

Además, nótese que si (π∗, τ ∗) es un equilibrio de Nash, entonces (1.12)
implica que:

V ∗
λ (·) ≤ sup

π∈P
Vλ(·; π, τ ∗) ≤ Vλ(·; π∗, τ ∗) ≤ ı́nf

τ∈T
Vλ(·; π∗, τ) ≤ Vλ,∗(·),

donde las desigualdades de la izquierda y de la derecha se deben a (1.9) y (1.10),
respectivamente, por lo que a través de (1.11) se deduce que las funciones de
valor superior e inferior son iguales y coinciden con Vλ(·; π∗, τ ∗).
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En el siguiente caṕıtulo se aborda el problema de encontrar un par de
estrategias que sea un equilibro de Nash. Para ello en primer lugar se definirá
un operador cuyo punto fijo se utiliza para definir las estrategias de los jugadores
que conforman un equilibro de Nash. El análisis se lleva a cabo bajo los Supuestos
1.1 y 2.1.



Caṕıtulo 2

Modelo con un Estado
Absorbente

En este caṕıtulo se presentan los primeros resultados obtenidos en la investi-
gación. Se estudia el modelo considerando el supuesto de la existencia de un
estado absorbente (Supuesto 2.1) y se demuestra la existencia de un equilibrio
de Nash. Los resultados presentados han sido publicados en el art́ıculo [25]. La
principal condición estructural es la existencia de un estado absorbente que,
independientemente de las estrategias de los jugadores, puede ser alcanzado
eventualmente desde cualquier estado inicial. Lo cual se establece en el siguiente
supuesto.

Supuesto 2.1. Existe un estado z ∈ S para el cual se cumplen las siguientes
condiciones:

(i) Para cada x ∈ S y f ∈ F,

P f
x [τz <∞] = 1, (2.1)

donde
τz := mı́n{n | Xn = z}. (2.2)

(ii) G(z) = 0 = R(z, a) y pz,z(a) = 1, a ∈ A(z).

Nótese que τz es un tiempo de paro con respecto a la filtración {Ft} dada en
(1.5), por lo que una consecuencia directa de esto es que τz ∈ T . Por otro lado,
una vez que el sistema alcance el estado z, no podrá salir de alĺı y la recompensa
acumulada a partir de ese momento será cero. Además, es importante señalar
que:

Xτz = z en el evento [τz <∞]. (2.3)

A continuación, se define el operador de equilibrio, el cual es crucial para
determinar las estrategias óptimas de los jugadores I y II.

21
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2.1. Operador de Equilibrio
Para encontrar el equilibrio de Nash, en primer lugar se introduce un sub-

conjunto de C(S) y se define un operador sobre este subconjunto.

Definición 2.1. (i) Sea G la función de recompensa terminal. El espacio
[[0, G]] ⊂ C(S) se define como:

[[0, G]] := {h ∈ C(S) | 0 ≤ h(x) ≤ G(x), x ∈ S}. (2.4)

(ii) El operador Tλ : [[0, G]]→ [[0, G]] es determinado de la siguiente manera:
Para cada W ∈ [[0, G]] y x ∈ S,

Uλ(Tλ[W ](x))

:= mı́n

Uλ(G(x)), sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) + W (y))
 . (2.5)

El operador Tλ modela la decisión secuencial del jugador II, quien debe elegir
entre parar, pagando la recompensa terminal G(x), o continuar, lo que implica
pagar la recompensa inmediata R(x, a) junto con las recompensas futuras que
tendrá que pagar en el nuevo estado y, las cuales dependen de las acciones del
jugador I.

Este operador tiene algunas propiedades importantes, las cuales se presentan
a continuación.

Tλ[W ] ∈ [[0, G]], para toda W ∈ [[0, G]]. Esto lo podemos verificar usando
que Uλ(·) es creciente y que R y G son no negativas.

La relación entre el estado absorbente z y Tλ es la siguiente:

Tλ[W ](z) = W (z) = 0, W ∈ [[0, G]]. (2.6)

Definimos el orden ≤ en el espacio de funciones [[0, G]] de la siguiente
manera: V ≤ W si y solo si V (x) ≤ W (x) para todo x ∈ S. Con
esta definición, Tλ es un operador monótono creciente, es decir, para
V, W ∈ [[0, G]] se tiene que:

V ≤ W ⇒ Tλ[V ] ≤ Tλ[W ]. (2.7)

Para demostrar esta última propiedad, sean y ∈ S,(x, a) ∈ K y V, W ∈ [[0, G]]
tales que V ≤ W . Aśı, obtenemos que:

sup
a∈A(x)

∑
y∈S

pxy(a)Uλ(R(x, a) + V (y))


≤ sup
a∈A(x)

∑
y∈S

pxy(a)Uλ(R(x, a) + W (y))
 .
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Por otro lado,

Uλ(Tλ[V ](x)) = mı́n

Uλ(G(x)), sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) + V (y))


≤ mı́n

Uλ(G(x)), sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) + W (y))


= Uλ(Tλ[W ](x)),

de donde se sigue que Tλ[V ] ≤ Tλ[W ].

Otra caracteŕıstica importante de Tλ es que este operador tiene puntos fijos.
Para demostrarlo, se necesitan un par de resultados previos: el Lema 2.1 y el
Teorema 2.1, los cuales se presentan a continuación.

Lema 2.1. (i) Consideremos una familia {Sk} de subconjuntos finitos de S
tal que:

S =
∞⋃

k=1
Sk , Sk ⊂ Sk+1 , k ∈ N , (2.8)

y para cada x ∈ S, k ∈ N definimos:

δk(x) := sup
a∈A(x)

1−
∑

y∈Sk

pxy(a)
 = sup

a∈A(x)

∑
y∈S\Sk

pxy(a), (2.9)

entonces,
ĺım

k→∞
δk(x) = 0 , x ∈ S .

(ii) Si {Wn} ⊂ C(S) es tal que:

c := sup
n∈N
∥Wn∥ <∞ y ĺım

n→∞
Wn(y) = 0 , y ∈ S. (2.10)

En este caso, para cada x ∈ S

sup
a∈A(x)

eλR(x,a) ∑
y∈S

pxy(a)|Wn(y)|
→ 0 cuando n→∞.

Demostración. (i) Dado que los conjuntos Sk son finitos, del Supuesto 1.1
se obtiene que para cada k ∈ N y x ∈ S el mapeo a 7→ ∑

y∈Sk
px,y(a) es

continuo en el compacto A(x), mientras que utilizando las condiciones en
(2.8) se deduce que:∑

y∈Sk

pxy(a)↗
∑
y∈S

pxy(a) = 1 cuando k →∞,

de modo que el Teorema de Dini (Teorema A.2) implica que la conver-
gencia es uniforme en el espacio A(x), es decir:

sup
a∈A(x)

1−
∑

y∈Sk

pxy(a)
→ 0 cuando k →∞.
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(ii) Fijemos x ∈ S y para cada k ∈ N se tiene que:

sup
a∈A(x)

eλR(x,a) ∑
y∈S

px,y(a)|Wn(y)|

≤ sup
a∈A(x)

eλR(x,a) ∑
y∈Sk

px,y(a)|Wn(y)|+ sup
a∈A(x)

eλR(x,a) ∑
y∈S\Sk

px,y(a)|Wn(y)|

≤ e|λ| ∥R∥

máx
y∈Sk

|Wn(y)|+ c sup
a∈A(x)

∑
y∈S\Sk

px,y(a)


= e|λ| ∥R∥
(

máx
y∈Sk

|Wn(y)|+ cδk(x)
)

,

donde (2.10) se utilizó para establecer la segunda desigualdad, y la igualdad se
debe a (2.9). Recordando que los conjuntos Sk son finitos, la convergencia en
(2.10) produce que:

ĺım sup
n→∞

∣∣∣∣∣∣ sup
a∈A(x)

eλR(x,a) ∑
y∈S

px,y(a)|Wn(y)|

∣∣∣∣∣∣ ≤ e|λ| ∥R∥c δk(x), x ∈ S,

y entonces, como k ∈ N es arbitrario, la conclusión se desprende de la parte
(i).

El siguiente resultado establece que Tλ es un operador continuo con respecto
a la topoloǵıa de la convergencia puntual en el espacio [[0, G]].

Teorema 2.1. Supongamos que la sucesión {Wn} ⊂ [[0, G]] converge puntual-
mente a una función V : S → R, esto es,

ĺım
n→∞

Wn(x) = V (x) , x ∈ S . (2.11)

Entonces se tiene que:

V ∈ [[0, G]] y ĺım
n→∞

Tλ[Wn](x) = Tλ[V ](x) , x ∈ S .

Demostración. Nótese que (2.4) y (2.11) implican que V ∈ [[0, G]]. Sea

△n(x) := sup
a∈A(x)

eλR(x,a) ∑
y∈S

pxy(a)|Uλ(Wn(y))− Uλ(V (y))|
 . (2.12)
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Luego, usando (1.3) observe que:

sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) + Wn(y))

= sup
a∈A(x)

eλR(x,a) ∑
y∈S

px,y(a)Uλ(Wn(y))


= sup
a∈A(x)

eλR(x,a) ∑
y∈S

px,y(a)Uλ(V (y))

+ eλR(x,a) ∑
y∈S

px,y(a)[Uλ(Wn(y))− Uλ(V (y))]


≤ sup
a∈A(x)

eλR(x,a) ∑
y∈S

px,y(a)Uλ(V (y))


+ sup
a∈A(x)

eλR(x,a) ∑
y∈S

px,y(a)|Uλ(Wn(y))− Uλ(V (y))|
 ,

y una aplicación adicional de (1.3) conduce a

sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) + Wn(y))

≤ sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) + V (y)) + ∆n(x), (2.13)

mientras que la desigualdad

sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) + V (y))

≤ sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) + Wn(y)) + ∆n(x),

puede establecerse de forma similar. Combinando la definición de Tλ en (2.5)
con (2.13) y la desigualdad anterior, resulta que:

Uλ(Tλ[Wn](x)) ≤ Uλ(Tλ[V ](x)) + ∆n(x)

y
Uλ(Tλ[V ](x)) ≤ Uλ(Tλ[Wn](x)) + ∆n(x),

de modo que:
|Uλ(Tλ[Wn](x))− Uλ(Tλ[V ](x))| ≤ ∆n(x). (2.14)

Observe ahora que (1.2) y (2.11) implican que:

ĺım
n→∞

[Uλ(Wn(y))− Uλ(V (y))] = 0, y ∈ S.

Además, utilizando que ∥W∥ ≤ ∥G∥ < ∞, si W ∈ [[0, G]], las inclusiones
Wn, V ∈ [[0, G]] y (1.2) dan como resultado que ∥Uλ(Wn(·))∥, ∥Uλ(V (·))∥ ≤
e|λ| ∥G∥. Por lo tanto, se tiene que:

∥Uλ(Wn(·))− Uλ(V (·))∥ ≤ 2e|λ|∥G∥.
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Utilizando el Lema 2.1(ii) con Uλ(Wn) − Uλ(V ) en lugar de Wn, los dos
hechos anteriores y (2.12) implican que ĺımn→∞ ∆n(·) = 0, una convergencia
que a través de (2.14) conduce a que:

ĺım
n→∞

Uλ(Tλ[Wn](x)) = Uλ(Tλ[V ](x)),

para cada x ∈ S. Por otro lado, como Uλ(·) es estrictamente creciente y continua,
se deduce que Tλ[Wn](x)→ Tλ[V ](x) cuando n→∞ para todo estado x.

2.2. Existencia de puntos fijos
El resultado que demuestra la existencia de puntos fijos del operador Tλ se

presenta a continuación, y la prueba está apoyada en la propiedad presentada
en el Teorema 2.1.

Teorema 2.2. Bajo el Supuesto 1.1, se tiene que existe un punto fijo del
operador Tλ, esto es, existe una función W ∗

λ ∈ [[0, G]] que satisface que:

W ∗
λ = Tλ[W ∗

λ ] . (2.15)

Demostración. Definimos Wn,λ := 0 para n = 0 y Wn,λ := T n
λ [0] para n ∈

N \ {0}. Observemos que, para cada n ∈ N, se tiene que:

Wn+1,λ = T n+1
λ [0]

= Tλ[T n
λ [0]]

= Tλ[Wn,λ]. (2.16)

Por otro lado, W0,λ = 0 ∈ [[0, G]] y W1,λ = Tλ[0] ∈ [[0, G]], de donde se deduce
que W0,λ ≤ W1,λ. Ahora supongamos que esta propiedad se cumple para n ∈ N,
es decir Wn,λ ≤ Wn+1,λ y probemos que se cumple para n + 1.

Wn,λ ≤ Wn+1,λ ⇒ Tλ[Wn,λ] ≤ Tλ[Wn+1,λ]
⇒ Wn+1,λ ≤ Wn+2,λ,

donde se utilizó las propiedades en (2.7) y (2.16). Además, como las funciones
Wk,λ pertenecen a [[0, G]] se sigue que:

0 ≤ Wn,λ ≤ Wn+1,λ ≤ G .

Aśı, para cada y ∈ S la sucesión {Wn,λ(y)} es creciente, acotada y por la
tanto convergente. Luego por el Lema 2.1, existe Ŵ ∈ [[0, G]] tal que:

ĺım
n→∞

Wn,λ(y) = Ŵ (y), y ∈ S ,

y además
ĺım

n→∞
Tλ[Wn,λ](x) = Tλ[Ŵ ](x) , x ∈ S .
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Luego, tomando ĺımite cuando n tiende a∞, en ambos lados de (2.16), junto
con lo mostrado previamente, nos conduce a que:

Ŵ = Tλ[Ŵ ] .

Esto muestra que Ŵ es un punto fijo de Tλ.

Mediante la Definición 2.1, la expresión presentada en (2.5) puede escribirse
de forma equivalente como sigue: Para todo x ∈ S,

Uλ(W ∗
λ (x))

= mı́n

Uλ(G(x)), sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) + W ∗
λ (y))

 . (2.17)

Además, utilizando que G está acotada, la inclusión W ∗
λ ∈ [[0, G]] y el Supuesto

1.1 implican que existe una poĺıtica f ∗ ∈ F tal que, para todo x ∈ S,∑
y∈S

px,y(f ∗(x))Uλ(R(x, f ∗(x)) + W ∗
λ (y))

= sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) + W ∗
λ (y))

 . (2.18)

Asimismo, observando que W ∗
λ ≥ 0, el Supuesto 2.1(ii) y (2.17) implican que

Uλ(W ∗
λ (z)) = Uλ(G(z)) = Uλ(0), y entonces

W ∗
λ (z) = 0 = G(z). (2.19)

Las estrategias para los jugadores I y II que conforman un equilibrio de Nash
se definen utilizando el punto fijo W ∗

λ , para ello definimos el subconjunto S∗

del espacio de estados como sigue

S∗ := {x ∈ S | W ∗
λ (x) = G(x)}, (2.20)

y sea τ ∗ el tiempo de alcance al conjunto S∗, esto es:

τ ∗ := mı́n{n ∈ N | Xn ∈ S∗}, (2.21)

de modo que τ ∗ es un tiempo de paro con respecto a la filtración {Ft} en (1.5),
es decir, τ ∗ pertenece al espacio T de estrategias admisibles para el jugador
II. A partir de este punto, cuando se aparezcan f ∗ y τ ∗, se entenderá que nos
referimos a las definidas en (2.18) y (2.21) respectivamente.

Por otro lado, se tiene que bajo el Supuesto 2.1, S∗ ≠ ∅, ya que z ∈ S∗, por
(2.19) y (2.20), y entonces

τ ∗ ≤ τz. (2.22)
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2.3. Equilibrio de Nash
En el marco determinado por los Supuestos 1.1 y 2.1, se demostrará que

existe un equilibrio de Nash con respecto al ı́ndice de recompensa total sensible
al riesgo (1.7). Antes de presentar el resultado principal, nuestra atención estará
centrada en algunos resultados auxiliares que se utilizarán en la demostración
de este.

El inciso (ii) del Lema 2.2 extenderá la propiedad del inciso (i) en el Supuesto
2.1 a la clase de todas las poĺıticas del jugador I.

Lema 2.2. Para cada x ∈ S, y n ∈ N, definimos

Mn(x) := sup
π∈P

P π
x [τz > n] ∈ [0, 1] . (2.23)

Con esta notación, las siguientes afirmaciones son válidas:

(i) ĺım
n→∞

Mn(x) = 0, x ∈ S .

(ii) P π
x [τz <∞] = 1 para cada x ∈ S y π ∈ P.

Demostración. Obsérvese que la inclusión [τz > n + 1] ⊂ [τz > n] y (2.23)
conducen a

Mn+1 ≤Mn, n ∈ N, (2.24)

y entonces
M(x) := ĺım

n→∞
Mn(x) ∈ [0, 1] (2.25)

existe para todo x ∈ S; como P π
z [τz = 0] = 1 para todo π ∈ P, por (2.2), se

sigue que Mn(z) = 0 para todo n positivo, aśı que

M(z) = 0. (2.26)

Dado (x, ã) ∈ K y una poĺıtica π ∈ P, definimos la nueva poĺıtica πx,ã =
{πx,ã,n} como sigue: para cada t ∈ N y ht ∈ Ht, πx,ã,t(·|ht) = πt+1(·|x, ã, ht).
Luego, usando (2.2), observemos que [τz > n + 1] = [Xk ̸= z, 0 ≤ k ≤ n + 1] y
que una aplicación de la propiedad de Markov nos da que para cada π ∈ P,
n ∈ N y (x, ã) ∈ K con x ̸= z

P π
x [τz > n + 1|A0 = ã] =

∑
y∈S\{z}

px,y(ã)P πx,ã
y [τz > n]

≤
∑

y∈S\{z}
px,y(ã)Mn(y)

≤ sup
a∈A(x)

∑
y∈S\{z}

px,y(a)Mn(y),

donde la primera desigualdad se debe a (2.23). Por lo tanto,

P π
x [τz > n + 1] ≤ sup

a∈A(x)

∑
y∈S\{z}

px,y(a)Mn(y), x ̸= z.
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Utilizando el teorema de convergencia dominada (Teorema A.3), junto con
(2.23) y (2.25), se deduce que:

M(x) ≤ sup
a∈A(x)

∑
y∈S\{z}

px,y(a)M(y), x ∈ S.

Ahora, usando que M(·) está acotado, observemos que el Supuesto 1.1
implica que existe una poĺıtica f̂ ∈ F tal que supa∈A(x)

∑
y∈S\{z} px,y(a)M(y) =∑

y∈S\{z} px,y(f̂(x))M(y) para todo estado x, y entonces

M(x) ≤
∑

y∈S\{z}
px,y(f̂(x))M(y) =

∑
y∈S

px,y(f̂(x))M(y), x ∈ S;

ver (2.26) para la igualdad. Combinando esta relación con la propiedad de
Markov, se deduce que para cada estado inicial x ∈ S y n ∈ N,

M(Xn) ≤ E f̂
x [M(Xn+1)|Xn] = E f̂

x [M(Xn+1)|Fn], P f̂
x -c. s.,

por lo que {(M(Xn),Fn)} es una submartingala con respecto a P f̂
x . Dado que

M(·) está acotado, el teorema de paro opcional da como resultado que, para
cada x ∈ S y n ∈ N,

M(x) ≤ E f̂
x [M(Xτz∧n)] = E f̂

x [M(Xn) I[τz > n]] ≤ P f̂
x [τz > n],

donde, recordando que M(z) = 0, la igualdad se obtuvo de (2.3), y la inclusión
en (2.25) se utilizó en el último paso. Dado que:

ĺım
n→∞

P f̂
x [τz > n] = P f̂

x [τz =∞] = 0,

por el Supuesto 2.1(i), lo anterior da como resultado que M(·) = 0, estableciendo
la parte (i). Para establecer la afirmación (ii), combinamos (2.23) con la parte
(i) para obtener:

P π
x [τz =∞] = ĺım

n→∞
P π

x [τz > n]
≤ ĺım

n→∞
Mn(x)

= M(x)
= 0,∀x ∈ S y ∀π ∈ P .

El Lema 2.3 a continuación muestra que el espacio de estrategias del jugador
II puede reducirse a la clase de tiempos de paro finitos.

Lema 2.3. Para todo (π, τ) ∈ P × T ,

Vλ(·, π, τ) = Vλ(·, π, τ ∧ τz). (2.27)

Demostración. Sean x ∈ S y (π, τ) ∈ P ×T . Usando que P π
x [τz <∞] = 1, por

el Lema 2.2, los Supuestos 1.1(ii) y 2.1 junto con (2.2) dan como resultado que:

en [τz <∞], Xτz = z y R(Xn, An) = G(Xn) = 0 para n ≥ τz. (2.28)

Ahora, consideremos los siguientes escenarios:
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[τ =∞] ∩ [τz <∞]

En este caso tenemos que τ ∧ τz = τz, y además se tiene que R(Xt, At) = 0
para t ≥ τ ∧ τz y G(Xτ∧τz) = 0, aśı que

τ−1∑
t=0

R(Xt, At) =
τ∧τz−1∑

t=0
R(Xt, At)

y
G(Xτ )I[τ <∞] = 0 = G(Xτ∧τz)I[τ ∧ τz <∞].

Por lo tanto,

τ−1∑
t=0

R(Xt, At) + G(Xτ )I[τ <∞]

=
τ∧τz−1∑

t=0
R(Xt, At) + G(Xτ∧τz)I[τ ∧ τz <∞] en [τ =∞, τz <∞];

como P π
x [τz <∞] = 1, por el Lema 2.2(ii), se sigue que

Eπ
x

[
I[τ =∞]Uλ

(
τ−1∑
t=0

R(Xt, At) + G(Xτ )I[τ <∞]
) ]

= Eπ
x

[
I[τ =∞]Uλ

(
τ∧τz−1∑

t=0
R(Xt, At) + G(Xτ∧τz)I[τ ∧ τz <∞]

)]
.

[τz ≤ τ <∞]

En este caso τz = τ ∧ τz y mediante (2.28) se deduce que

G(Xτ )I[τ <∞] = G(Xτ ) = 0 = G(Xτz) = G(Xτ∧τz)I[τ ∧ τz <∞]

aśı como
τ−1∑
t=0

R(Xt, At) =
τz−1∑
t=0

R(Xt, At) =
τ∧τz−1∑

t=0
R(Xt, At),

de modo que

Eπ
x

[
I[τz ≤ τ <∞] Uλ

(
τ−1∑
t=0

R(Xt, At) + G(Xτ )I[τ <∞]
)]

= Eπ
x

[
I[τz ≤ τ <∞] Uλ

(
τ∧τz−1∑

t=0
R(Xt, At) + G(Xτ∧τz)I[τ ∧ τz <∞]

)]
.

[τ <∞, τ < τz]

En este último caso τ = τ ∧ τz, por lo que

τ−1∑
t=0

R(Xt, At) + G(Xτ )I[τ <∞] =
τ∧τz−1∑

t=0
R(Xt, At) + G(Xτ∧τz)I[τ ∧ τz <∞],
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y entonces

Eπ
x

[
I[τ <∞, τ < τz] Uλ

(
τ−1∑
t=0

R(Xt, At) + G(Xτ )I[τ <∞]
)]

= Eπ
x

[
I[τ <∞, τ < τz] Uλ

(
τ∧τz−1∑

t=0
R(Xt, At) + G(Xτ∧τz)I[τ ∧ τz <∞]

)]
.

Ya que 1 = I[τ =∞] + I[τz ≤ τ <∞] + I[τ <∞, τ < τz], las tres igualdades
de los casos anteriores implican que:

Eπ
x

[
Uλ

(
τ−1∑
t=0

R(Xt, At) + G(Xτ )I[τ <∞]
)]

= Eπ
x

[
Uλ

(
τ∧τz−1∑

t=0
R(Xt, At) + G(Xτ∧τz)I[τ ∧ τz <∞]

)]
.

A través de (1.2) y (1.7), esta relación conduce a que

Uλ(Vλ(x; π, τ)) = Uλ(Vλ(x; π, τ ∧ τz)),

y (2.27) se deduce utilizando que Uλ(·) es estrictamente creciente.

Lema 2.4. Para todo n ∈ N, x ∈ S y τ ∈ T ,

Uλ(W ∗
λ (x))

≤
n∑

k=0
Ef∗

x

[
Uλ

(
k−1∑
t=0

R(Xt, At) + W ∗
λ (Xk)

)
I[τ = k]

]

+ Ef∗

x

[
Uλ

(
n∑

t=0
R(Xt, At) + W ∗

λ (Xn+1)
)

I[τ ≥ n + 1]
]

. (2.29)

Demostración. Para empezar, obsérvese que (2.17) y (2.18) implican que, para
cada estado x,

Uλ(W ∗
λ (x)) ≤

∑
y∈S

px,y(f ∗(x))Uλ(R(x, f ∗(x)) + W ∗
λ (y)), (2.30)

una relación que mediante la propiedad de Markov implica que, para cada
x ∈ S y n ∈ N,

Uλ(W ∗
λ (Xn)) ≤ Ef∗

x [Uλ(R(Xn, An) + W ∗
λ (Xn+1))| Fn] . (2.31)

A continuación, la desigualdad en (2.29) se verificará mediante inducción.
Sean x ∈ S y τ ∈ T arbitrarios. Combinando la convención (1.1) con las
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relaciones τ ≥ 0 y P f∗
x [X0 = x] = 1, se deduce que:

Uλ(W ∗
λ (x))

= Uλ(W ∗
λ (X0))I[τ = 0] + Uλ(W ∗

λ (X0))I[τ ≥ 1]

= Uλ

(0−1∑
t=0

R(Xt, At) + W ∗
λ (X0)

)
I[τ = 0] + Uλ(W ∗

λ (X0))I[τ ≥ 1]

≤ Uλ

(0−1∑
t=0

R(Xt, At) + W ∗
λ (X0)

)
I[τ = 0]

+ I[τ ≥ 1]Ef∗

x [Uλ(R(X0, A0) + W ∗
λ (X1))| F0]

= Uλ

(0−1∑
t=0

R(Xt, At) + W ∗
λ (X0)

)
I[τ = 0]

+ Ef∗

x [Uλ(R(X0, A0) + W ∗
λ (X1))I[τ ≥ 1]| F0] , P f∗

x -c. s.
donde la desigualdad se debe a (2.31) con n = 0, y la inclusión [τ ≥ 1] ∈ F0
se utilizó para establecer la última igualdad. Después de tomar esperanza con
respecto a P f∗

x , la desigualdad anterior muestra que se cumple (2.29) para el
caso n = 0. Ahora supongamos que (2.29) es válida para n ∈ N y observemos
que:

Uλ

(
n∑

t=0
R(Xt, At) + W ∗

λ (Xn+1)
)

I[τ ≥ n + 1]

= Uλ

(
n∑

t=0
R(Xt, At) + W ∗

λ (Xn+1)
)

I[τ = n + 1]

+ Uλ

(
n∑

t=0
R(Xt, At) + W ∗

λ (Xn+1)
)

I[τ ≥ n + 2]

mientras que, utilizando (1.3),

Uλ

(
n∑

t=0
R(Xt, At) + W ∗

λ (Xn+1)
)

I[τ ≥ n + 2]

= eλ
∑n

t=0 R(Xt,At)I[τ ≥ n + 2]Uλ (W ∗
λ (Xn+1))

≤ eλ
∑n

t=0 R(Xt,At)I[τ ≥ n + 2]Ef∗

x [Uλ(R(Xn+1, An+1) + W ∗
λ (Xn+2))| Fn+1]

= Ef∗

x

[
Uλ

(
n+1∑
t=0

R(Xt, At) + W ∗
λ (Xn+2)

)
I[τ ≥ n + 2]

∣∣∣∣∣Fn+1

]
donde (2.31) con n + 1 en lugar de n se utilizó para establecer la desigualdad, y
la segunda igualdad se obtuvo combinando (1.3) con el hecho de que la variable
aleatoria eλ

∑n

t=0 R(Xt,At)I[τ ≥ n + 2] es Fn+1-medible. Estos dos últimos hechos
implican que:

Ef∗

x

[
Uλ

(
n∑

t=0
R(Xt, At) + W ∗

λ (Xn+1)
)

I[τ ≥ n + 1]
]

≤ Ef∗

x

[
Uλ

(
n∑

t=0
R(Xt, At) + W ∗

λ (Xn+1)
)

I[τ = n + 1]
]

+ Ef∗

x

[
Uλ

(
n+1∑
t=0

R(Xt, At) + W ∗
λ (Xn+2)

)
I[τ ≥ n + 2]

]
.
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Combinando esta relación con la hipótesis de inducción, se deduce que (2.29)
se cumple con n + 1 en lugar de n, completando el argumento de inducción.

Lema 2.5. Dado x ∈ S, sean f ∈ F y τ ∈ T tales que

P f
x [τ <∞] = 1 y Vλ(x; f, τ) <∞.

En este caso

ĺım
n→∞

Ef
x

[∣∣∣∣∣Uλ

(
n∑

k=0
R(Xt, At)

)∣∣∣∣∣ I[τ > n + 1]
]

= 0. (2.32)

Demostración. Como G es acotada, de (1.7) y (1.8) se deduce que la condición
Vλ(x; f, τ) <∞ es equivalente a que:

Ef
x

[
eλ
∑τ−1

k=0 R(Xt,At)
]
∈ (0,∞), (2.33)

por lo que P f
x [eλ

∑τ−1
k=0 R(Xt,At) <∞] = 1. Combinando este hecho con la condi-

ción P f
x [τ <∞] = 1 resulta que:

(1 ∨ eλ
∑τ−1

k=0 R(Xt,At))I[τ > n + 1]→ 0 cuando n→∞ P f
x -c. s.,

y entonces (2.33) y el teorema de convergencia dominada implican que:

Ef
x

[
(1 ∨ eλ

∑τ−1
k=0 R(Xt,At))I[τ > n + 1]

]
→ 0 cuando n→∞;

Esta convergencia y la desigualdad 1 ∨ eλ
∑τ−1

k=0 R(Xt,At) ≥ eλ
∑n

k=0 R(Xt,At)

conducen a ĺım
n→∞

Ef
x

[
eλ
∑n

k=0 R(Xt,At)I[τ > n + 1]
]

= 0, y la conclusión deseada
(2.32) se sigue v́ıa (1.2).

Lema 2.6. (i) Para todo x ∈ S, π ∈ P y n = 1, 2, . . .

Eπ
x

[
Uλ

(
n−1∑
t=0

R(Xt, At) + W ∗
λ (Xn)

)
I[τ ∗ > n]

]

≥ Eπ
x

[
Uλ

(
n∑

t=0
R(Xt, At) + W ∗

λ (Xn+1)
)

I[τ ∗ = n + 1]
]

+ Eπ
x

[
Uλ

(
n∑

t=0
R(Xt, At) + W ∗

λ (Xn+1)
)

I[τ ∗ > n + 1]
]

(ii) Para todo n ∈ N, x ∈ S \ S∗ y π ∈ P,

Uλ(W ∗
λ (x)) ≥

n∑
k=1

Eπ
x

[
Uλ

(
k−1∑
t=0

R(Xt, At) + W ∗
λ (Xk)

)
I[τ ∗ = k]

]

+ Eπ
x

[
Uλ

(
n−1∑
t=0

R(Xt, At) + W ∗
λ (Xn)

)
I[τ ∗ > n]

]
. (2.34)
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Demostración. En primer lugar, observemos que Uλ(W ∗
λ (x)) < Uλ(G(x)) cuan-

do x /∈ S∗, como se deduce de (2.15) y (2.20). Por lo tanto,

Uλ(W ∗
λ (x))

= sup
a∈A(x)

∑
y∈S

px,y(a)Uλ (R(x, a) + W ∗
λ (y))

≥
∑
y∈S

px,y(a)Uλ (R(x, a) + W ∗
λ (y)) , x ∈ S \ S∗, a ∈ A(x). (2.35)

(i) Sea π ∈ P arbitrario y, usando que Xt /∈ S∗ para 0 ≤ t < τ ∗, por (2.21),
lo anterior y la propiedad de Markov dan como resultado que para cada n ∈ N
la siguiente relación se mantiene casi seguramente con respecto a P π

x :

Uλ(W ∗
λ (Xn)) ≥

∑
y∈S

pXn,y(An)Uλ (R(Xn, An) + W ∗
λ (y))

= Eπ
x [Uλ (R(Xn, An) + W ∗

λ (Xn+1))| Fn, An] en [τ ∗ > n].

Multiplicando ambos lados de esta desigualdad por eλ
∑n−1

t=0 R(Xt,At)I[τ ∗ > n],
la cual es una variable aleatoria Fn-medible, una aplicación de (1.3) conduce a:

Uλ

(
n−1∑
t=0

R(Xt, At) + W ∗
λ (Xn)

)
I[τ ∗ > n]

≥ Eπ
x

[
Uλ

(
n∑

t=0
R(Xt, At) + W ∗

λ (Xn+1)
)

I[τ ∗ > n]
∣∣∣∣∣Fn, An

]
.

A partir de este punto, la conclusión sigue tomando esperanza con respecto
a P π

x y utilizando la igualdad I[τ ∗ > n] = I[τ ∗ = n + 1] + I[τ ∗ > n + 1].

(ii) El argumento es por inducción sobre n. Sean x ∈ S \ S∗ y π ∈ P arbitra-
rios, y observemos que (2.35) conduce a Uλ(W ∗

λ (x)) ≥ Eπ
x [Uλ (R(X0, A0) + W ∗

λ (X1))];
ya que P π

x [τ ∗ > 0] = 1, por (2.21) se deduce que:

Uλ (W ∗
λ (x)) ≥ Eπ

x [Uλ (R(X0, A0) + W ∗
λ (X1)) I[τ ∗ = 1]]

+ Eπ
x [Uλ (R(X0, A0) + W ∗

λ (X1)) I[τ ∗ > 1]] ,

una expresión equivalente a (2.34) con n = 1. Supongamos ahora que (2.34) es
válida para algún n ∈ N. En este caso, los cálculos directos que combinan la
parte (i) con la hipótesis de inducción muestran que (2.34) también se cumple
con n + 1 en lugar de n, completando el argumento de inducción.

La prueba de la verificación de la existencia de un equilibrio de Nash es
bastante técnica y para facilitar la presentación los pasos esenciales se han
establecido por separado en los Teoremas 2.3 y 2.4 a continuación.

Teorema 2.3. Para cada τ ∈ T ,

W ∗
λ (·) ≤ Vλ(·; f ∗, τ). (2.36)
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Demostración. Por el Lema 2.3, sin pérdida de generalidad τ puede ser susti-
tuido por τ ∧ τz, y entonces el Supuesto 2.1 arroja que es suficiente establecer
la conclusión bajo la condición de que τ es un tiempo de paro finito:

P f∗

x [τ <∞] = 1, x ∈ S. (2.37)

Como (2.36) ciertamente se cumple si Vλ(·; f ∗, τ) = ∞, en el siguiente
argumento se supondrá que:

Vλ(·; f ∗, τ) <∞. (2.38)

Obsérvese que (1.3) y la inclusión W ∗
λ ∈ [[0, G]] dan como resultado que:∣∣∣∣∣Uλ

(
n∑

t=0
R(Xt, At) + W ∗

λ (Xn+1)
)∣∣∣∣∣ =

∣∣∣∣∣eλW ∗
λ (Xn+1)Uλ

(
n∑

t=0
R(Xt, At))

)∣∣∣∣∣
≤ e|λ|∥G∥

∣∣∣∣∣Uλ

(
n∑

t=0
R(Xt, At))

)∣∣∣∣∣
Nótese que, a través del Lema 2.5, (2.37) y (2.38) implican que:

ĺım
n→∞

Ef∗

x

[
Uλ

(
n∑

t=0
R(Xt, At)

)
I[τ > n + 1]

]
= 0,

y combinando esta convergencia con la desigualdad anterior se deduce que:

Ef∗

x

[
Uλ

(
n∑

t=0
R(Xt, At) + W ∗

λ (Xn+1)
)

I[τ > n + 1]
]
→ 0 cuando n→∞.

Por otro lado, como Uλ(·) tiene signo constante, el teorema de convergencia
monótona (Teorema A.4) arroja inmediatamente que:

ĺım
n→∞

n∑
k=0

Ef∗

x

[
Uλ

(
k−1∑
t=0

R(Xt, At) + W ∗
λ (Xk)

)
I[τ = k]

]

=
∞∑

k=0
Ef∗

x

[
Uλ

(
k−1∑
t=0

R(Xt, At) + W ∗
λ (Xk)

)
I[τ = k]

]

= Ef∗

x

[
Uλ

(
τ−1∑
t=0

R(Xt, At) + W ∗
λ (Xτ )

)
I[τ <∞]

]

≤ Ef∗

x

[
Uλ

(
τ−1∑
t=0

R(Xt, At) + G(Xτ )
)

I[τ <∞]
]

= Uλ(Vλ(x, f ∗, τ)),

donde la desigualdad se debe a la inclusión W ∗
λ ∈ [[0, G]] y a la monotońıa de

Uλ(·) y, utilizando (2.37), la última igualdad se debe a (1.2) y (1.7). Tomando
ĺımite cuando n tiende a ∞ en el lado derecho de (2.29), las dos expresiones
anteriores dan como resultado que Uλ(W ∗

λ (x)) ≤ Uλ(Vλ(x, f ∗, τ)) y entonces
(2.36) sigue usando que Uλ(·) es estrictamente creciente.
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Teorema 2.4. Para todo x ∈ S

Vλ(x; π, τ ∗) ≤ W ∗
λ (x), π ∈ P . (2.39)

Demostración. En primer lugar, nótese que (2.22) y Lema 2.2(ii) implican que:

P π
x [τ ∗ <∞] = 1, x ∈ S. (2.40)

Ahora, sea π ∈ P arbitrario y supongamos que x ∈ S∗, de modo que (2.20)
y (2.21) dan como resultado que:

W ∗
λ (x) = G(x) y P π

x [τ ∗ = 0] = 1,

mientras que (1.1) y (1.7) conducen a que Vλ(x; π, τ ∗) = W ∗
λ (x), y entonces

(2.39) se cumple con igualdad. A continuación, se verificará la conclusión
deseada cuando el estado inicial x no pertenece a S∗. Consideremos la siguiente
afirmación:

Para todo x ∈ S \ S∗, y π ∈ P ,

ĺım inf
n→∞

Eπ
x

[
Uλ

(
n−1∑
t=0

R(Xt, At) + W ∗
λ (Xn)

)
I[τ ∗ > n]

]
≥ 0. (2.41)

Observando que Uλ(·) > 0 cuando λ es positivo, queda claro que la afirmación
anterior se cumple si λ > 0. Para completar la prueba de (2.41), supongamos
que λ < 0 y observemos que (1.2) y la no negatividad de R y W ∗

λ dan como
resultado que

∣∣∣Uλ

(∑n−1
t=0 R(Xt, At) + W ∗

λ (Xn)
)

I[τ ∗ > n]
∣∣∣ ≤ I[τ ∗ > n], por

(1.2), y mediante (2.40) se deduce que como n→∞,

Eπ
x

[∣∣∣∣∣Uλ

(
n−1∑
t=0

R(Xt, At) + W ∗
λ (Xn)

)
I[τ ∗ > n]

∣∣∣∣∣
]
≤ P π

x [τ ∗ > n]→ 0,

una convergencia que produce inmediatamente que (2.41) se cumple con igual-
dad cuando λ es negativo. A continuación, utilizando que la función Uλ(·) no
tiene cambios de signo para λ fijo, el teorema de convergencia monótona da
como resultado que:

ĺım
n→∞

n∑
k=1

Eπ
x

[
Uλ

(
k−1∑
t=0

R(Xt, At) + W ∗
λ (Xk)

)
I[τ ∗ = k]

]

=
∞∑

k=1
Eπ

x

[
Uλ

(
k−1∑
t=0

R(Xt, At) + W ∗
λ (Xk)

)
I[τ ∗ = k]

]

= Eπ
x

[
Uλ

(
τ∗−1∑
t=0

R(Xt, At) + W ∗
λ (Xτ∗)

)
I[τ ∗ <∞]

]
= Uλ(Vλ(x; π, τ ∗)),

donde la última igualdad se deriva de la combinación de (1.7) y (2.40). Para
concluir, tomamos ĺımite inferior cuando n tiende a ∞ en el lado derecho de
(2.34) para obtener, a través de la igualdad anterior y (2.41), que

Uλ(W ∗
λ (x)) ≥ Uλ(Vλ(x; π, τ ∗)),
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una desigualdad que usando que Uλ estrictamente creciente conduce a que
W ∗

λ (x) ≥ Vλ(x; π, τ ∗), mostrando que (2.39) también es válida para x ∈ S \
S∗.

Por último, se utilizarán los dos teoremas anteriores para establecer la
existencia de un equilibrio de Nash.

Teorema 2.5. Bajo los Supuestos 1.1 y 2.1, se cumplen las siguientes afirma-
ciones:

(i) Para todo x ∈ S,
Vλ(x; f ∗, τ ∗) = W ∗

λ (x).

(ii) El par (f ∗, τ ∗) ∈ F× T constituye un equilibrio de Nash.

Demostración. Por los Teoremas 2.3 y 2.4 se tiene que:

Vλ(·; π, τ ∗) ≤ W ∗
λ (·) ≤ Vλ(·; f ∗, τ), (π, τ) ∈ P × T .

Fijando (π, τ) = (f ∗, τ ∗) se deduce que W ∗
λ (·) = Vλ(·; f ∗, τ ∗), estableciendo

la parte (i), y combinando este hecho con las desigualdades anteriores se deduce
de la Definición 1.1 que (f ∗, τ ∗) es un equilibrio de Nash, completando la
prueba.

Un hecho importante en el Teorema anterior es que dado que la función de
valor del juego Vλ(·; f ∗, τ ∗) es igual a W ∗

λ (x), se tiene inmediatamente que el
operador Tλ tiene un punto fijo único.

En esta sección se presentó el resultado principal considerando el supuesto
de la existencia un estado absorbente. Para una mejor presentación de la
prueba, se utilizaron resultados auxiliares relacionados con los espacios de
estrategias de los jugadores y algunas desigualdades importantes. Además, los
teoremas de convergencia como el teorema de convergencia dominada y el
teorema de convergencia monótona, junto con el teorema del paro opcional,
fueron herramientas claves que nos permitieron concluir nuestra investigación
de manera exitosa. La función valor del juego fue caracterizada mediante una
ecuación de equilibrio y se determinó un equilibrio de Nash para el juego. En
el próximo caṕıtulo, consideramos el modelo comunicante con el objetivo de
analizar un supuesto más general, ya que en muchos casos no siempre es posible
garantizar la existencia de un estado absorbente.
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Caṕıtulo 3

Modelo Comunicante

En este caṕıtulo, consideramos el modelo del juego reemplazando el Supuesto
2.1 por el supuesto de comunicación (Supuesto 3.1). Se demuestra que el juego
tiene solución, es decir, existe un equilibrio de Nash para el juego. Además, se
proporciona un ejemplo especifico de un juego en donde se cumplen nuestros
supuestos, y se trabaja con este ejemplo de manera numérica. Los resultados
presentados han sido publicados en el art́ıculo [26].

Estudiar la existencia de equilibrios de Nash para juegos Markovianos con
tiempos de paro en modelos más generales que no satisfacen el Supuesto 2.1,
es un problema interesante, ya que, al considerar un supuesto más general, se
puede determinar si los resultados obtenidos son espećıficos del caso absorbente
o si son aplicables a una variedad más amplia de situaciones. Además, en
la práctica, puede que en las aplicaciones no se tengan las condiciones que
garanticen la existencia de un estado absorbente. Es por ello que el análisis
posterior viene determinado por el siguiente requisito: Si el jugador II no detiene
el juego, la cadena de Markov inducida por cualquier poĺıtica estacionaria del
jugador I es comunicante, lo cual es formalizado en el siguiente supuesto.

Supuesto 3.1. (i) Para cada f ∈ F, la cadena de Markov inducida por f
es comunicante, esto es, dados cualesquiera x, y ∈ S, existe un entero
positivo n (n = n(x, y, f)) y estados x1, x2 . . . , xn−1 ∈ S tales que:

x0 = x, xn = y y pxi−1,xi
(f(xi−1)) > 0, i = 1, 2, . . . , n.

(ii) Para cada f ∈ F, existe una distribución de probabilidad ρf(·) en S tal
que:

ρf (y) =
∑
x∈S

ρf (x)px,y(f(x)), y ∈ S.

(iii) Existe un estado z0 tal que R(z0, a) > 0 para toda a ∈ A(z0).

El Supuesto 3.1(i) es bien conocido en la literatura sobre PDMs sensibles
al riesgo (ver, por ejemplo, [11] y [32]). En particular, en [32] se emplea para
garantizar la unicidad de las soluciones de la ecuación de optimalidad asociada
con el criterio de costo promedio, siempre que la ecuación admita una solución

39
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acotada. En este trabajo, se aplica en las demostraciones de los Teoremas 3.1 y
3.2 para garantizar la finitud de los tiempos de paro.

El supuesto 3.1(ii) requiere una distribución invariante. Esta condición se ha
utilizado en este tipo de juegos para el caso neutral (ver [11]) para demostrar
la existencia de un equilibrio de Nash. De manera similar, en este documento
se adopta esta misma condición con el mismo objetivo. La existencia de una
distribución invariante de este tipo se puede garantizar mediante el teorema de
Perron-Frobenius en el caso finito o aplicando una condición de Harris en el
caso numerable (véase [21]). Además, observe que la propiedad de comunicación
del inciso (i) implica que la distribución invariante ρf de la cadena de Markov
inducida por cualquier f ∈ F satisface que:

ρf (x) > 0, x ∈ S. (3.1)

El Supuesto 3.1(iii) desempeña un papel fundamental en la obtención de los
dos resultados principales de este trabajo, como lo son la unicidad del punto
fijo del operador de equilibrio y la existencia de un equilibrio de Nash para
el juego. En el ejemplo siguiente, verificamos que los Supuestos 1.1 y 3.1 se
cumplen para un juego G en especifico.

Ejemplo 3.1. Sea N un entero positivo fijo y consideremos un juego G con
las componentes siguientes:

Espacio de estados S = N.

Espacio de acciones A = {b1, b2, . . . , bN}, donde 0 < b1 < b2 < · · · <
bN < 1 y bN + b1 < 1.

A(x) = A, para todo x ∈ S.

Las funciones de recompensa inmediata y recompensa terminal vienen
dadas por

R(x, a) =

 0 si x ≥ N
1

ax + 1 si x < N
, para todo (x, a) ∈ K y G(x) = N

x + 1 ,

para todo x ∈ S.

La ley de transición controlada es descrita como sigue:

p0,1(a) = 1,

px,x+1(a) = a,

px,x−1(a) = 1− a,

para todo x ̸= 0 y a ∈ A.

Para este juego, se observa que el Supuesto 1.1 se cumple. Por otro lado, la
función de transición de una cadena de nacimiento y muerte en los enteros no
negativos es de la forma:

P (x, y) =


qx si y = x− 1
rx si y = x
px si y = x + 1,
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donde q0 = 0, px + qx + rx = 1, para x ∈ N y la cadena es recurrente positiva si

∞∑
x=1

p0 · · · px−1

q1 · · · qx

<∞. (3.2)

Basado en la ley de transición controlada del juego, se tiene que cada f ∈ F
induce una cadena de nacimiento y muerte irreducible. Esto es debido al hecho
de que bi > 0 para todo i ∈ {1, 2, . . . , N}, aśı se cumple el inciso (i) del Supuesto
3.1. Además, la cadena inducida también será recurrente positiva ya que la
expresión equivalente a (3.2) para este juego es la siguiente

∞∑
x=1

f(1) · · · f(x− 1)
(1− f(1)) · · · (1− f(x)) ≤

1
bN

∞∑
x=1

(
bN

1− b1

)x

< ∞,

donde la desigualdad se debe a que b1 ≤ f(x) ≤ bN , ∀x ∈ S, y la convergencia
es debida a que bN +b1 < 1. Por lo tanto, el inciso (ii) del Supuesto 3.1 también
se cumple porque una cadena de Markov irreducible y recurrente positiva tiene
una única distribución estacionaria.

3.1. Unicidad del punto fijo
En la Sección 2.2 se demostró que bajo el Supuesto 1.1 se tiene que el

operador Tλ tiene puntos fijos. En esta sección se prueba la unicidad del punto
fijo del operador Tλ, cuya prueba no depende de la existencia del equilibrio de
Nash. Esta es una de las primeras diferencias que se tienen es esta sección con
respecto a la anterior.

El argumento de la prueba de unicidad se basa en los dos lemas auxiliares
presentados a continuación, los cuales que se apoyan en gran medida en el
Supuesto 3.1.

Lema 3.1. (i) Los siguientes ĺımites existen:

Wλ0 := ĺım
n→∞

T n
λ [0], Wλ1 := ĺım

n→∞
T n

λ [G]. (3.3)

Además,

(ii) Wλ0 = Tλ [Wλ0 ] y Wλ1 = Tλ [Wλ1 ].

(iii) Si W ∗
λ ∈ [[0, G]] es un punto fijo del operador Tλ, es decir, W ∗

λ = Tλ[W ∗
λ ],

entonces
Wλ0 ≤ W ∗

λ ≤ Wλ1 . (3.4)

Demostración. (i) Definimos W0,λ0 := 0, W0,λ1 := G y Wn,λ0 := T n
λ [0], Wn,λ1 :=

T n
λ [G] para n ∈ N \ {0} y observemos que:

Wn+1,λ0 := Tλ[Wn,λ0 ], Wn+1,λ1 := Tλ[Wn,λ1 ], n ∈ N. (3.5)
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Como W0,λ0 = 0, W1,λ0 = Tλ[0] ∈ [[0, G]] y W0,λ1 = G, W1,λ1 = Tλ[G] ∈ [[0, G]]
se deduce que W0,λ0 ≤ W1,λ0 y W1,λ1 ≤ W0,λ1 , entonces combinando esto con
un argumento de inducción y la propiedad (2.7) produce inmediatamente que:

0 ≤ Wn,λ0 ≤ Wn+1,λ0 ≤ G y 0 ≤ Wn+1,λ1 ≤ Wn,λ1 ≤ G, n ∈ N,

donde las desigualdades extremas se deben a que las funciones Wn,λ0 y Wn,λ1

pertenecen a [[0, G]] para todo n ∈ N. De ello se deduce que las sucesiones
{Wn,λ0(y)}n∈N y {Wn,λ1(y)}n∈N son monótonas y acotadas, de modo que:

ĺım
n→∞

T n
λ [0](y) := Wλ0(y) y ĺım

n→∞
T n

λ [G](y) := Wλ1(y)

existen para todo y ∈ S.

(ii) El Teorema 2.1 permite afirmar que:
Wλ0 , Wλ1 ∈ [[0, G]] (3.6)

y además
ĺım

n→∞
Tλ[Wn,λ0 ](x) = Tλ[Wλ0 ](x) y ĺım

n→∞
Tλ[Wn,λ1 ](x) = Tλ[Wλ1 ](x),

para todo x ∈ S. Aśı, tomando ĺımite cuando n tiende a ∞ en ambos lados
de las igualdades en (3.5), junto con lo anterior se tiene que Wλ0 = Tλ[Wλ0 ] y
Wλ1 = Tλ[Wλ1 ], mostrando que Wλ0 y Wλ1 son puntos fijos del operador Tλ.

(iii) Sea W ∗
λ ∈ [[0, G]] tal que W ∗

λ = Tλ[W ∗
λ ] y observe que:

W ∗
λ = T n

λ [W ∗
λ ], n ∈ N.

Combinando las desigualdades 0 ≤ W ∗
λ ≤ G con la propiedad (2.7) del

operador Tλ, resulta que T n
λ [0] ≤ T n

λ [W ∗
λ ] ≤ T n

λ [G] para todo n ∈ N, una
relación que a través de lo observado anteriormente y (3.3) conduce a Wλ0 ≤
W ∗

λ ≤ Wλ1 .

Observación 3.1. Notemos que si existe x̂ ∈ S tal que Wλ0(x̂) = G(x̂),
entonces por (3.6) y (3.4) se tiene que Wλ0(x̂) = Wλ1(x̂) = G(x̂).

En el Lema 3.1 hemos caracterizado a los puntos fijos del operador Tλ a
través de (3.4). Con lo que para probar la unicidad bastaŕıa con mostrar que
Wλ0 ≥ Wλ1 . Por otro lado, bajo el supuesto absorbente teńıamos que S∗ ̸= ∅,
ya que z ∈ S∗. Al eliminar este supuesto no podemos garantizar que esta
condición se cumpla. Sin embargo, en el siguiente resultado se demuestra que
con el supuesto de comunicación también se tiene S∗ es distinto de vaćıo.

Lema 3.2. Bajo los Supuestos 1.1 y 3.1, se tiene que S∗ ̸= ∅.

Demostración. El argumento de la prueba es por contradicción. Aśı, suponga-
mos que S∗ = ∅, de modo que G(x) ̸= W ∗

λ (x) = Tλ[W ∗
λ ](x) para todo x ∈ S.

En este caso la igualdad

Uλ(W ∗
λ (x)) = sup

a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) + W ∗
λ (y))


=

∑
y∈S

px,y(f ∗(x))Uλ(R(x, f ∗(x)) + W ∗
λ (y)),
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es siempre válida por (2.5) y (2.18). Esta última expresión la podemos reescribir
como:

Uλ(W ∗
λ (x)−R(x, f ∗(x))) =

∑
y∈S

px,y(f ∗(x))Uλ(W ∗
λ (y)), (3.7)

utilizando (1.3). Luego, como la función Uλ(·) es estrictamente creciente y R
no negativa, se tiene que:

Uλ(W ∗
λ (x)) ≥ Uλ(W ∗

λ (x)−R(x, f ∗(x))),

lo que nos conduce a la siguiente desigualdad:

Uλ(W ∗
λ (x)) ≥

∑
y∈S

px,y(f ∗(x))Uλ(W ∗
λ (y)).

De la desigualdad anterior obtenemos la siguiente expresión:

Uλ(W ∗
λ (x)) + δ(x) =

∑
y∈S

px,y(f ∗(x))Uλ(W ∗
λ (y)), (3.8)

donde

δ(x) :=
∑
y∈S

px,y(f ∗(x))Uλ(W ∗
λ (y))− Uλ(W ∗

λ (x)) ≤ 0, x ∈ S.

El Supuesto 3.1 (ii) nos garantiza la existencia de ρf∗(·), la distribución
invariante de la cadena de Markov inducida por f ∗ y se sigue que:

∑
x∈S

ρf∗(x) [Uλ(W ∗
λ (x)) + δ(x)] =

∑
x∈S

ρf∗(x)
∑

y∈S

px,y(f ∗(x))Uλ(W ∗
λ (y))


=

∑
y∈S

[∑
x∈S

ρf∗(x)px,y(f ∗(x))
]

Uλ(W ∗
λ (y))

=
∑
y∈S

ρf∗(y)Uλ(W ∗
λ (y)),

de donde se obtiene que: ∑
x∈S

ρf∗(x)δ(x) = 0 .

Como δ(·) ≤ 0, esta última igualdad y (3.1) dan como resultado que δ(·) = 0,
por lo que (3.7) y (3.8) implican que:

Uλ(W ∗
λ (x)−R(x, f ∗(x))) = Uλ(W ∗

λ (x)).

Usando que Uλ(·) es estrictamente creciente se tiene que R(x, f ∗(x)) = 0,
para todo x ∈ S, en contradicción con el Supuesto 3.1(iii).

Una vez demostrados los dos lemas anteriores, ahora presentamos el resultado
de unicidad de W ∗

λ .
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Teorema 3.1. Bajo los Supuestos 1.1 y 3.1, se tiene que existe un único punto
fijo del operador Tλ, esto es, existe una única función W ∗

λ ∈ [[0, G]] que satisface
que:

W ∗
λ = Tλ[W ∗

λ ] . (3.9)

Demostración. Sean Wλ0 y Wλ1 los puntos fijos del operador Tλ definidos en
(3.3). Por demostrar tenemos que

Wλ0 ≥ Wλ1 . (3.10)

Sea x ∈ S, entonces se tiene que:

Uλ(Wλ0(x))
= Uλ(Tλ [Wλ0 ] (x))

= mı́n

Uλ(G(x)), sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) + Wλ0(y))


≤ mı́n

Uλ(G(x)), sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) + Wλ1(y))


+ sup
a∈A(x)

eλR(x,a) ∑
y∈S

px,y(a)|Uλ(Wλ0(y))− Uλ(Wλ1(y))|


= Uλ(Tλ [Wλ1 ] (x)) + sup
a∈A(x)

eλR(x,a) ∑
y∈S

px,y(a)|Uλ(Wλ0(y))− Uλ(Wλ1(y))|


≤ Uλ(Wλ1(x)) + e|λ|∥R∥ sup
a∈A(x)

∑
y∈S

px,y(a)|Uλ(Wλ0(y))− Uλ(Wλ1(y))|
 .

Como Uλ(Wλ0)−Uλ(Wλ1) está acotada, del Supuesto 1,1 se deduce que existe
f̃ ∈ F tal que:∑

y∈S

px,y(f̃(x))|Uλ(Wλ0(y))− Uλ(Wλ1(y))|

= sup
a∈A(x)

∑
y∈S

px,y(a)|Uλ(Wλ0(y))− Uλ(Wλ1(y))|
 , x ∈ S,

de modo que:

Uλ(Wλ0(x)) − Uλ(Wλ1(x)) ≤ e|λ|∥R∥ ∑
y∈S

px,y(f̃(x))|Uλ(Wλ0(y))− Uλ(Wλ1(y))|.

Mientras que la desigualdad

Uλ(Wλ1(x)) − Uλ(Wλ0(x)) ≤ e|λ|∥R∥ ∑
y∈S

px,y(f̃(x))|Uλ(Wλ0(y))− Uλ(Wλ1(y))|,

se obtiene intercambiando los roles de Wλ0 y Wλ1 , por lo tanto, concluimos que:

|Uλ(Wλ0(x)) − Uλ(Wλ1(x))| ≤ e|λ|∥R∥ ∑
y∈S

px,y(f̃(x))|Uλ(Wλ0(y))−Uλ(Wλ1(y))|.
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Luego, como Wλ0 ≤ Wλ1 , se tiene que:

Uλ(Wλ0(x)) − Uλ(Wλ1(x)) ≥ e|λ|∥R∥ ∑
y∈S

px,y(f̃(x))Uλ(Wλ0(y))− Uλ(Wλ1(y))

≥
∑
y∈S

px,y(f̃(x))Uλ(Wλ0(y))− Uλ(Wλ1(y)).

Esta relación y la propiedad de Markov implican que para todo x ∈ S y
n ∈ N,

Uλ(Wλ0(Xn)) − Uλ(Wλ1(Xn)) ≥
∑
y∈S

pXn,y(f̃(Xn))Uλ(Wλ0(y))− Uλ(Wλ1(y))

= E f̃
x [Uλ(Wλ0(Xn+1))− Uλ(Wλ1(Xn+1))|Fn] ,

aśı se tiene que {Uλ(Wλ0(Xn)) − Uλ(Wλ1(Xn)),Fn} es una supermartingala
con respecto a P f̃

x .

Sea τ0 el tiempo de alcance al conjunto S∗
λ0 = {x ∈ S | Wλ0 = G(x)}, es

decir
τ0 = mı́n{n ∈ N | Xn ∈ S∗

λ0},

de modo que τ0 es un tiempo de paro con respecto a la filtración {Ft} definida
en (1.5), esto es, [τ0 = k] ∈ Fk para todo k ∈ N. Por otro lado, se tiene que

P f̃
x [τ0 <∞] = 1,

por el Supuesto 3.1. Luego utilizando que la función Uλ(Wλ0(·)) − Uλ(Wλ1(·))
está acotada, el teorema del muestreo opcional conduce a que:

Uλ(Wλ0(x)) − Uλ(Wλ1(x)) ≥ E f̃
x [Uλ(Wλ0(Xτ0)) − Uλ(Wλ1(Xτ0))] , x ∈ S.

Dado que Xτ0 ∈ S∗
λ0 en el evento [τ0 <∞], por la Observación 3.1 se tiene

que:
Uλ(Wλ0(x)) − Uλ(Wλ1(x)) ≥ 0 , x ∈ S.

Por lo que (3.10) se obtiene usando que Uλ(·) es estrictamente creciente.

3.2. Equilibrio de Nash
Ahora bajo los Supuestos 1.1 y 3.1, se demostrará que existe un equilibrio

de Nash con respecto al ı́ndice de recompensa total sensible al riesgo (1.7). En
primer lugar, tenemos que el Lema 3.2 garantiza que:

S∗ ̸= ∅,

donde S∗ es el conjunto definido en (2.20).

Por otro lado, recordando que la cadena de Markov asociada a cualquier
f ∈ F es comunicante y tiene una distribución invariante, por el Supuesto 3.1,
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se tiene que el conjunto S∗ es accesible desde cualquier estado inicial bajo cada
poĺıtica estacionaria, es decir:

P f
x [τ ∗ <∞] = 1, x ∈ S, f ∈ F, (3.11)

además de que:
Vλ(x, f, τ ∗) <∞, x ∈ S, f ∈ F. (3.12)

La propiedad (3.11) al igual como se hizo en el Lema 2.2 se puede extender
a la clase de todas las poĺıticas del jugador I. Esto implica que se cumple la
siguiente propiedad:

P π
x [τ ∗ <∞] = 1, x ∈ S, π ∈ P . (3.13)

Para la prueba de la existencia de un equilibrio de Nash necesitamos probar
bajo los Supuestos 1.1 y 3.1 las desigualdades presentadas en los Teoremas 2.3 y
2.4. La desigualdad (2.39) del Teorema 2.4 es válida en este caso debido a (3.13).
Para probar la desigualdad (2.36), tomamos x ∈ S arbitrario y consideremos
las dos siguientes posibilidades para el par (x, τ):

(i) P f∗
x [τ <∞] = 1, x ∈ S .

Para este caso la conclusión ya fue probada previamente.

(ii) P f∗
x [τ =∞] > 0, x ∈ S .

Sea el estado z0 como en el Supuesto 3.1(iii) y observemos que la propiedad
de comunicación da como resultado que:

P f∗

x [Xn = z0 i.o.] = 1,

donde i.o. significa infinitamente a menudo. Ahora, dado que R es no negativa
y que R (z0, f ∗(z0)) > 0, se deduce que:

P f∗

x

[ ∞∑
n=0

R (Xn, An) =∞
]

= 1,

y entonces, como el evento [τ =∞] tiene probabilidad positiva, se tiene que:

Vλ (x; f ∗, τ) = 1
λ

log
(

Ef∗

x

[
eλ(∑τ−1

t=0 R(Xt,At)+G(Xτ )I[τ<∞])
])

= 1
λ

log
(

Ef∗

x

[
eλ((∑τ−1

t=0 R(Xt,At)+G(Xτ ))I[τ<∞]+
∑∞

t=0 R(Xt,At)I[τ=∞])
])

⩾
1
λ

log
(
Ef∗

x

[
eλ
∑∞

t=0 R(Xt,At)I[τ=∞]
])

=∞,

por lo que la desigualdad en (2.36) también se cumple en este caso.

Se enuncia a continuación el resultado correspondiente al caso comunicante
y la prueba de la igualdad de la función valor del juego con el punto fijo es
independiente de la existencia de un equilibrio de Nash. Otra caracteŕıstica que
distingue los resultados de esta sección con respecto a la anterior.
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Teorema 3.2. Bajo los Supuestos 1.1 y 3.1, se cumplen las siguientes afirma-
ciones:

(i) Para todo x ∈ S,
Vλ(x; f ∗, τ ∗) = W ∗

λ (x).

(ii) El par (f ∗, τ ∗) ∈ F× T constituye un equilibrio de Nash.

Demostración. (i) Sea x ∈ S∗, entonces (3.11), (2.20) y (2.21) dan como
resultado que:

W ∗
λ (x) = G(x) y P f∗

x [τ ∗ = 0] = 1,

mientras que (1.1) y (1.7) conducen a que Vλ(x; f ∗, τ ∗) = W ∗
λ (x). Ahora se

probará que la siguiente igualdad se cumple para todo n ∈ N\{0} y x ∈ S\{S∗}:

Uλ(W ∗
λ (x)) =

n∑
k=1

Ef∗

x

[
Uλ

(
k−1∑
t=0

R(Xt, At) + W ∗
λ (Xk)

)
I[τ ∗ = k]

]

+ Ef∗

x

[
Uλ

(
n−1∑
t=0

R(Xt, At) + W ∗
λ (Xn)

)
I[τ ∗ > n]

]
. (3.14)

El argumento es por inducción sobre n. En primer lugar, observemos que
Uλ(W ∗

λ (x)) < Uλ(G(x)) cuando x /∈ S∗, por (3.9) y (2.20), y entonces se cumple
que:

Uλ(W ∗
λ (x)) = sup

a∈A(x)

∑
y∈S

px,y(a)Uλ (R(x, a) + W ∗
λ (y))

=
∑
y∈S

px,y(f ∗(x))Uλ (R(x, f ∗(x)) + W ∗
λ (y))

= Ef∗

x [Uλ (R(X0, A0) + W ∗
λ (X1))], x ∈ S \ S∗. (3.15)

Como P f∗
x [τ ∗ > 0] = 1, por (2.21), se sigue que:

Uλ(W ∗
λ (x)) = Ef∗

x [Uλ (R(X0, A0) + W ∗
λ (X1)) I[τ ∗ = 1]]

+ Ef∗

x [Uλ (R(X0, A0) + W ∗
λ (X1)) I[τ ∗ > 1]] .

una expresión que es equivalente a (3.14) con n = 1. Por otro lado, usando
que Xt /∈ S∗ para 0 ≤ t < τ ∗, por (2.21), la igualdad en (3.15) y la propiedad
de Markov dan como resultado que para cada n ∈ N la siguiente relación se
cumple casi seguramente con respecto a P π

x :

Uλ(W ∗
λ (Xn)) = Ef∗

x [Uλ (R(Xn, An) + W ∗
λ (Xn+1))| Fn, An] en [τ ∗ > n].

Multiplicando ambos lados de esta desigualdad por eλ
∑n−1

t=0 R(Xt,At)I[τ ∗ > n],
la cual es una variable aleatoria Fn-medible, una aplicación de (1.3) nos lleva a
que:

Uλ

(
n−1∑
t=0

R(Xt, At) + W ∗
λ (Xn)

)
I[τ ∗ > n]

= Ef∗

x

[
Uλ

(
n∑

t=0
R(Xt, At) + W ∗

λ (Xn+1)
)

I[τ ∗ > n]
∣∣∣∣∣Fn, An

]
.
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Ahora tomando esperanza con respecto a P f∗
x y utilizando la igualdad I[τ ∗ >

n] = I[τ ∗ = n + 1] + I[τ ∗ > n + 1] se tiene que:

Ef∗

x

[
Uλ

(
n−1∑
t=0

R(Xt, At) + W ∗
λ (Xn)

)
I[τ ∗ > n]

]

= Ef∗

x

[
Uλ

(
n∑

t=0
R(Xt, At) + W ∗

λ (Xn+1)
)

I[τ ∗ = n + 1]
]

+ Ef∗

x

[
Uλ

(
n∑

t=0
R(Xt, At) + W ∗

λ (Xn+1)
)

I[τ ∗ > n + 1]
]

.

Luego, combinando esta igualdad con la hipótesis de inducción, se sigue que
(3.14) es válida con n + 1 en lugar de n. Además, usando que Uλ(·) tiene signo
constante, el teorema de convergencia monótona da como resultado que:

ĺım
n→∞

n∑
k=1

Ef∗

x

[
Uλ

(
k−1∑
t=0

R(Xt, At) + W ∗
λ (Xk)

)
I[τ ∗ = k]

]

=
∞∑

k=1
Ef∗

x

[
Uλ

(
k−1∑
t=0

R(Xt, At) + W ∗
λ (Xk)

)
I[τ ∗ = k]

]

= Ef∗

x

[
Uλ

(
τ∗−1∑
t=0

R(Xt, At) + W ∗
λ (Xτ∗)

)
I[τ ∗ <∞]

]
= Uλ(Vλ(x; f ∗, τ ∗)),

donde la última igualdad se deriva de la combinación de (1.7) y (3.11). También
se tiene que a través del Lema 2.5, (3.11) y (3.12) implican que:

ĺım
n→∞

Ef∗

x

[∣∣∣∣∣Uλ

(
n∑

k=0
R(Xt, At)

)∣∣∣∣∣ I[τ ∗ > n + 1]
]

= 0.

Al tomar el ĺımite cuando n tiende a +∞ en el lado derecho de (3.14), las
dos últimas convergencias implican que Uλ(W ∗

λ (x)) = Uλ(Vλ(x; f ∗, τ ∗)), una
igualdad que usando que Uλ estrictamente creciente conduce a que W ∗

λ (x) =
Vλ(x; f ∗, τ ∗), con x ∈ S \ {S∗}.

(ii) Por las desigualdades (2.36) y (2.39), las cuales se cumplen bajo el modelo
comunicante que estamos considerando, se tiene que:

Vλ(·; π, τ ∗) ≤ W ∗
λ (·) ≤ Vλ(·; f ∗, τ), (π, τ) ∈ P × T ,

y combinando esto con la parte (i) se deduce de la Definición 1.1 que (f ∗, τ ∗)
es un equilibrio de Nash, completando la prueba.

Para complementar la parte teórica, en la siguiente sección presentamos
un ejemplo numérico que ilustra un método para identificar el punto fijo del
operador Tλ y, posteriormente, la estrategia que constituye un equilibrio de
Nash.
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3.3. Un ejemplo numérico
Consideramos el Ejemplo 3.1 e introducimos el Algoritmo 1, que describe

los pasos para calcular el punto fijo W ∗
λ . El algoritmo especifica cuáles son

los datos de entrada necesarios para su ejecución y detalla los elementos que
genera como salida.

Algoritmo 1 Método para encontrar el equilibrio de Nash en el Ejemplo 3.1.
Requiere: λ ̸= 0, {b1, b2, . . . , bN}, S = {1, 2, . . . , Ŝ}, with Ŝ ∈ N, G(x),
R(x, a), ϵ.
Asegura: Iter, W ∗

λ , f ∗, S∗.
1: W ← O, Ŵ ← 1, s← O ( donde O y 1 representan matrices de ceros y de

unos, respectivamente)
2: Iter ← 0, norm ← ∥Ŵ −W∥, m← 0.
3: while norm > ϵ do
4: for l = 1 : N do
5: s(l) = Uλ(R(0, l) + W (1)).
6: end for
7: m = mı́n{Uλ(G(0)), máx(s)}.
8: Ŵ (0) = log(m/sign(λ))/λ.
9: for k = 1 : Ŝ − 1 do

10: for l = 1 : N do
11: s(l) = b(l)·Uλ(R(k, l)+W (k+1))+(1−b(l))·Uλ(R(k, l)+W (k−1))
12: end for
13: m = mı́n{Uλ(G(k)), máx(s)}.
14: Ŵ (k) = log(m/sign(λ))/λ.
15: end for
16: for l = 1 : N do
17: s(l) = Uλ(R(Ŝ, l) + W (Ŝ − 1)).
18: end for
19: m = mı́n{Uλ(G(Ŝ)), máx(s)}.
20: Ŵ (Ŝ) = log(m/sign(λ))/λ.
21: norm = ∥Ŵ −W∥.
22: W ← Ŵ .
23: Iter ← Iter+1.
24: end while
25: W ∗

λ = Ŵ .
26: Calcula f ∗ y S∗ de acuerdo con (2.18) y (2.20), respectivamente.

Implementamos el Algoritmo 1 en MATLAB, y los resultados numéricos
del experimento se presentan en las Tablas 3.1 y 3.2. Es evidente que tanto el
número de iteraciones como el tamaño del conjunto S∗ aumentan a medida
que N crece. Además, se observa una discrepancia notable entre el número de
iteraciones para los valores positivos y negativos de λ, y que el tamaño del
conjunto S∗ vaŕıa significativamente al cambiar los valores de λ (ver Figura
3.1). Los resultados permanecen sin cambios a medida que los valores de Ŝ
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aumentan, manteniendo fijos N y λ. En cuanto a la estrategia f ∗, se observó
que, para valores positivos de λ, f ∗ generalmente adopta dos valores: el mı́nimo
y el máximo del espacio de acciones. En contraste, para valores negativos de λ,
f ∗ se mantiene prácticamente constante, asumiendo el valor mı́nimo del espacio
de acciones.

Tabla 3.1: Desempeño numérico del Algoritmo 1 para diferentes valores de N ,
manteniendo fijos Ŝ y λ.

N 2 3 4 5 6
Ŝ=100000 Iter 372 601 665 831 974
λ=1 |S∗| 10 14 22 29 27
Ŝ=100000 Iter 13 19 19 29 73
λ=-1 |S∗| 4 8 10 13 19

Tabla 3.2: Desempeño numérico del Algoritmo 1 para diferentes valores de λ,
manteniendo fijos Ŝ y N .

λ 1/2 -1/2 3/2 -3/2 5/2 -5/2
Ŝ=100000 Iter 780 775 816 11 881 9
N=4 |S∗| 10 10 28 5 54 7
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(a) Relación entre el número de iteraciones
y el tamaño del conjunto S∗ en función de
N , con λ = 1.

(b) Relación entre el número de iteraciones
y el tamaño del conjunto S∗ en función de
N , con λ = −1.

(c) Número de iteraciones para cada valor
de λ.

(d) Tamaño del conjunto S∗ para cada
valor de λ.

Figura 3.1: Resultados numéricos de la implementación del Algoritmo 1 del
Ejemplo 3.1.
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Resumen, Conclusiones y
Trabajo Futuro

En este trabajo de tesis, se estudió una clase de juegos de suma cero en
tiempo discreto, espacio de estados numerable, transiciones Markovianas y
recompensas acotadas, mediante el criterio de recompensa total sensible al
riesgo. La sensibilidad al riesgo es una caracteŕıstica muy importante que debe
tomarse en cuenta en la toma de decisiones. Por lo que es de vital importancia
extender los trabajos que se tienen en el caso neutral al caso sensible.

Estudiamos el juego G considerando dos modelos diferentes como lo fueron el
modelo absorbente y el modelo comunicante. Una vez explicada la dinámica del
juego, lo siguiente fue enfocarse en el operador de equilibrio. Vimos cuáles eran
sus caracteŕısticas importantes y nuestro primer resultado fue demostrar que
este operador tiene puntos fijos. Esta caracteŕıstica es primordial ya que a partir
de este punto fijo definimos las estrategias de los jugadores que constituyen un
equilibrio de Nash. Lo siguiente fue utilizar las desigualdades de los Teoremas
2.3 y 2.4, para en base a éllas, enfocar la prueba de la existencia del equilibrio
de Nash.

En el modelo absorbente, la prueba de la existencia del equilibrio de Nash
permitió demostrar de inmediato la igualdad de la función valor con el punto fijo,
aśı como la unicidad de dicho punto fijo. En el caso del modelo comunicante,
se caracterizaron a los puntos fijos del operador Tλ y se demostró que S∗

es distinto del conjunto vaćıo, una propiedad que se hab́ıa perdido al no
considerar el supuesto de la existencia de un estado absorbente. Además, se
demostró la unicidad sin depender de la igualdad entre la función valor y W ∗

λ ,
cuya demostración también es independiente de la existencia de un equilibrio
de Nash. Se presentó un ejemplo espećıfico de un juego que cumple con los
supuestos y que, además, se analizó numéricamente. Por lo tanto, en ambos
modelos se obtuvieron los resultados esperados y en el modelo comunicante
las demostraciones difieren ligeramente en su enfoque con respecto al modelo
absorbente.

Cuando un modelo cuenta con más de un estado absorbente, el espacio
de estados se divide en estados transitorios y recurrentes, lo que resulta en
múltiples clases de comunicación. Este caso fue analizado en el contexto de los
PDMs [1], donde el tomador de decisiones es averso al riesgo y el desempeño
de una poĺıtica de control se mide mediante el criterio del costo promedio a

53
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largo plazo. En [1] no se imponen condiciones de comunicación a la ley de
transición, por lo que la función de valor óptimo puede no ser constante. Para
abordar esta situación, se introduce el concepto de sistema de optimalidad, que
extiende la noción de ecuación de optimalidad y permite caracterizar la función
de valor óptimo a través de un sistema de ecuaciones. Considerar este caso en
el contexto de los Markov stopping games resulta un tema interesante, y podŕıa
explorarse en trabajos futuros.

Es importante señalar que una extensión a casos más generales con respecto
al espacio de estados es una tarea complicada, ya que como se sabe a partir de la
literatura sobre PDMs sensibles al riesgo, no siempre es posible. Un ejemplo de
esto se puede ilustrar en la siguiente situación. En 1972 [22], Howard y Matheson
demostraron que el costo promedio sensible al riesgo óptimo se determina
mediante una ecuación de optimalidad en modelos finitos y comunicantes.
Cuarenta años después, se demostró en [14] que el resultado pionero de Howard
y Matheson no se puede extender al caso de un espacio de estados numerable.
Por lo tanto, un problema futuro interesante es investigar la extensión factible
de los resultados presentados en este trabajo a espacios más generales, como los
espacios de Borel, y considerar la opción de incorporar posibles recompensas
no acotadas.

En el futuro, se podŕıan considerar otros criterios de rendimiento. Uno
de ellos seŕıa la recompensa total descontada sensible al riesgo, que no solo
incluiŕıa un coeficiente de sensibilidad, sino también un factor de descuento
para tener en cuenta el valor temporal de las recompensas. Este criterio ha
sido estudiado en el contexto de los PDMs [18], y en el caso de juegos, se
analizó en [37], donde los dos jugadores tienen la posibilidad de detener el
juego. Por otro lado, una situación común que se presenta en las matemáticas
aplicadas es que los datos necesarios para proponer un modelo matemático
presentan ambigüedad, vaguedad o caracteŕısticas aproximadas del problema
en estudio. Una posibilidad para abordar esta situación es utilizar la teoŕıa
difusa. Las recompensas difusas han sido analizadas en el contexto de los PDMs,
considerando tanto espacio de estados finito [10] como numerable [16]. Este
enfoque resulta particularmente útil en entornos reales, donde las recompensas
pueden depender de factores impredecibles o subjetivos. En este sentido, como
extensión de este trabajo, se espera ampliar los resultados al ámbito difuso.



Apéndice A

Definiciones y Teoremas
Auxiliares

A.1. Definiciones
Definición A.1. (Función signo [2]) La función signo, sgn : R→ {−1, 0, 1} de
un número real es una función por partes que se define de la siguiente manera:

sgn(x) =


−1, x < 0,

0, x = 0,
1, x > 0.

A.2. Teoremas
Teorema A.1. (Desigualdad de Jensen [4]) Sea g una función convexa definida
en un intervalo abierto I de números reales, el cual puede ser acotado o no.
Sea X una variable aleatoria definida en el espacio de probabilidad (Ω,F , P ),
tal que X(ω) ∈ I, para todo ω. Supongamos que E[X] es finita. Si H es una
sub σ-álgebra de F , entonces E[g(X)|H] ≥ g(E[X|H]) c.s.. En particular,
E[g(X)] ≥ g(E[X]).

Teorema A.2. (Teorema de Dini [24]) Si la sucesión de funciones continuas
fn : X → R converge monótonamente a la función continua f : X → R en el
conjunto compacto X, entonces la convergencia es uniforme.

Teorema A.3. (Teorema de convergencia dominada [31]) Sea X1, X2, . . . una
sucesión de variables aleatorias tales que ĺımn→∞ Xn = X casi seguramente,
y para cada valor de n, |Xn| ≤ Y , para alguna variable Y con E[|Y |] < ∞.
Entonces,

ĺım
n→∞

E[Xn] = E[ ĺım
n→∞

Xn].

Teorema A.4. (Teorema de convergencia monótona [31]) Sea X1, X2, . . . una
sucesión de variables aleatorias tales que 0 ≤ X1 ≤ X2 ≤ · · · y ĺımn→∞ Xn = X
casi seguramente. Entonces,

ĺım
n→∞

E[Xn] = E[ ĺım
n→∞

Xn].
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