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Introduccion

En este trabajo se trata la modelacion de programas matematicos acoplando
el ambiente estocastico con el difuso. Especificamente estudiamos los procesos
de decisién de Markov (PDMs) estacionarios considerando como criterios de
rendimiento a la recompensa total esperada y el caso descontado total, ambos
en tiempo discreto con espacio de estado finito y conjunto de acciones finito y
compacto. Las funciones de recompensas se plantearon en una version difusa
([6)-[8]) con una forma conveniente de tipo trapezoidal en funcién de una re-
compensa estandar nitida.

La razén por la cual recurrimos al proceso matemaético de difuminar a las
recompensas, los cuales son elementos de un conjunto de referencia, se debe
a que resolver el problema en version nitida implica conocer los valores de los
coeficientes en la funcién objetivo, pero en muchas ocasiones no conocemos
esta o puede que esta informacion sea imprecisa o incierta, lo que hace que
el sistema sea mucho més complejo y por lo tanto, mas dificil de resolver, o
que simplemente no se pueda resolver. Pero al considerar los valores de las
recompensas como valores de un conjunto difuso trapezoidal, ya no estamos
restringiendo dichos valores a ser especificos, sino que les estamos permitiendo
encontrarse dentro de un rango de valores, de esta manera estariamos modelan-
do el desconocimiento de informacién precisa. Asi que ahora la modelacion y la
metodologia de solucién desarrollados para PDMs en este trabajo, consideran
incertidumbre en las recompensas.

Plantear a las recompensas como funciones difusas trapezoidales nos lleva
a la necesidad de utilizar herramientas de la teoria de los conjuntos difusos
propuesta por L. Zadeh en su articulo: [35], la cual surgié justamente de la
necesidad de una nueva forma de representar la imprecisién y la incertidum-
bre, y asi solucionar problemas complejos con informacién de este tipo, en la
que la logica tradicional no es suficiente. Esta teoria esta bien establecida y ha
sido extendida a varios campos de las ciencias matematicas, como la teoria de
control ([5] y [12]), y también ha sido de alto impacto en dreas aplicadas (ver
por ejemplo ([17] y [23]). Adem4s en el control de sistemas, principalmente de
trafico, trenes, metros, mecatrénica, lavadoras, aires a condicionado, ascenso-

9



10 INDICE GENERAL

res, robdtica y en muchos otros sistemas ([14] y [15]). Estas son solo algunas
de las tantas situaciones donde se puede aplicar la teoria de nimeros difusos.

Ahora bien, se usaran las herramientas de la teoria de ndmeros difusos
lo cudl nos permitird representar a la funcién objetivo como un ndmero tra-
pezoidal difuso, pero el problema a resolver no deja de ser un problema de
maximizacion: el de encontrar una politica que maximice a la funcién objetivo
ahora difusa, por lo que es necesario una relacién de orden, en el sentido difuso,
que nos permita decidir si un valor difuso de la funcién objetivo es mayor o me-
nor que otro, cuando esta es evaluada en diferentes politicas y, de esta manera,
comparar politicas y encontrar las 6ptimas. Dicha maximizacién se establecié
con respecto al orden parcial en los a—cortes de nimeros difusos (ver [16]).

El resultado obtenido de las operaciones con nimeros difusos trapezoidales
también serd un numero difuso trapezoidal, por lo que el resultado no sera
radicalmente un valor 6ptimo especifico, sino que se encontrara en un rango de
posibilidades.

La motivacién de este trabajo surgié del hecho de que nuestro lenguaje es
impreciso, a diario usamos expresiones con rangos como; angosto, no tan angos-
to, mas o menos grueso, grueso y muy grueso, o cuando decimos poco, mucho
o bastante, estamos usando palabras que contienen ambiguedad e imprecisién,
estos conceptos no tienen limites perfectamente definidos, de esto podemos ob-
servar que razonamos de forma difusa, esta es la razén por la cual los conjuntos
con esta naturaleza se presentan con mucha frecuencia en el mundo real, asi que
en muchos problemas matematicos, los datos son imprecisos y es muy compli-
cado operarar con ellos, asi que el proceso de la modelacion y de resolucién es
mas complejo. Dado que la teoria de nimeros difusos representa la imprecision
de cada dato considerandolos como intervalos de posibles valores con cierto
nivel de certeza, esta mejora en gran medida la clasificacién y consigue acertar
mas en la resolucién de problemas que presentan este tipo de informacién, por
lo que se convierte en un método mucho mas efectivo ya que se adapta mejor a
las expresiones del ser humano. Ademads, la teoria difusa no solo permite efec-
tuar cédlculos cuando hay informacion con incertidumbre, sino también cuando
tengamos que combinar informacién cuantitativa y cualitativa, trata a la vez
datos numéricos e informacién categérica con jerarquia, mediante aproximacién
matematica, permitiéndonos tomar decisiones en situaciones donde se requiera
razonar de forma imprecisa o aproximada, lo que nos permite caracterizar de
una mejor manera las distintas aplicaciones [3]. Los trabajos de investigacién
relacionados con el tema aqui desarrollado son los siguientes: [20] y [31]. En
ambos trabajos, versiones del problema de control difuso descontado total con
espacios de estados y acciones finitos.

El contenido de este trabajo estd estructurado de la forma siguiente: el



INDICE GENERAL 11

Capitulo 1 introduce los conceptos basicos de la teoria de conjuntos difusos,
destacando a los nimeros difusos trapezoidales junto con su aritmética y propie-
dades de interés fundamentales para desarrollar los resultados que se aplicaran
en los capitulos posteriores. Se describe el orden entre ntmeros difusos y la
métrica utilizada en las que se basé el procedimiento propuesto. Finalmente,
dado que los estados del sistemas son aleatorios, lo que hace que las recom-
pensas sean aleatorias difusas y la esperanza en la funcién objetivo se trate de
la esperanza de variable aleatoria difusa, se establece la definicién de los ele-
mentos aleatorios con valores de numeros difuso y sus correspondientes valores
esperados, [11], [33] y [35]. Con esto estarfamos proporcionando las herramien-
tas necesarias de la parte de la teoria de ntimeros difusos. En la primera parte
Capitulo 2, se brindan los conceptos bésicos de la teoria estandar sobre los
PDMs [26] con espacio estado finitos tanto con criterio de recompensa total y
recompensa descontada. Para tales tipos de PDMs, la funcién de recompensa se
plantea difusa trapezoidal conveniente en funciéon de una recompensa estandar
nitida. El problema de control difuso consiste en determinar una politica de
control que maximice la recompensa total esperada difusa y una que maximice
la recompensa descontada esperada difusa. La politica 6ptima y la funcién de
valor é6ptimo para el problema de control difuso se caracterizan por medio de la
ecuacion de programacién dinamica del problema de control 6ptimo estandar
y, se obtiene que la politica de control éptimo del problema estandar y del
difuso coinciden. Ademds la funcién de valor 6ptimo difuso tiene una forma
trapezoidal afin en funcién de la funcién de valor 6ptimo estdndar, quedando
caracterizada su solucién por la solucién del problema estandar. Por lo tanto,
problema de control difuso se reduce al problema de control é6ptimo estandar.
Este es el principal aporte de este trabajo en el campo del control difuso. En
los Capitulo 3 y 4 ilustramos la teoria desarrollada, proporcionando aplicacio-
nes de esta a problemas en extensiones difusas para un problema de inventario
[24], de paro éptima, de apuesta, seleccién de portafolio y un juego entre dos
personas [32]. Finalmente se brindan las conclusiones.
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Capitulo 1

Conceptos basicos de teoria
difusa

Antes de proporcionar las definiciones y resultados bésicos sobre la teoria de
légica difusa que son fundamentales en el desarrollo de esta tesis, iniciaremos
dando una breve explicacién sobre los conjuntos difusos y la teoria de légica
difusa con el fin de poder distinguir mejor entre estos conjuntos y los que no lo
son.

Conjuntos como por ejemplo, el de las computadoras, sabemos muy bien
quienes son sus elementos, este incluye a todas las computadoras, pero excluye a
los celulares. Conjuntos como estos se conocen como conjuntos nitidos, certeros
o clasicos, ya que cada elemento del conjunto de referencia o pertenece o no
pertenece a él, y bien sabemos que dicha pertenencia estd determinada por la
funcién indicadora, la cual toma solo uno de los valores del conjunto {0, 1} para
cada elemento del conjunto de referencia, esta es la manera en que la funciéon
indica si el elemento pertenece o no al conjunto. Pero también existen conjuntos
difusos, por ejemplo, el de las personas sabias, el de las personas altas o el de
los vasos anchos entre otros. Si consideramos los juicios declarativos:

= Una persona de 30 anos es sabia.
= Una persona de 170 cm es alta.
= Un vaso de 8 cm de didmetro es ancho.

No podriamos responder ni que son absolutamente verdaderos ni que son com-
pletamente falsos de forma objetiva, por lo cual no podemos definir claramente
la pertenencia de los elementos al conjunto de las personas sabias, al de las
personas altas ni al de los vasos anchos porque, ja partir de qué momento de-
cidimos que la persona deja de ser sabia o alta, o que el vaso deja de ser ancho

13



14 CAPITULO 1. CONCEPTOS BASICOS DE TEORIA DIFUSA

y pasan a ser de la otra clasificacién?, si una persona de 170 cm es considera-
da alta y le quitamos 5 mm jya no es considerada como alta sino como una
persona de baja estatura?. Recordemos que la altura promedio de una persona
mexicana se encuentra entre 1.58 y 1.64 metros. En estos casos no solo vamos
a considerar dos opciones, que es sabia o que no es sabia, que es alta o que
no es alta, que es ancho o que no es ancho. El conjunto de las personas altas
es un subconjunto difuso del conjunto de todas las personas, y nos permitira
considerar toda una gama de opciones, personas muy altas, altas, de estatura
promedio, de estatura baja y de estatura muy baja. No hay una transicién clara
entre lo que es falso y lo que es verdadero, contrariamente a si los considerara-
mos como conjuntos clasicos.

La teoria de légica difusa se aplica a conceptos que ni son totalmente ciertos
ni completamente falsos, considerando una tercera posibilidad de pertenencia,
la pertenencia parcial, que es cuando un elemento puede pertenecer parcialmen-
te a un subconjunto dado. Esta es la diferencia fundamental entre los conjuntos
difusos y los nitidos, que un elemento puede estar parcialmente ausente o pre-
sente, y esto no sucede en los conjuntos nitidos, donde la pertenencia y la
ausencia de un elemento a un conjunto son mutuamente excluyentes. La teoria
de conjuntos difusos considera la pertenencia de los elementos de un conjunto
como una transiciéon que es gradual al permitir que sus valores de veracidad
estén dentro del intervalo [0, 1], donde 0 indica la falsedad total, 1 indica la
verdad absoluta, y cualquier valor de pertenencia entre cero y 1 permite medir
pertenencia parcial de un elemento del conjunto de referencia al subconjunto
difuso dado. Por esta razén, la teoria de conjuntos difusos es conocida como
una légica de multiples valores, ya que permite definir a los valores intermedios
entre verdadero o falso, o como en el ejemplo de la altura de las personas, define
a los valores intermedios entre alto o bajo, o entre si o no, es decir, traslada la
transicion entre la pertenencia y no pertenencia a un conjunto que es gradual y
mientras mayor sea el grado de pertenencia (més cercano a 1), mds pertenece
el elemento al subconjunto difuso.

La definicién formal de un subconjunto difuso se muestra a continuacién.

1.1. Conjuntos difusos

Definicién 1.1. Sea A un conjunto no vacio. Entonces un subconjunto difuso
[ en A se define en términos de una funcion de pertenencia T' : A — [0, 1].

Esta funcion de pertenencia f, no es mas que una funcién que permite entre-
lazar los elementos del conjunto de referencia A con los elementos del intervalo
[0,1], ya que asigna a cada elemento z de A un valor real I'(z) dentro del in-
tervalo [0, 1], el cual mide qué tanto pertenece z del conjunto de referencia A
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al subconjunto I' con caracteristicas de impresicién.

El grado de pertenencia considera la transicién gradual desde la no perte-
nencia hasta la pertenencia total de x € A al conjunto difuso I'. Asi, f(m) =0
significa que x no pertenece a I, f(x) = 1 significa pertenencia total de x en I' y
0< f(ac) < 1 significa pertenencia parcial de z en I'. Mientras més cercano a 1
sea el grado de pertenencia de x, més pertenece x al subconjunto difuso I' de A.

Asi que, cuando trabajamos con un subconjunto difuso, lo primero que
necesitamos hacer es representarlo de la manera méas precisa posible definiendo
una funcién de pertenencia que caracterice a dicho conjunto, esta no es tnica,
va que va a depender de la realidad que pretendamos describir, sin embargo,
suelen usarse algunas funciones clasicas comunes como las que se muestran més
adelante las cuales dan flexibilidad a la modelizacién que utiliza expresiones
linguisticas.

1.2. «—cortes

Uno de los conceptos mas convenientes por su gran utilidad dentro de la
teoria de conjuntos difusos para realizar operaciones aritméticas entre ellos, es
la de sus a—cortes, ya que permiten descomponerlos y para asi determinar de
manera mas simple algunas propiedades de las operaciones aritméticas entre
numeros difusos.

Definicién 1.2. El a-corte de un conjunto difuso I', denotado por I'y, se
define como el conjunto T'q :={z € A|I'(z) > a} (0 <a <1) y Ty se define
como la clausure de {x € A | T'(x) > 0} denotado por cl{x € A |T'(z) > 0}.

Denotaremos por I'y y I'; al soporte y al nucleo de cualquier conjunto difuso
I, respectivamente.

La definicién de los a—cortes indica que son las proyecciones de los cortes
a través del grafico de un conjunto difuso sobre el conjunto de referencia A.

Estos permiten describir a todos los niveles con el que se tiene una seguridad
de que los elementos pertenecen o no al conjunto difuso.

1.3. Numeros difusos

Los nimeros difusos son una clase especial de conjuntos difusos.
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Definicién 1.3. Un nimero difuso I' es un subconjunto difuso definido en el
conjunto de nimeros reales R (es decir, tomando A =R en la Definicion 1.1),
que satisface:

a) T es normal, es decir, existe o € R con T'(z0) = 1;

b) T es convezxa, lo que implica que fa es convezo para todo o € [0,1];

¢) T es semicontinua superiormente;

¢) Ty es compacto.

La funcién de pertenencia debe representar a los niimeros reales cercanos a
un ndimero real especifico 7, y ya que r satisface la condicién, entonces se debe
cumplir que I'(r) = 1, esta es la razén por la cual la funcién de pertenencia de
un numero difuso es normal.

Las propiedades citadas en la Definicién 1.3 implican que la funcién de
pertenencia corresponde a un numeros difuso si y solo si, es de la siguiente
forma:

0 si x<uw;
l(z) siz e (wy,a)
IMz)=<1 six € [a,b] (1.1)
r(z) sixz € (byws)
0 si x> wo

con 0 <w; <a<b<wy eR,[19], donde I(x) es una funcién continua por la
derecha y creciente en (wy,a) y r(x) una funcién decreciente y continua por la
izquierda en (b, ws).

Al conjunto de los niimeros difusos se denotard por F(R), este conjunto es
una extensién de los nimeros reales.

Existe una gran diversidad de formas para las funciones de pertenencia
asociadas a un numero difuso. Ejemplos de las mas usadas son la trapezoidal
y la triangular, por tener formas graficas mas simples, lo que permite que se le
asocie una interpretacién més natural [10]. La ecuacién de un ndmero difuso
trapezoidal se muestra a continuacién.

Definicién 1.4. Un numero difuso I' se llama ntimero difuso trapezoidal
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st su funcion de pertenencia tiene la siguiente forma:

0 st <l
x—1

o= sil<z<m

I(z)=<1 sim<zx<n (1.2)
% sin<xz<p
0 sip<ax,

donde I, m, n y p son nimeros reales conocidos, conl < m < n < p. Un
nidmero difuso trapezoidal simplemente se denota por (I, m,n,p).

El caso en el que m =n en (1.4) se llamard nimero difuso triangular y se
denotard simplemente por (I, m,p).

Ejemplos grdficos de cémo es un numero trapezoidal y triangular difuso se
muestran en las Figuras 3.2 y 1.2 respectivamente.

1.0
0.8
0.6
0.4

0.2
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Figura 1.2: Ndmero difuso triangular (0.5,3,7) .

Las funciones de pertenencia triangulares se usan para describir valores in-
termedios como el concepto de tibio sin considerar un margen de aproximacién
o de tolerancia alrededor del valor que se toma como el mejor representante
del concepto lingiiistico asociado al conjunto difuso y también para aproximar
cualquier nimero difuso [3] y [36]. Por ejemplo, la temperatura del agua tibia
se puede representar con el nimero difuso triangular (18°,24°,30°).

Cuando se pretende describir valores intermedios como tibio, maduro o altu-
ra promedio pero implicando un margen de aproximacién o de tolerancia alrede-
dor del valor que se toma como el mejor representante del concepto lingiiistico
asociado al conjunto difuso, se usa la funcién de pertenencia trapezoidal. Por
ejemplo, una persona es considerada madura si su edad esta comprendida entre
35 y 55 anos. Asi que el conjunto de las personas maduras se puede representar
con el numero trapezoidal (0, 35, 55, 85).

Podemos considerar el caso degenerado en el que [ = m = p, obteniéndose
la representacion difusa del nimero real m con la funcién de pertenencia dada
por:

~ 1 six=m
m(w) = {O si x # m. (13)

Estas funciones de pertenencia de ntmeros difusos que acabamos de pre-
sentar, son de las mas simples de asociarles una interpretacion de manera muy
natural, por lo que son de las mas especiales. Esto es lo que las hace ser de las
més estudiadas, usadas y generalizadas en sistemas difusos [1] y [22].

Podemos observar claramente que para el caso de los nimeros difusos, las
proyecciones de sus a—cortes son intervalos cerrados y acotados en R, todos los
a—cortes son subconjuntos del soporte I'g, este es el intervalo mas grande y a
medida que a aumenta, los a—cortes se van haciendo intervalos mas pequenos,
siendo I'; el méas pequeno de todos. Asi, la familia de los a—cortes forma una
sucesion decreciente de conjuntos nitidos compactos.

Mas especificamente, para un numero difuso trapezoidal, los a—cortes se
observan en la Figura 1.3.
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N R/

0.2

Figura 1.3: Representacién grafica para los a—cortes de un ntimero difuso tra-
zoidal.

Recordemos que una de las condiciones que debe complir un conjunto difuso
para ser un numero difuso, es que el soporte sea compacto, y debido a que es
subconjunto de R por tratarse de un niimero difuso, entonces es un interva-
lo cerrado y acotado, lo cual implica que todos sus a—cortes, también serdn
compactos, especificamente intervalos cerrados y acotados pues forman una su-
cesion decreciente de conjuntos nitidos. Esto facilitard concretar las operaciones
aritméticas de numeros difusos en términos de las operaciones aritméticas de
los intervalos cerrados.

Lema 1.1. Para un ndmero difuso trapezoidal T' = (I,m,n,p), los a—cortes
correspondientes estdn dados por I'y = [(m —Da+1,p— (p —n)a], a € [0,1]:

Demostracion. Usando la Definicién 1.2, (I,m,n,p)(x) > a siy solo si

Tz —1 —T
>y u

3

hS]
\
3

Esto es equivalente a
r>(m-Da+les  z<p-—(p—n)a,
por lo tanto

(I,m,n,p)a =[(m—Da+1,p—(p—n)al.

Se puede observar facilmente que los a—cortes para un nimero difuso trian-
gular (I, m,p), son de la forma:

(lvmvp)a = [(m - l)a + l7p - (p - m)a]
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Ejemplo 1.1. El a—corte del nimero difuso trapezoidal (2,5,7,10) es
(2,5,7,10) = [(65—2)a+2,10—-(10—-T)a] =[83a+ 2,10 — 3a] Va € [0,1].

Para o = 0.5,
(2,5,7,10)0.5 = [3.5,8.5].

1.4. Aritmética de los numeros difusos

Necesitamos un teorema de representacién [13] y [34] que es una herramien-
ta basica para el andlisis de niimeros difusos, ya que nos permite descomponer
a cualquier conjunto difuso en una familia de conjuntos no difusos utilizando
los a—cortes. Asi también nos permite a partir de una familia de a—cortes ani-
dados, reconstruir a un conjunto difuso, por lo que si un problema es formulado
en el marco de los conjuntos difusos, este puede ser resuelto transformando esos
conjuntos difusos en su correspondiente familia de a—cortes para determinar
la solucién mediante técnicas no difusas.

Teorema 1.1. Sea €(R) el conjunto de todos los subconjuntos converos y com-
pactos de R que cumole:

a) Para cualquier ' € §(R), I'(z) = sup,eo,1j{min(a, Ir, (z))},z € R.

b) Reciprocamente, para una familia de subconjuntos decreciente {D, €
C(R)|a € [0,1]}, el conjunto T'(x) = sup,e(o1{min(a, 1p,(z)),x €
R}, z € R satisface que T’ € F(R).

Esto significa que todo numero difuso se puede representar totalmente por los
a—cortes.

“

Definicién 1.5. Sean I' y T conjuntos difusos. Si “ x 7 denota la suma,
resta, multiplicacion o divivion entre numeros difusos, entonces se define un

conjunto difuso en R, T'x Y, mediante la funcidn de membresia: (T' * T)(u) =
SUDy,—4xy MI{T'(2), Y (y)}, para todo u € R.

Proposicion 1.1. Se puede probar que si I y T son numeros difusos, entonces
1) T'x T es también un nidmero difuso.

2) Tx7Y)y =To*xTy (para el caso del cociente, siempre que el cero no
pertenezca a Y, para todo o).

Esto se prueba mediante la definicion estandar de las operaciones entre
conjuntos en R.
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De los incisos 1), 2) y el Teorema 1.1, podemos concluir que

(C*T)(x) = sup {min(a, L.y, (7)), 2 € R}
ael0,1]
= sup {min(a, Ir v (7)), € R}.
a€l0,1]

Esta forma de operar aritméticamente entre los nimeros difusos a través de
las operaciones de sus a—cortes es muy conveniente, ya que los a—cortes de los
nameros difusos son intervalos cerrados y acotados, asi definimos las operacio-
nes entre los numeros difusos en términos de las operaciones entre intervalos,
por lo cual, la raiz de los cdlculos entre niimeros difusos se encuentra en el
analisis de intervalos.

Definicién 1.6. La aritmética de intervalos estd definida a través de:
a) [a,b] + [c,d] = [a+ ¢, b+ d]
b) [a,b] — [c,d] = [a—d,b— (]
¢) la,bl.[e,d] = [min(ac, ad, be, bd), maz(ac, ad, be, bd))

v )]

Como consecuencia de esto, es posible obtener el siguiente resultado para
nimeros difusos trapezoidales [28].

d) [a,b]/[c,d] = [min(%, 2,2, %), maz(,

D\@"

&\9
o

. . *
En lo que sigue, usaremos las notaciones +* y >~ para aclarar que estamos
operando con conjuntos difusos.

Lema 1.2. SiT' = (I1,m1,n1,p1) y T = (la,ma,na,p2) son dos nimeros
difusos trapezoidales y X\ un niumero real positivo, entonces se sigue que

a) T 4+* T = (1 + la,m1 + ma,n1 + na, p1 + p2).

b) Si {(lgympg,ne,pr) : 1 < k < M} es un conjunto finito de M nimeros
difusos trapezoidales entonces

M

Z (U, e, Mty pi) = (Zlk,zmk,znk,ZPk>
k=1 k= k=1

k=1
Y

¢) AT = (Al, Am, An, Ap).
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Demostracion.  a) Usando (1.1) se tiene que

Lo =[(m1—L)a+11,p1 — (p1 — 1)

Yo = [(m2 —l2)a + 2, p2 — (p2 — n2)al.

Entonces, por la Definicién 1.6 a) de suma de intervalos y por el inciso
2) de la Proposicién 1.1, se tiene que

(F + T)a = I'a+ Ta
= [((m1+m2) = (I1 +12))a+ (I1 +12), (p1 + p2) — ((p1 + p2) — (M1 + n2))al.

Por lo tanto, la funcién de membresia de la suma es

0 siz < (I +1)
z—(l1+1 .
m si(ly412) <z < (mi+ms)
(F+35)(x) =41 st (m1+mz) <z < (n1+nz) (14
Gl s (1 +no) <@ < (p1 + o)
0 si (p1+p2) <z

La funcién de pertenencia en (1.4) estd asociada al niimero difuso

(I1 + Iz, my + ma,ny + n2,p1 + p2).

b) Esta prueba se realiza por induccién.

¢) Usando el inciso b), se realiza la prueba.

1.5. Orden méaximo en §(R)

En optimizacién difusa o en la toma de decisiones en entornos difusos, es de
fundamental importancia ordenar o clasificar conjuntos difusos. En este trabajo
emplearemos el orden maximo de nimeros difuso el cual se basa en el orden de
los a—cortes, por lo que se define en términos del orden de intervalos cerrados
y acotados en R definido de la siguiente forma:

Definicién 1.7. Sea I',T € F(R), Ty, = TE,TY] y Yo = [YL, TY]. Entonces
I'<* Y siy solo si Ty, <Yy, para todo o € [0,1], es decir, T <* T si y solo si
It <t o TV <YV para todo o € [0,1].
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Ejemplo 1.2. (2,5,6,10), = [3a+2,10—-3a] y (7,9,13,17), = [2a+7,17—30].
Ademds, ya que 3a+2 < 2a+ 7 y 10 — 3a < 17 — 3« para todo a € [0,1],
entonces (2,5,6,10) <* (7,9,13,17).

No es dificil verificar que el orden “ <* ” es un orden parcial en F(R).

Observacién 1.1. Tomamos z1,z2 € R, y sean I' y T nidmeros difusos con
funciones de pertenencia dadas por I'(z) = Y(z) =1, z = z;, y I'(z) = T(x) =
0, z # zr, k = 1,2, respectivamente. Entonces, es fdcil ver que I' <* T es
equivalente a z1 < 2o.

1.6. Meétrica en el conjunto de nimeros difusos

Definicién 1.8. Sea C(R) el conjunto de todos los intervalos acotados Y ce-
rrados en R. Para ¥ = [a;, a,], ® = [by, by] € C(R) definamos

pC(R)(\I}a (I)) = méux(|al — bl‘ s \au — bu|) (15)

Lema 1.3. [2] La funcion d y el conjunto C(R) cumplen las siguientes propie-
dades:

a) pew) define una métrica sobre C(R).
b) (C(R),pcer)) es un espacio métrico completo.

Ahora si I' T € F(R), entonces I'y, y T,, son conjuntos compactos porque
su funcién de pertenencia es semicontinua superior y tiene soporte compacto.
Por lo tanto, se define pg(r) : §(R) x F(R) — R por

Psm) (L, T) = sup, P5)(Tas o). (1.6)
agc|0,

Lema 1.4. [27] pzw) es una métrica en F(R) .

Definicién 1.9. Se dice que una sucesion {I'™} de ndmeros difusos es conver-

’, : . N n __
gente al nimero difuso p, escrito como lim;,_, T = .

Hacieindo uso del Lema 1.2 b) para ntimeros difusos trapezoidales y de la
métrica de Hausdorf 1.6, se puede verificar que se cumple la siguiente afirma-
cion:

Lema 1.5. Si {yx = (Ix, mg, nk,pr) : k > 1} es una sucesion de nimeros di-

fusos trapezoidales tales que Y po q lie,d poey Mk Y gy Tk Y D peey P COTVETGEN,
entonces

t
*
> uks
k=1
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converge cuando t —» oo al numero difuso trapezoidal:

k=1 k=1 k=1

Lema 1.6. [27] (F(R), pr(w)) es un espacio métrico completo.

1.7. Variable aleatoria difusa

Siguiendo [21] y [25] se establecen las siguientes definiciones sobre varia-
bles aleatorias difusas y sus esperanzas. Para esto, €(R) denota la clase de
subconjuntos compactos no vacios de R, y si (21,.41) v (Qs2,.43) son espacios
medibles, entonces A; ® Ay denota la o—algebra generada por el producto de
las o—algebras A; y As.

En muchos de los problemas que se presentan en la realidad que involucran
aleatoriedad, los datos que se requieren considerar son imprecisos. Este tipo de
datos es lo que se conoce como variables aleatorias difusas, es decir, ademaés de
estar presente la aleatoriedad, también estd la incertidumbre que se debe a la
imprecision en la definicién de los datos. Los problemas que se consideran en
los proximos capitulos son de este tipo, por tal razén, incluimos los conceptos
relacionados con variables aleatorias difusa y fundamentar la formalidad de di-
cho concepto.

Las variables aleatorias difusas en el sentido de [25], representan elementos
aleatorios cuyos valores son nimeros y han sido un modelo ttil para un gran
cantidad de elementos aleatorios con valores imprecisos.

Ahora, se definird una variable aleatoria difusa. En este caso, se adoptard
la definicién propuesta en [25].

Definicién 1.10. Sea (€2, A) un espacio medible y (R, B(R)) el espacio medible
del conjunto de los nimeros reales. Una funcion Y:Q— F(R) se dice que es
una variable aleatoria difusa asociada con (Q, A), si la seccion Yy, : @ — €(R)
que es la funcion de nivel o definida por Yo (w) = (Y (w))a para todo w € 2 y
o € [0,1] satisface que Gr(Yy) = {lwz)eQ xRz e (Y(w))a} € A2 B(R),

para todo a € [0,1]. Fquivalentemente, Y debe verse como un intervalo genera-
lizado con una funcién de pertenencia pn y a—corte: Y (w)o = [V~ (w), YT (w)].

Definicién 1.11. Sea (Q, F, P) un espacio de probabilidad y X una variable
aleatoria discreta con rango {81, 32,...,5} C F(R). La esperanza matemdtica
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de Y es un nimero difuso, E(Y), tal que

E(Y)=) &P = 3). (1.7)
i=1
Definicién 1.12. Dado un espacio de probabilidad (2, A, P) una variable alea-
toria difusa Y asociada a (Q,A) se dice que es una variable aleatoria difusa
integrable acotada con respecto a (0, A, P) si existe una funcion h : Q — R,
h e LY(Q, A, P) tal que para todo (w,x) € 2 xR con z € Yy(w), se cumple que
|| < h(w).

1.8. Esperanza de una variable aleatoria difusa

Ahora presentemos la formalizacién del valor esperado de una variable alea-
toria difusa, destacando una de sus propiedades relevantes para nuestro estudio
en los proximos capitulos.

Definicién 1.13. Dada una variable aleatoria difusa acotada e integrable Y
asociada con respecto el espacio de probabilidad (2, A, P), entonces el valor

esperado difuso de Y en el sentido de Aumann es el tinico conjunto difuso de

R, E*[Y] tal que para cada « € [0,1]:
(2'7), = { [ rr@) 1 £:2 = R e LP)f0) € T 1P1)- (18)

Lema 1.7. Sea (Q, A, P) un espacio de probabilidad. Sea Y una variable alea-
toria discreta no negativa asociada a (S, A, P) tal que E[Y] existe. Entonces,
Y =Y(B,C,D, F) es una variable aleatoria difusa asociada a (2, A, P), y

E*[Y] = E[Y](B,C,D, F). (1.9)

Demostracion. Sea Y una variable aleatoria discreta no negativa con rango
finito o numerable denotada por Y[Q] = {y1,y2,...} y sea [Y = y;] := {w €
Q| Y(w) =y}, j=1,2,... Tomemos © = (B,C,D,F) con a-cortes O, =
[¢(@), s(e)], o € [0,1]. Fijemos « € [0, 1]. Considere la multifuncién dada por

Yo() = (Y(w)a = (Y(@)O)a = Y (w)[a(a), s(a)], (1.10)

w € .

Ahora, notemos que
Gr(Y,) = {(w,z) €e QxR |z € Yy (w)}
={(w,2) e xR |z €Y (w)lg(a),s(a)]}

) (1.11)
= U = 3] x ilafe). ).



26 CAPITULO 1. CONCEPTOS BASICOS DE TEORIA DIFUSA

Por lo tanto, Gr( ») € ARB(R). Como « es arbitraria, de la Definicién 1.10 se
deduce que Y es una variable aleatoria difusa. A continuacién, tenga en cuenta

que, para cada w € 2, ~
Yo(w) =Y (w)[B, F].

Definamos h : 2 — R dado por

w € Q. Entonces, trivialmente:
|| < h(w),

(w,z) € QxR con z € Y(w)[B, F]. Ademds, claramente E[h] = FE[Y] es finito.
Por lo tanto, a partir de la Definicién 1.12, Y es una variable aleatoria difusa
integrable acotada con respecto a (2, A, P). Ahora, a partir de la Definicién
1.13, existe un tunico valor esperado difuso E* [)7], para cada «,

E[Y]O,

] la(a), s(a)]
] {z:2 € [g(a),s(a)]}
w)zdP(w) : Y(w)xeY(w)[q(a),S(a)]}

I

/f JAP(w f:Q_+Kfeyumfwn4?w»wsw@
- (') (1.12)

por lo cual, (E*[Y])s = E[Y][¢(a), s(a)] para cada «, es el a-corte del niimero
trapezoidal dado para
E[Y](B,C,D, F),

es decir, R
E*Y]|=E[Y](B,C,D,F).

O

Lema 1.8. Sean X yY wariables aleatorias difusas de tipo trapezoidales. En-
tonces

a) B[X] € F(R).
b) E[X +Y] = E[X]+ E[Y].
¢) E\X] = AE[X], A > 0.
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Los conceptos y resultados sobre numeros difusos que hemos presentado
hasta ahora, son la base para los resultados obtenidos en el Capitulo 2 sobre
PDMs con criterios de rcompensa esperada total y el caso descontado.
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Capitulo 2

PDMs: Version nitida y
difusa

Cuando se intenta resolver problemas relacionados con sistemas que evolu-
cionan de forma aleatoria y que consideran las recompensas que se obtendran
de las decisiones actuales y a las posibles oportunidades de toma de decisiones
en el futuro, puede suceder que la probabilidad de que ocurra un evento esté
en funcién solamente de lo ocurrido en la etapa inmediata anterior que se ha
observado (estado actual del sistema) y no de toda la historia observada en el
pasado, es decir, que satisface la propiedad de Markov. Adicional a esto, los
datos requeridos para la modelaciéon podrian ser imprecisos. Por tal razon, en
este capitulo se presentard primeramente la teoria de Procesos de Decisién de
Markov (PDMs) en su versién nitida, los cuales son una clase muy especial
de modelos de decisién secuencial que estan planteados con algin componente
estocéstico y que modelan la evolucion temporal de muchos sistemas aleatorios
que satisfacen la propiedad de Markov. Luego introduciremos un MDP difuso
conveniente de PDM difuso en las proximas secciones. La literatura detallada
sobre la teoria de procesos de decisién de Markov se puede consultar en las
referencias: [18] y [26].

2.1. Modelo de decision de Markov: caso nitido

A continuacion, explicamos el modelo de decisién de Markov, el cual es un
modelo de toma de decisiones secuenciales con la propiedad de Markov, es decir,
es un modelo que consiste de una serie de etapas llamadas épocas de decisién
en las que en cada una de ellas, se observa el estado del sistema, se toma una
decisién bajo la incertidumbre sobre el estado del sistema en la préxima época
de desicion, y que ademads la probabilidad de que ocurra un evento dependa

29
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solamente del estado actual del sistema. El estado actual entonces proporciona
toda la informacién til para prondsticos, por lo que el desarrollo pasado puede
ser olvidado porque sélo el presente influye.

Definicién 2.1. Un modelo de decision de Markov es una quintupla que con-
siste de los siguientes elementos:

M:= (X, A {A(z) :2€ X},Q,R) (2.1)
donde

a) X es un conjunto finito, el cual es llamado el espacio de estados del
sistema.

b) A es un espacio de Borel denominado el espacio de control o de acciones
factibles.

¢) Definimos {A(z) : x € X} es una familia no vacia de subconjuntos A(x)
de A, donde los elementos son las acciones factibles cuando el estado del
sistema es x.

d) Q es una ley de transicion, el cual es un kernel estocdstico en X dado
K:={(z,a): 2 € X,a € A(z)}. Donde K es denominado el conjunto de
pares de estado—acciones factibles del sistema.

d) R:K — R es una funcién de recompensa en un paso.

2.1.1. Politicas

Dado un Modelo de control de Markov, introduciremos el concepto de politi-
ca.

Definicién 2.2. Una politica es una sucesion m = {m; : t = 0,1,...} de kérneles
estocdsticos my en el conjunto de control A dada la historia H; del proceso hasta
el tiempo t, donde H; :=K x H;_1,t =1,2,... y Hy = X.

Las politicas o estrategias son férmulas que eligen una accién en cualquier
evento que ocurra en el futuro. El conjunto de todas las politicas es denotado
por II.

Definicién 2.3. Una politica de Markov deterministica es una sucesion m :=
{fe} tal que fr € F parat = 0,1,..., donde F denota el conjunto de todas las
funciones f: X — A tales que f(x) € A(x), para toda x € X.

Al conjunto de todas las politicas Markovianas las denotaremos por M.

Definicién 2.4. Una politica de Markov m = {f;} se dice que es estacionaria
si f¢ es independiente de t, es decir que fiy = f para toda t =0,1....
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En este caso, 7 es identificada como f y F denota el conjunto de politicas
estacionarias.

2.1.2. Construcciéon del proceso de Markov

El modelo de control de Markov y las politicas generan el espacio de proba-
bilidad que da lugar al Proceso estocéstico de interés (el Proceso de Decisién de
Markov). Dicho espacio de probabilidad es (€', '), el cual consiste del espacio
muestral candnico Q' = H,, := (X x A)>® y F’ la correspondiente o—4lgebra
producto. Los elementos de €’ son sucesiones de las forma w = (x¢, ag, z1, ay...)
conxy € X ya; € A paratodat =0,1,.... Las proyecciones z; y a; son llama-
das las variables de estados y acciones, respectivamente.

Sea m = {m} una politica arbitraria y u una medida de probabilidad ar-
bitraria en X llamada la distribucién inicial. Entonces, por el teorema de C.
Tonescu-Tulcea [26], existe una tinica medida de probabilidad P en (', F') la
cual tiene soporte en Heo, es decir, P (Hy) = 1y tal que, para cada B € B(X),
CGB(A)yhtEHt

Pi(zo € B) = p(B),
P[Lr(at € C|ht) = ﬂ't(C‘ht), (22)
Pi(zi41 € Blht,ar) = Q(Blwy, ay).

La tercera ecuacién en (2.2) se llama propiedad de Markov, asi que con
conocimiento del presente, el pasado ejerce ninguna influencia en el futuro.

El proceso estocastico (', 7', Pi{x}) es llamado Proceso de Decisién
de Markov a tiempo discreto o Proceso de Decisién de Markov.

Observacién 2.1. El operador esperanza con respecto a Py lo denotaremos
por Ey, . Si pu estd concentrada en un estado inicial x € X, entonces P y
E, » son escritas como PJ y E; -, respectivamente.

2.1.3. Ley de transicién para un modelo de ecuaciones
en diferencias

Con frecuencia, la ley de transicion de un proceso de control de Markov es
especificado por una ecuacién en diferencias de la forma

Ty = F(ze, a4, &), (2.3)
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t=0,1,2,..., conxg =2 € X conocida, donde {£;} es una sucesién de variables
aleatorias independientes e identicamente distribuidas (i.i.d.) con valores en un
espacio finito S y una distribucién comun A independiente del estado inicial
gy F: K xS — X es una funcién medible conocida. En tal caso, la ley de
transicion @ estd dada por:

Q(Blx,a) = P(x441 € Bley =x,a;,=a)
= P(F(x,a4,&) € Bloy = x,a; = a)
= P(F(x,a,ft)EB)
— [ 1a(F@0,9)du(s 24)

b'e
= E[I3(F(z,a,9))],

con B € B(X) y (z,a) € K, donde Ip es la funcién indicadora del conjunto
B C X, FE es la esperanza con respecto a la distribucién g y € es un elemento
genérico de la sucesion {&}.

2.2. PDMs con recompensa total esperada

En esta seccién consideremos un Modelo de Decisiéon de Markov estaciona-
rio a tiempo discreto y un conjunto de politicas I, definimos a continuacion el
criterio de rendimiento conocido como recompensa total esperada.

Definicién 2.5. Para cada x € X y m € 11, la recompensa total esperada en la
etapa N es la ganancia cuando se ha usado la estrategia 7, dado que el estado
inicial del sistema es x y se define por

N-1

> R(Xy,ar) + Ry (X,)

t=0

v(m,z) = Ep, mell,z e X. (2.5)

El criterio de recompensa total esperada cuando se ha usado la estrategia
m, dado que el estado inicial del sistema es x se define por

’U(ﬂ',l‘) = Eﬂ-,m

> R(Xy, at)] . (2.6)

t=0

Definicién 2.6. El mdzximo beneficio es entonces la funcion de valor dptimo
y se defne como:
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V(z) = supv(mz),xe X. (2.7)
well

2.2.1. Problema de control 6ptimo para el modelo

El problema de control éptimo consiste en encontrar una politica 7* € II
tal que

v(r*,x) = V(x) (2.8)

x € X, en tal caso, 7" es llamada una politica éptima. Esta es una sucesién
especial ya que cuando operamos con ella, se obtiene el mejor beneficio.

Fl siguiente teorema, proporciona un algoritmo para encontrar la funcién
de valor V(z) y a una politica éptima 7*. Bajo condiciones adecuadas sobre la
funcién de recompensa en un paso y la ley de transicién se caracterizan las fun-
ciones de valores éptimos V' mediante una ecuacién funcional. El conocimiento
de V permite obtener una politica éptima determinista Markoviana estaciona-
ria.

Teorema 2.1. Sean Vy, Vi, ...,V funciones en X definidas hacia atrds por
Vn(z) := Ry(x) (2.9)

yparat=N—-1,N—-2,..,1,0

Vila) = md g [R@:,a) + [VintQule.a)|. (2.10)

Supongamos que estas funciones son medibles y que para cadat = 0,1,2,3..., N—
1, existe un selector fi € F tal que fi(x) € A(x) alcanza el mdximo en la ecua-
cion (2.10) para todo x € X. Esto es queVx € X yt=0,1,.... N — 1,

Vi(z) == R(z, fi) + / Viar () Q(dylz, f1). (2.11)

Entonces, la politica de Markov deterministica ©™ = {fo, f1,..., fn-1} es
optima y la funcion de valor V' es igual a Vy, es decir,

V(z) =WV(z) =v(n*,z) VzeX. (2.12)
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Este teorema impone al modelo de control de Markov una importante supo-
sicidn, la cual se denomina condicién seleccion medible, el cual puede enunciarse
de varias maneras. Los siguientes supuestos son una recopilacién de las con-
diciones necesarias para resolver los PDMs con la técnica de Programacién
Dinamica, que se basan en garantizar que se cumpla la Condicién de Seleccién
Medible y el método de aproximaciones sucesivas si se trabaja en horizonte
infinito.

Lema 2.1. Dado un modelo de control de Markov y sea u : X — R una
funcion medible, entonces

u* () 1= MAT 4(g) [R(x,a) + /u(y)Q(dym,a)} (2.13)

es medible y existe un selector f € F tal que la funcion entre corchetes alcanza
su mdzimo en f(x) € A(x) para todo x, es decir

u'(@) = R f) + [ u()QUle. ) (214)
Enunciamos algunas condiciones generales bajo las cuales se sostiene el su-
puesto del Lema 2.1.

Condicién 2.1.  a) El conjunto de restricciones de control A(x) es compac-
to para todo x € X;

b) La recompensa R es tal que R(x,.) es Ls.c. (semicontinua inferior) en
A(z) para cada x € X;

¢) La funcion [y v(y)Q(dy|z,a) definida en K satisface una de las dos con-
diciones siguientes:

1) [ v(y)Q(dylz,.) es l.s.c. en A(x) para cada v € X y cada funcion
acotada continua v en X;

2) [y v(y)Q(dylz,.) es Ls.c. en A(x) para cada x € X y cada funcidn
acotada medible v en X.

Condicién 2.2. a) A(z) es compacto para todo x € X y la multifuncion
x+— A(z) es Ls.c.

b) La recompensa R es l.s.c. y acotada por debajo.
¢) La ley de transicion cumple una de los siguientes supuestos:

1) Débilmente continua, es decir, [ v(y)Q(dy|x,a) es continua y aco-
tada en K para cada funcién acotada continua v en X.
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2) Fuertemente continua, fX v(y)Q(dy|x,a) es continua y acotada en
K para cada funcion medible acotada medible v en X.

Definicién 2.7. Una funcion v : K — R se dice que es inf—compacta en K,
st para todo x € X yr € R, el conjunto {a € A(z)lv(x,a) <r} es compacto.

Condicién 2.3.  a) La recompensa R es inf—compacta en K, Ls.c. y acotada
inferiormente

b) La ley de transicion cumple uno de los siguientes supuestos:

1) Débilmente continua.

2) Fuértemente continua.

Teorema 2.2. a) Cada una de las Condiciones 2.1 y 2.2, implican el Su-
puesto 2.1 para cualquier funcion medible no—negativa.

b) La Condition 2.3 implica el Lema 2.1 si, bajo (b1), v es non—negativa
l.s.c., o, bajo (b2), si u es una funcién medible nonnegativa. Si, adicio-
nalmente, la multifunction

z s A*(z) = {a € A@)lu" = c(x,0) + / u(y)Q(dylz, a))

es semicontinua inferiormente, entonces u* es semicontinua inferiormen-
te.

En las dos secciones siguientes consideremos el espacio de estados de tipo
discreto, por lo que las ecuaciones (2.5-2.7) quedan de la siguiente forma:

= Recompensa total esperada:

V(Z.aﬂ-) = Ez T

s

ZR(xt,at)] . (2.15)

t=0

= Recompensa en T'—etapas.

V(Za 7T) = Ei,ﬂ'

T
> R(xy, at)] . (2.16)
t=0

Por lo tanto, una estrategia 7* es 6ptima si para todo i € X

V(@) = ;ggV(z,w*) (2.17)

La funcién V es llamada la funcién de valor éptimo.
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Supuesto 2.1. 1. Para cada (i,a) € K, R(i,a) >0
2. V(i) < oo, para cada i € X.
Lema 2.2. [26] y [29]

= La funcion de valor dptimo satisface la siguiente ecuacion de optimalidad:
para cada i € X,

V(i) = suw |R(G,a)+ Y pii(@Vo(i)| - (2.18)
a€A(i) jex

= SiW : X — [0,00) satisface que W (i) > supge aciy[R(i, a)+)_ pij(a)W ()]
para cada i € X, entonces W > V.

Lema 2.3. [9]. Bajo el supuesto 2.1, existe una politica estacionaria dptima

fo-

2.3. PDMs con recompensa total esperada di-
fusa
Ahora presentamos el nuevo modelo de decision de Markov difuso.

Definicién 2.8. Un modelo de decision de Markov es una quintupla que con-
siste de los siguientes elementos:

(X A(AG) i € X} {ps(a) | j € Xha€ ADLR),  (219)

El modelo de decisién de Markov difuso tiene los mismos componentes que
el modelo de decisién de Markov nitido (2.1), solo que ahora se considera una
funcién de recompensa difusa. Asi, la evolucién de un sistema difuso estocdstico
es la siguiente: si el sistema esta en el estado z; = x € X en el tiempo ¢ y se
aplica el control a; = a € A(z), entonces pasan dos cosas:

a) se obtiene una recompensa difusa R(z,a).

b) el sistema transita al siguiente estado z;41 de acuerdo con la ley de
transicion @, es decir,

Q(B|z,a) = Prob(ziy1 € Blzy = z,a; = a),

con BC X.
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Los conjuntos de politicas estacionarias y aleatorias coinciden para am-
bos modelos, ademés, para cada i € X y m € Il existe un espacio canénico
(Q, A, P, ) con la sucesién correspondiente {x¢, ag, %1, a1, ...} de estados y de-
cisiones respectivamente.

Antes de definir una funcién objetivo para el modelo (2.19), se establecerd
la funcién de recompensa difusa R a utilizar, la que serd especificamente de
tipo trapezoidal bajo el siguiente supuesto.

Supuesto 2.2. Sea R(i,a) > 0 para cada (i,a) € K y sean B, C, D, y F
numeros no negativos tales que: 0 < B < C < D < F. Se supondrd que

R(i,a) = R(i,a) (B,C,D, F), (2.20)

para todoi € X ya € A(i), donde R : K — R es una funcidn de recompensa no
negativa como se considerd en la seccion anterior y (B,C, D, F) es un nimero
trapezoidal como en (1.4).

Observacién 2.2. Observemos que 0 <* R(i,a), para todo i € X y a € A(i).

Lema 2.4. Seai € X yn €1l, y sea (Q, A, P, ;) el espacio candnico corres-
pondiente fijo. Sea Y wuna variable aleatoria discreta mo megativa asociada a
(Q,A, P, ;) tal que E; z[Y] existe. Supongamos que se cumple el Supuesto 2.2.
Tomei € X ym €1Il, y sea (Q,A, P, ) el espacio candnico correspondiente
fijo. Entonces,

a) Para cada T > 0,

T
E(xt,at = ZR x¢,at) (B,C, D, F), (2.21)
t=0 t=0

M~

es una variable aleatoria difusa y

T

E xtaat

(B,C,D,F).  (2.22)

T
E R .’Et, (I,t
t=0

b) Definamos:

Hyinite = {w €| ZR(mt,at) (w) < +oo}

t=0

Hy = {w €N | ZR(mt,at) (w) =+oo}.

t=0
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Entonces,

> o S0 R(zi,a:) (w)(B,C,D,F), weH
E xt,@t ~
0, we Hy
(2.23)

t=0

es una variable aleatoria difusa, y

o0

E »’Ut, at

(B,C,D,F).  (2.24)

(oo}
E R l‘t, at
t=0

Demostracion.  a) Observe que para cada T > 0, Z?ZOR(mt,at) es una
variable aleatoria discreta no negativa (recuerde que X y A son conjuntos
finitos). En consecuencia, la parte a) se sigue del Lema 1.7, con YV =

oo R (e ).

b) Consideremos para cada T > 0, Sy := ZtT:O R (x4, a¢), con rango finito

dado por

[ ] - {yl ay2 3. '7yl{~p}
y considere los conjuntos medibles [St = yj] = {w €EN|Y(w) = y;*-r},
j=1,2,..., k7. Sean § = 32° R (x1,a1) y S = Z R (x4, a4).

t=0

Notemos que por el Supuesto 2.2, 0 < E; ;[S] < oo lo que implica que

S es finito a.s. [P]] (ver Ejercicio 4Q, p. 39 en [4]), es decir, el conjunto

medible H,, satisface que P (H.) = 0. Ahora, del Lema 1.2 en [4] se

sigue que
. H
$lw) = { 5@ wE (2.25)
0, w € Hy,

es medible, y con esto se tiene que §(w) = S’(w)(B, C,D,F), w e, que
es

i (2.26)
07 w e Hoo

Q {S(OJ)(B,C,D,F), OJEI{finite
Observe que, para w € H, es decir, si S(w) < oo resulta que
in_ R(zy(w), ar(w) = 0.

y recordando que X y A son conjuntos finitos, se sigue que existe un
entero positivo 7 = 7(w) tal que

R(xt(w)v at(‘*})) =0,
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para todot > 7, 0
S(w) = S (w),

y en este caso también se cumple que:

S(w) = S, (w). (2.27)

Ahora, tengamos en cuenta la multifunciéon dada por
Sa(@) = (8(@))a = (S(@)O)a = S(w)[a(a), s(a)], (2.28)
w € Q. (Recordar que © = (B,C, D, F) con a-cortes O, = [g(a), s(a)],

€ [0,1].)

Gr(8a) = {(w,2) € 2 x R | & € S(w)la(a), s(a)] }

too kr (2.29)

U UISr =91 x 5] la(a), s(a)] | U [Hoo x {0}].

T=0j=1

Por lo tanto, Gr(S,) € A ® B(R). Dado que « es arbitrario, de la Defi-
nicién 1.10 resulta que S es una variable aleatoria difusa. Y similar a la
prueba de la parte a) de este lema se sigue que (2.24) se cumple.

O

Lema 2.5. Supongamos que el Supuesto 2.2 se cumple. Tomemos i € X Y

m € Il y sea (Q, A, P, ) el espacio candnico correspondiente fijo. Entonces,
para cada T > 0,

T T
_Z*E(xtaat) :ZR(xt7at)(Bach7F)7 (230)
t=0 t=0
Y
T T
i Z*R zi,a)| = Eix ZR x,a¢)| (B,C, D, F), (2.31)
t=0 t=0
Ademds,
S=> "*R(zi,a;) = Y _ R(x1,0,)(B,C, D, F), (2.32)
t=0 t=0
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- _ {Ei»ﬂ' [EtoiOR($t7at)] (BvchaF)v
E ﬂft, ap)| =4~
t=0 0
Observacién 2.3.  a) El caso (degenerado) en el que en el modelo de deci-

sion (2.19) E(z, a) tiene una funcion de pertenencia dada por:

0 six# R(i,a), (2.33)

~ {1 six = R(i,a)
para todo i € X ya € A(i) implica que R es una variable aleatoria difusa
Y

E; .[R] = E; «[RIL, (2.34)

T,

para todo i € X yw € II. Asi, el problema de control dptimo difuso des-
crito en (2.40) y (2.41) se reduce al problema de control dptimo descrito
en (2.1).

b) Tenga en cuenta que el Lema 2.4 es vdlido para todas las variables alea-
torias difusas y sus esperanzas.

2.3.1. Problema de control 6ptimo para el modelo difuso

Definicién 2.9. Para cadai € X ym € 11, la esperanza difusa correspondiente
viene dada por:

*

o0
E R $t7at
t=0

Ahora,seaie X ymell,yT > 0:

V(i,m) = E, (B,C,D,F). (2.35)

= i,

oo
E R wt,at
t=0

- XT:* E} . [E (a:t,at)] , (2.36)

t=0
Vi se conoce como recompensa total esperada difusa de 1" etapas.

Observacion 2.4. Ndtese que la recompensa total esperada difusa de T etapas
(ver (2.36)) es un nimero difuso trapezoidal, especificamente,

Vr(i,m) = (BVr(i,n), CVr(i,w), DV (i, ), FVip(i, 7)), (2.37)

para ™ €Il yi € X, donde Vi es la recompensa total nitida de la etapa T .
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Lema 2.6. Supongamos que se cumple el Supuesto 2.2. Entonces, para cada
i€ X ymell, {Vr(i,m)} converge y

V(i,m) = limy_ o Vrli,r) = > Ef, [E(mt,at)]
t=0
= (BV(i,7),CV(i,x), DV (i,x), FV(i,7)), (2.38)
donde
V(i,m) = Eix[R(x:,a)] €R.
t=0

Demostracion. Sean m € Il y x € X fijos. Para simplificar la notacién en esta
prueba se denotard V = V (m, x) and Vp = Vp(w, ). Entonces, los a—cortes de
(2.36), estan dados por

AT . = (BVy,CVp, DV, FVp),
= [B(l — a)VT + aCVrp, F(l — a)VT + OéDVT].

Analogamente,

A:=(BV,CV,DV,FV),
=[B(l-a)V+aCV,F(1—-a)V +aDV].

Por lo tanto, por (1.6), se obtiene que

Py (Vr(i,m), V(i,7)) = supacio.pzc) (AT, A).

Ahora, debido a la identidad méx(c,b) = (c+b+|b—¢|)/2 con b, c € R, resulta
que
p&(C)(AT7 A) = (1 — Oé)D(V — VT) + OéC(V — VT)

Entonces,

[73(11@)(‘7% ‘7) = SUPaclo,1] (V- VT)(D —a(D - C))

WD, (2.39)

Por tanto, cuando T tiende a infinito en (2.39), se concluye que
im pg)(Ve, V)= lim (V —Vy)D
T— 00

T—00

=0.
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Ahora, el problema de control éptimo difuso es el siguiente: determine 7, €
IT (si existe) tal que:
V(i,m) <* V(i,m,), (2.40)

para todo ¢ € X y 7 € II. En este caso es posible escribir

V(i,m) = sup;‘renff(i,w), (2.41)

i € X y se dice que m, es dptimo. Ademas, la funcién /‘};(z) = V(i,m,) para
1 € X se llamard funcion de valor éptimo difusa.

Lema 2.7. Supongamos que se cumple el Supuesto 2.2. Entonces, para cada
i€ X, V,(i) es una funcion acotada, es decir, existe K € F(R) tal que V(i) <*
K,ieX.

Demostracion. Tomemos 7 € Il 'y 7 € X fijos. Entonces, como consecuencia de
(2.38), el a—corte de V (i, ) estd dado por

V(i,m)o = [BV(i,7) + oV (i,7)(C — B), FV(i,7) — oV (i,7)(F — D)].

Notemos que ya que X es finito, podemos encontrar un K > 0 tal que V(7,14) <
K. (Observe que debido a que X es finito, es posible tomar K para obtener
V(m, i) < K, para todo i € X.) En consecuencia, observe que

BV (i,7) + aV(i,7)(C — B) < BK + a(C — B)K,

FV(i,m) —aV(i,m)(F — D) < FK(1 — o) + aDK
= FK — o(F — D)K.

En consecuencia, \7(i,77) <K= (BK,CK,DK,FK). Por lo tanto, ‘70(1) <*

K (ver (2.41)). Como i y 7 son arbitrarios, el resultado es el siguiente. O

Teorema 2.3. Bajo el Supuesto 2.2 se cumplen las siguientes afirmaciones.

a) La politica dptima del problema de control difuso es la misma que la
politica optima del problema de control optimo.

b) La funcién de valor difuso éptima estd dada por

V(i) = (BV(i),CV (i), DV(i)),i € X. (2.42)

Demostracion.  a) Sean w € Il 'y i € X fijos. Primero observemos que (2.35)
es equivalente a

V(i,m):= (BV(i,m),CV(i,m), DV (i,7), FV (i, 7)),
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como consecuencia del supuesto 2.2. Entonces, el a-corte de V(w, x) viene
dado por

V(m,2)a = [(C — B)V(i,n)a + BV (i,n), FV(i,n) — (F — C)aV (i,)].
Ahora, por el Teorema 2.1, existe f, € F tal que

(C = B)V(i,ma+ BV (i,m) < (C — B)V (i, fo(i))a + BV (i, fo(4)).

FV(i,m)a — (F — C)aV (i,1) < FV (i, f.(i))a — (F — C)V (i, f,(i)).

Dado que 7 € X y w € II son arbitrarios, el resultado se cumple debido a
(2.41).

b) Por la parte a) de este Lema, se sigue que
V(@) = (BV (i, fo(0), OV (i, fo(i)), DV (i, fo(0), FV (i, fo(i)),
para cada ¢ € X, aplicando asi el Teorema 2.1, se concluye que
V(i) = (BV(i),CV (i), DV (i), FV(i)),i € X.
O

2.4. PDMs con recompensa total descontada (ca-
so nitido)
En esta seccién, se consideran los Procesos de decisiéon de Markov con re-

compensa descontada total en tiempo discreto con espacios de estados finitos,
conjuntos de accién compactos tanto en el caso de horizonte finito e infinito.

Definicién 2.10. (X, A,{A(z) :z € X},Q, R), un modelo de Markov, enton-
ces la recompenza descontada total esperada se define como sigue:

v(m,x) == Ey »

iﬁtR(Xt,at)] : (2.43)

t=0

m € I,z € X, donde B € (0,1) es un factor de descuento dado. Ademds, la
recompensa descontada total esperada con un horizonte finito es definida de la
forma siguiente:

vp(m, ) = Ey x

T-1
> ﬁtR(Xt,at)] : (2.44)

t=0
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para cada x € X ym € Il donde T es un entero positivo.

La funcion de valor éptimo estd definida como

V(z) := suprenv(m, ), (2.45)

rz e X.

2.4.1. Problema de control 6ptimo para el modelo
El problema de control 6ptimo es encontrar una politica 7* € II tal que
v(r™,x) = V(x), (2.46)

x € X, en tal caso, 7* es llamada la politica éptima. Definiciones similares
pueden ser establecidas andlogamente para vr. En este caso, Vr denota la fun-
cién de valor éptimo para el problema de control éptimo con un horizonte finito.

Supuesto 2.3.  a) Para cada © € X, A(x) es un conjunto compacto en
B(A).

b) La funcion de Recompensa R es una funcidn acotada y no—negativa.

¢) Para cada x,y € X. los mapeos a —> R(z,a) y a — Q({y}}x,a) son
continuas en a € A(x)

La prueba del siguiente teorema que proporciona el teorema de Programa-
cién Dindmica puede ser consultado en [18] y [26].

Teorema 2.4. Bajo el supuesto 2.3, las siguientes afirmaciones se cumplen:

a) Definamos Wy (z) =0y paran=T —1,...,1,0, consideremos

Wh(x) := mazae s { R(x, a) + BE[W, 11 (F(x, A, 6))]}. (2.47)

x € X. Entonces para cada n =0,1,...,T — 1, existe una f,, € F tal que

Wn(x) = R(m,a) + 6E[Wn+1(F(xa fn($)7f))]a (2'48)

x € X. En este caso, 7* = {fo,..., fr—1} € M es la politica 6ptima y
Vr(z) = vp(n*, ) = Wo(x),z € X.
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b) La funcién de valor éptima V| satisface la siguiente ecuacién de progra-
macién dinamica:

V(z) = mazqae azy{R(z,a) + BE[V (F(x,a,))]}, (2.49)
r e X.

¢) Existe una politica f* € F tal que el control f*(z) € A(x) que alcanza el
méximo en (2.49) es decir, para todo = € X,

V(z) = R(z, f*(z)) + BE[V (F(z, f*(2),£))]- (2.50)

d) Definamos la funcién de iteracién de valor como sigue:

Vn($) = minaeA(m){C('T7 a’) + ﬂE[VTL—l(F(x? [ (l‘), g))]}’ (2'51)

para todo z € X y n = 1,2,..., con Vp(.) = 0. Entonces la secuencia de
puntos {V,,} de funciones de iteracion de valor converge puntualmente a
la funcién de valor éptimo V', es decir,

lim V,,(x) =V(x)

n— oo

r e X.

Observacion 2.5. Como consecuencia del Teorema 2.4, los siguientes
hechos se mantienen:

a) Por la parte a) del Teorema 2.4, en el caso de recompensa esperada
descontada con un horioznte finito, el dptimo es alcanzado en una
politica Markoviana, por lo tanto,

suprenvr (m,2) = supren{vr(m, )}, (2.52)

z e X.

b) Por la parte c) del Teorema 2.4, en el caso de recompensa esperada
descontada con un horizonte infinito, el dptimo es alcanzado en una
politica optima estacionaria. Entonces se sigue que:

SUPWGH’UT(TFPT) = SuprFUT(fa JJ)}, xz e X. (253)
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2.5. PDMs descontado con recompensa difusa

En esta seccién presentamos los procesos de decision de Markov descontados
en tiempo discreto con espacios de estados finitos, conjuntos de acciéon com-
pactos de horizontes finitos e infinitos y recompensa difusa de tipo trapezoidal
bajo el criterio de recompenza difusa descontada total esperada. El problema
de control éptimo correspondiente se establece con respecto al orden maximo
difuso. La solucién éptima difusa estd relacionada a un PDM con descuento
affn con una recompensa no difusa. En el Capitulo 4 se proporcionan aplica-
ciones de la teoria desarrollada en un modelo de horizonte finito de un sistema
de inventario en el que se utiliza un algoritmo para calcular la solucién éptima,
y, adicionalmente para el caso de horizonte infinito, un PDM y un competitivo
PDM (también conocido como juego estocdstico) se suministran en un contexto
econdémico y financiero.

Consideremos un modelo de decisién de Markov difuso como en (2.19), don-
de los primeros cuatro componentes son los mismos que en el modelo dado en
(2.1). La componente R, corresponde a una funcién de recompensa difusa en K.

2.5.1. Criterio de recompenza difusa descontada total es-
perada

Para cada politica 7 € M y estado = € X, sea

T-1
8(i,m) = > B'Ei [Rlaa0)] (2.54)
t=0

donde T es un entero positivo y E7 - es la esperanza con respecto a ]Sf la cual
estd definida por la expresién (1.7). La expresién dada en (2.54) se denomina
recompensa difusa descontada total esperada con un horizonte finito.

V(i,m) = iBthw [R(ftaat)} ; (2.55)
=0

y, la esperanza en (2.55) estd definida en (1.7), cuando {a:} es inducida por
una politica estacionaria .

De esta forma, el problema de control de interés es la maximizacién de la
recompensa difusa total descontada esperada en un horizonte finito o infinito
(ver (2.54) y (2.55), respectivamente). Se considera la siguiente suposicién para
la funcién de recompensa del modelo difuso.
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Supuesto 2.4. Sea v1,72,73 Y Y4 numeros reales tales que 0 < v < v < 3 <
4. Supondremos que la recompensa difusa es un nimero difuso trapezoidal (ver
la Definicidn 1.4), especificamente

R(x,a) = R(z,a)(y1,72,73,74) (2.56)

para cada (x,a) € K, donde R : K — R es la funcidn de recompensa del
modelo 2.19.

Observacién 2.6. Observemos que, bajo el Supuesto 2.4 y la parte b) del Lema

1.2, la recompensa difusa (2.54) es un nimero difuso trapezoidal.

2.5.2. Problema de control é6ptimo para el modelo

En esta seccion, se presentaran los resultados de la convergencia de la re-
compensa difusa (2.54) a la recompensa difusa descontada total esperada en el
horizonte infinito (2.55), cuando T tiende al infinito. Posteriormente se verifi-
card la existencia de politicas 6ptimas y la validez de la programacién dindmica.

Lema 2.8. Supongamos que (2.4) se cumple. Entonces, para cadai € X, m € F
(ver Observacion 2.5), {Vr(mw,i) : T =0,1,...} converge y

:J(Za 7T) = limT%ooﬂT@ra 7/) = Z E:()ﬂ' [E (xta a/t):| = ’U(i’ 7T> (Vla Y2573, 74)7
t=0

donde v(i,m) =3 12 Eix [R(2¢,a¢)] € R.

Demostracion. Sean w € Il y « € X fijos. Para simplificar la notacién en
esta demostracién, denotaremos por v = v(mw,x) y vy = vr(m,x) (ver (2.54) y
(2.55)). Entonces, el a-corte de (2.54) esta dado por

AT L= (’}/1’UT, Y2UT, Y3UT, '74UT)Ot

= [n(1 = a)vr + ayavr, 74(l — a)vr + ayzor].
Anélagamente,

A= (7107’721)7737}7741})04
=M1 = a)v+ arv, (1 — a)v + aysv].

Por lo tanto, por (1.6), se obtiene que

d(AT, A) = Supae{oyl]d(AT7 A)
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Ahora, debido a la identidad méax(c,b) = (¢ + b+ [b—¢|)/2 con b,c € R, se
tiene como resultado que

d(AT,A) = (1 = a)y3(v — vr) + (v — vr).
Entonces,

d(Ar,A) = supacio,1)(v —vr) (13 — a3 —2))

(2.57)
= (v —vr)7s.
Por lo tanto, donde T tiende a infinito en (2.57), y concluimos que
T@)loo p(@T, f)) - Tﬁnoo(v B UT)73
=0.
La segunda ecuacién es una consecuencia de (2.43) y (2.44). O

Definicién 2.11. EIl problema de control éptimo difuso con horizonte infinito
consiste en determinar una politica 7 € F tal que

o(m,x) <* o(r, @),
para toda m € F y x € X. En consequencia (ver Observacion 2.5 (b)),
(™, ) = suprepd(m, x),

para todo x € X (ver Observacion 1.1). En este caso, la funcidn difusa de valor
optimo es definida de la siguiente forma:

V() = o(x", ),

x € X yn* es llamada la politica optima para el problema de control optimo
difuso.

Observacion 2.7. Definiciones similares pueden ser establecidas para vr, la
recompensa difusa descontada total esperada con un horizonte finito T'. En este
caso, el valor difuso dptimo es denotado por Vp, y (Ver Observaciéon 2.5(a)),

VT(x) = vp (7", ) = supremvr (T, ),

para toda © € X, por supuesto, si tal m* existe, entonces esta es llamada la
politica optima para el problema de control éptimo difuso con un horizonte T'.

Una consecuencia directa de la Definicién 2.11, Observacién 2.7, y el Teo-
rema 2.7 es el préximo resultado.

Teorema 2.5. Bajo los Supuestos 2.3 y 2.4, las siguientes afirmaciones se
mantienen:
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a) La politica dptima 7* del problema de control dptimo finito nitido (ver
(2.54)) es la politica dptima para Or, es decir. op(7*,x) = supremOr(m, x)
para todomell yx € X.

b) la funcion de valor difusa dptima estd dada por

Vi (z) = V() (1,72, 3 74), (2.58)
z € X, donde Vp(z) = supremir(m, ), = € X.

Demostracion.  a) Seanw € My x € X fijos. Entonces, por (2.54), se obtiene
que
Oe(m, ) = vr(m, z) (71,72, 73, 74)
donde el Supuesto 2.4 y el Lema 1.2 fueron aplicados. Ahora, observe-
mos que los a—corte de o7 (w, ) estdn dados por los siguientes intervalos
cerrados:

(7, 2)o = [nvr(m, 2)+a(y2a—y1)or (7, &), Yavr (7, &) —avy (7, ) (a—73)]-

Por otro lado, por el Teorema 2.4, existe una politica éptima 7* € M
tal que, vp(m,z) < vp(n*,x). Entonces, notemos que los extremos de
U¢(m, ), satisfacen las siguientes inecuaciones:

o7 (m, z) + a(ye — y1)vr(m,x) < o (", o) + alye — y1)vr(r", 2)
Yavr(m, x) — avp (7", 2) (4 —73) < yavr (77, 2) — avp (7", 2)(74 — 73)-
En consecuencia, op(m,z) <* op(7*,z). Ya que x € X y m € II son

arbitrarios, el resultado sigue, debido a la Definicién 2.11.

b) Por el Teorema 2.6 a), se sigue que

VT(I) = U(W*"r)(’yl772773774)7

para cada x € X, de esta manera, aplicando el Teorema 2.4, se concluye
que

VT(Q?) = VT(.I)(’}/17’)/2,’}/37’)/4)7
rzeX.
L

La prueba del Teorema 2.6 es similar a la prueba del Teorema 2.5, por eso
se omite.

Teorema 2.6. Bajo los Supuesto 2.3 y 2.4, la siguiente afirmacion se cumple:

a) La politica dptima del problema de control difuso es la misma que la
politica optima del problema de control optimo nitido.

b) La funcién de valor difuso dptimo estd dada por

V(z) = V(2)(71,%2,73,7), @ € X. (2.59)

En el Capitulo 4, los Teoremas 2.5 y 2.6 se ilustraran en varios ejemplos.
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Capitulo 3

Aplicaciones de PDMs con
recompensa total difusa

Este capitulo se refiere a los procesos de decisién de Markov (PDM) en
los que tanto el estado como los espacios de decisién son finitos y la funcién
objetivo es la recompensa total esperada. Para este tipo de PDM, asumimos
que la funcién de recompensa es de tipo difuso. Especificamente, esta funcion
de recompensa difusa tiene una forma trapezoidal adecuada que es una funcién
de una recompensa estdndar no difusa. Ademds, esta recompensa difusa se
aproxima, en un sentido difuso, a la recompensa no difusa correspondiente. El
problema de control difuso consiste en determinar una politica de control que
maximice la recompensa total esperada difusa, donde la maximizacion se realiza,
con respecto al orden parcial en los a-cortes de ntimeros difusos. La politica
optima y la funcién de valor éptimo para el problema de control éptimo difuso se
caracterizan mediante una versién de la ecuacion de programacién dinamica vy,
como principales conclusiones, se obtiene que la politica 6ptima del problema
estandar y el difuso coinciden y la funcién de valor éptimo difuso tiene una
forma trapezoidal conveniente. Como ilustraciones, se presentan extensiones
difusas de un problema de parada 6ptima y de un modelo de juego red-black.

3.1. Un problema de paro 6ptima
Aqui proporcionamos un ejemplo de un problema de paro 6ptimo visto co-

mo un PDM de recompensa total, el cual es una versién similar del Ejemplo
7.2.6 en [26] y su extensién al entorno difuso.

Consideremos el problema de determinar una politica de paro éptimo para
la cadena de Markov finita, en el que el sistema se mueve entre los estados

X = {i1,49,13,14}, y matriz de transicién:
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0 1/3 2/3 0
4/5 1/5 0 0
1/3 0 1/3 1/3

0 0 0 1

P= (3.1)

Cada entrada de P describe la probabilidad de transicién p;;, para i,j € X .

Supongamos que en cada época de decisién, el controlador tiene dos accio-
nes admisibles: parar (Q) o continuar (C').

Si ademés, para cada i € X, A(i) = {C,Q}. Si en el estado i elegimos
el control C, el sistema se mueve al estado j € X " con probabilidad p;;, y si
elegimos @), el sistema se mueve al estado ¢, en el que no recibimos recompensa.
Observemos que X = X'Ud y A(§) = {C}, por lo que 6 es un estado recurrente.

Observe que X = {i1,12,13,%4,0} y A(6) = {C}. En particular, suponga-
mos que R(i1,Q) = g(i1) = 8, R(i2, Q) = g(iz) = 5, R(i3,Q) = g(i3) = 3,
R(is, Q) = g(is) = 0,y R(5,C) = 0.

El objetivo consiste en determinar una politica que maximice la recompensa
total esperada, bajo el supuesto de que las recompensas se reciben solo al final.
Entonces, debido al Teorema 7.2.3 (a) en [26], la funcién de valor éptimo Vj es la
solucién minima en la clase funciones V* : {V: X — R:V >0 y V(z)<
oo para cada s € S}, la funcién de valor éptimo V, es la solucién minima
w:X — Rconw>0dela siguiente ecuacién de programacion dindmica:

w(i) = maz{g(i), Y w(f)pi}- (3:2)
jex’

ie X con V,(6) = 0. Entonces, aplicando el enfoque de programacion lineal,
(3.2) es equivalente al siguiente programa lineal:

MINIMIZAR : w(iy) + w(iz) + w(isz) + w(iq) (3.3)
sujeto a
w(i) > g(i), (3-4)
w(@) > Y w(i)pi, (3.5)
jex’

i € X'. Entonces, las desigualdades (3.4) y (3.5) son equivalentes a

Bw(i) —w(iz) —2w(is) = 0,

w(iz) = V(i) = 0,

2w(iz) —w(in) —w(ia) > 0,

w(iy) > 8, w(iz) >5, wliz) >3, w(iy) > 0
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Aplicando el algoritmo simplex se obtiene que el valor éptimo es V,(i1) = 8,
Vo(ig) = 87 Vo(ig) =4 y Vo(i4) =0.

Teorema 3.1. Si el espacio de estados es finito, g(s) < oo Vse€ S, yg(s) >0
st s es un estado, entonces el valor del problema de parada optima v* es la
solucién minima no negativa v > g que satisface (3.5). Ademds, la politica
estacionaria (d*)>° definida mediante

Q si qie{ieX (i) =g(i)}

C en otro caso.

es optima.

En consecuencia, la politica estacionaria éptima f, viene dada por:

Q si i€ {i17i4}
fo(i) = (37)

C si i€ {iz, ig}
Ahora, considere la siguiente funcién de recompensa difusa trapezoidal:

R(,Q) = RG.Q)(0, 15, 15.2),

ie X conla interpretacién de que el nimero trapezoidal (0,0,0,0) es igual a
0,y R(5,C) =0.

Concretamente ara la decisién las recompensas difusas vienen dadas
)
por:

» R(i1,Q) = (0,7,2,88,16),

" E(iQa Q) = (Oa 4357 575a 10),

= R(i3,Q) = (0,2,7,3,3,6),
= R(iy,Q) =0.

Observacion 3.1. Tenga en cuenta que, por ejemplo, E(il, Q) =(0,7,2,8,8,16)
modela el hecho de que en el estado i1, la recompensa recibida solo al finalizar
estd aproximadamente en el intervalo [7.2,8.8] en lugar de recibir la cantidad
exacta de g(i1) = 8 en el PDM estindar; el resto de las recompensas difusas
tienen una interpretacion similar.
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0.0 02 04 06 08

Figura 3.1: Recompensas difusas trapezoidales.

Ahora, la politica éptima del problema de control difuso es la misma que la
politica éptima f, del problema de control éptimo dada en (3.7), y la funcién

de valor difuso éptimo V,(7) es:

Vo) = (0,2 (i), v ), 2v, (),

. !
1€X .Y,
En consecuencia,

0,7,2,8,8,16),

11

Volin) = (

- f‘}(/)(Z?) (077723838716)7
Volis) = (
Vo(ia)

» V,(i3) = (0,4,5,4,4,8),
. 4 =0.
o — V(i)
R N . O V(iz)
< V(ia)
R B R e— V(i)
g T T T T |
0 5 10 15

Figura 3.2: Funcién de valor éptimo difuso trapezoidal.
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3.2. Modelo de apuesta

La primera parte de esta seccién se basa en [30], pp. 73-83, y luego se pro-
porciona la extensién aproximada.

Una persona que posee ¢ ddlares ingresa a un casino de juego que permite
cualquier apuesta de la siguiente manera: si posee ¢ ddlares, entonces puede
apostar cualquier nimero entero positivo menor o igual a i. Ademas, si apuesta
j entonces

(a) gana j con probabilidad p o
(b) pierde j con probabilidad 1 — p.

La pregunta establecida en [30] es: {Qué estrategia de juego maximiza la
probabilidad de que el individuo alcance una fortuna de N antes de quebrar?
La respuesta a esta pregunta encaja en el marco de los PDMs con la recom-
pensa total dada en la subseccién anterior, donde el estado es la fortuna de los
jugadores, ya que si se supone que se gana una recompensa terminal de 1 si
alguna vez alcanzamos el estado IV y todas las deméas recompensas son cero,
entonces la recompensa total esperada es igual a la probabilidad de alcanzar el
estado N. En concreto, este modelo de juego se formula de la siguiente manera:

Descripcion del modelo

(a) X ={0,1,...,N}, donde decimos que el estado es i cuando la fortuna
actual es i.

(b) Sea [k] la parte entera de k. Si la fortuna presente es 4, entonces nunca

valdria la pena apostar mas de N — ¢, es decir,

A={0,1,...,[N/2]}, A(0) = {0}, A(i) = {1,2,... min{i, N=i}}, i 0.
(¢) piitala) =p, pii—ala) =q=1—p, pno(a) =1, peo(0) = 1.
(d) R(i,a) =0, i £ N, a € A(i), y R(N,0) = 1.

Observacion 3.2. Sea G el conjunto de llegar alguna vez al estado N. Note
que, para cada estrategia m € Il yi € X, V(i,m) = P; z[G] [30].

Se define la estrategia timida T como aquella estrategia que siempre apuesta
a 1, y se define la estrategia audaz [ como la estrategia que, si la fortuna
presente es 1,
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N
(a) apuestas i si i < 5

N
(b) apuestas N —i sii > 5

De las Proposiciones 2.1 y el Corolario 2.6 en [30] se obtiene el siguiente lema.

1
Lema 3.1. (a) Sip > 3 entonces T mazimiza la probabilidad de alcanzar

alguna vez una fortuna N, es decir, en este caso, V,(i) = V(i,7), para
todo i € X.

1
(b) Sip < > entonces B mazimiza la probabilidad de alcanzar alguna vez

una fortuna N, es decir, en este caso, V,(i) = V (i, 8), para todo i € X.
Ahora, se presentard el resultado sobre el modelo difuso red-black.

Teorema 3.2. Supongamos que se cumple el Supuesto 2.2.

1 -
(a) Sip> 3 entonces V(i,m) <* V(i,7), para todo # € Il yi € X. Por lo

tanto T es optima y
v(iv T) = (BV(Za T)v CV(Zv T)a DV(Za 7_)7 FV(Za T)) ) (38)
1€ X.

1 ~ ~
(b) Sip < 3 entonces V(i,m) <* V(i,8), para todo m € Il yi € X. Para
todo, B es optima y

V(i,B) = (BV(i,),CV (i, 8), DV (i, B), FV (i, 8)), (3.9)
i€ X.

Observacion 3.3. Observe que en el modelo red-black no difuso, el objetivo del
jugador es alcanzar al final del juego una cierta fortuna N. Ahora, siguiendo la
descripcion del modelo no borroso rojo-negro y el Supuesto 2.2 se obtiene que
para el modelo borroso: R(i,a) = 0,i#N, a€ A(i), y R(N,0) = (B,C,D, F);
por lo tanto, tomando C < N < D, podria interpretarse que el jugador recibe al
final del juego una cantidad entre los limites C' y D en lugar de que el jugador
obtenga la cantidad exacta N como en el modelo no difuso.



Capitulo 4

Aplicaciones de PDMs
descontados difuso

En este capitulo se proporcionan aplicaciones de la teoria desarrollada en
la Seccién 2.5 en la que se traté a los DMPs con un espacio de estado finito,
conjuntos de accién compactos con recompensa descontada de tipo trapezoidal
difusa, tanto con horizonte finito e infinito.

Ya que la principal motivacién para analizar este tipo de PDMs fue pre-
dominantemente econémico, se tratard un modelo de horizonte finito de un
sistema de inventario en el que se utiliza un algoritmo para calcular la solucién
Optima, y, adicionalmente para el caso de horizonte infinito, un MDP en un
contexto econémico y financiero es presentado.

4.1. Un sistema de control de inventario difuso

En esta seccion, primero se presentard un ejemplo clédsico de sistema de con-
trol de inventario [26], luego se introducird un sistema de control de inventario
difuso trapezoidal. La solucién 6ptima del inventario difuso se obtiene median-
te una aplicacion del Teorema 2.5 y la solucién del sistema de inventario nitido.

El siguiente ejemplo se aborda en [26], a continuacién se presenta un re-
sumen de los puntos de interés para presentar su versiéon difusa. Considere la
siguiente situacion: un almacén donde cada cierto periodo de tiempo el gerente
realiza un inventario para determinar la cantidad de producto almacenado. Con
base en dicha informacién, se toma la decisién de pedir o no una cierta cantidad
de producto adicional a un proveedor. El objetivo del gestor es maximizar el
beneficio obtenido. Se supone que la demanda del producto es una distribucién
de probabilidad conocida y aleatoria. Se trataran los siguientes supuestos para
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proponer el modelo matematico.

Supuestos en el inventario

a) La decisién de una orden adicional se toma al principio del periodo y se
entrega de inmediato.

b) Las demandas de productos se reciben a lo largo del periodo de tiempo,
pero se cumplida en el iltimo instante del tiempo del plazo.

o

No hay pedidos pendientes.

o

Los ingresos y la distribucién de la demanda no varian con el periodo.

o,
NN SN

El producto solo se vende en unidades enteras.

[©)

El almacén tiene una capacidad para M unidades, donde M es un ntmero
entero positivo.

Entonces, bajo la suposicién anterior, el espacio de estado estda dado por X :=
{0,1,2,..., M}, el espacio de accién y el conjunto de accién admisible estdn da-
dos por A:={0,1,2,...} y A(z) :={0,1,2,..., M —z}, & € X, respectivamente.

Ahora, considere las siguientes variables: sea x; el inventario en el tiempo
t=0,1,..., la evolucién del sistema estd modelada por una dindmica que sigue
un proceso de Lindley

Tpp1 = (T +ag — Dt+1)+, (4.1)

con rg = r € X conocido, donde (2)T = maz{0,2}, z € R, y

a) a; denota el control o decisién aplicada en el instante ¢ y representa la
cantidad ordenada por el gerente de inventario (o tomador de decisiones).

b) La secuencia {D;} estd conformada por variables aleatorias no negativas
independientes e idénticamente distribuidas con distribucién comin p; :=
P(D = j),j5 = 0,1,..., donde D; denota la demanda en el periodo de
tiempo t.

Observe que la ecuacién en diferencias dada en (4.1) induce un kernel es-
tocdstico definido en X dado K := {(z,a) : z € X,a € A(z)}, como sigue

Q(wt+1 € (—o0,y))|ve = m,ar = a) =1 - Az +a—y),

donde A es la distribucién de D con =z € X, y,a € {0,1,..} y Q(x441 €
(—o0,y])|xs =xyar =a) =0,siz € X,a € {0,1,...} y y <0. Entonces se sigue
que
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0 if M>y>z+a
Qi1 =yllw,a) = Pota—y if MZz+a>y>0
Qz+a if M>xz+a,y=0.
La funcién de recompensa escalonada viene dada por R(x,a) = E[H(x +
a—(z+a—D)")], (z,a) € K, dénde H : {0,1,...} — {0,1,...} es la funcién

de ingresos, que es una funcién conocida y D es un elemento genérico de la
secuencia {D;}. De manera equivalente, R(x,a) = F(x + a), (z,a) € K, donde

u—1
F(u):=Y_ H(k)pi + H(u)qu, (4.2)
k=0
con q, = Z;’;u pr. El objetivo de esta secciéon es maximizar la recompensa

total descontada con un horizonte finito, ver (2.54).

En particular, suponga que el horizonte es T' = 156, el espacio de estado X =
{0,1,...,9}, la funcién de ingreso H(u) = 5u y la ley de transicién se da en la
Tabla 4.1.

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1.0000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[2,] 1.0000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[3,] 0.9777778 0.02222222 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[4,] 0.9333333 0.04444444 0.02222222 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[5,] 0.8666667 0.06666667 0.04444444 0.02222222 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[6,] 0.7777778 0.08888889 0.06666667 0.04444444 0.02222222 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[7,] 0.6666667 0.11111111 0.08888889 0.06666667 0.04444444 0.02222222 0.00000000 0.00000000 0.00000000 0.00000000
[8,] 0.5333333 0.13333333 0.11111111 0.08888889 0.06666667 0.04444444 (.02222222 0.00000000 0.00000000 0.00000000
[9,] 0.3777778 0.15555556 0.13333333 0.11111111 0.08888889 0.06666667 0.04444444 0.02222222 0.00000000 0.00000000
[10,] 0.2000000 0.17777778 0.15555556 0.13333333 0.11111111 0.08888889 0.06666667 0.04444444 0.02222222 0.00000000

Tabla 4.1: Ley de transicion.

Algoritmo Para calcular el valor 6ptimo y la politica 6ptima.
Input: MDP
Output: El vector de valor 6ptimo.
Una politica 6ptima
Inicializar Wp(z, A) =0, Wi (z) =0,
Kp(x) = Wi(z).
t=T-1
repeat
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forz € Sdo
fz=0
a(z) = fa
W(z,a(x)) = R(z,a(z))+
B Zizzo Qlz + a(z))Wit1(y,0)

Alx)=1,...M —x
for a € A(z) do
Wi(z,a) = R(z,a)+
BY 7o Qyla + a)Wiya(y,0)
if Wi(z,a) > W(x,a(z)) do
fW(x,a(x)) = Wi(x,a)

end for
Wt(.’f) = Wt(.’f,fz)
Wt(l', 0) = Wt(l‘)

if W,(z) > Kiy1(x) do
| Ki(x) = Wy(2)

W*(z) = Ki(x)

end for
t=n-—1
until ¢t =0

En consecuencia, la salida del programa se obtiene como se ilustra en la
Tabla 4.2. En esta matriz, la tltima columna representa la politica 6ptima y la
pentltima columna, la funcién de valor, para cada estado x € {0,1,...,9}. La
otra entrada de la matriz representa lo siguiente:

G(z,a) .= R(z,a) + aE[W1(F(z,a,D))],

(z,a) e K.
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A n
[1,] 285.0000 290.0000 294.8889 299.5555 303.8889 307.7778 311.1111 313.7778 315.6666 316.6666 316.6666 9
[2,] 290.0000 294.8889 299.5555 303.8889 307.7778 311.1111 313.7778 315.6666 316.6666 0.0000 316.6666 8
[3,] 294.8889 299.5555 303.8889 307.7778 311.1111 313.7778 315.6666 316.6666 0.0000 0.0000 316.6666 7
[4,] 299.5555 303.8889 307.7778 311.1111 313.7778 315.6666 316.6666 0.0000 0.0000 0.0000 316.6666 6
[5,] 303.8889 307.7778 311.1111 313.7778 315.6666 316.6666 0.0000 0.0000 0.0000 0.0000 316.6666 5
[6,]1 307.7778 311.1111 313.7778 315.6666 316.6666 0.0000 0.0000 0.0000 0.0000 0.0000 316.6666 4
[7,] 311.1111 313.7778 315.6666 316.6666 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 316.6666 3
[8,]1 313.7778 315.6666 316.6666 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 316.6666 2
[9,] 315.6666 316.6666 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 316.6666 1
10,] 316.6666 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 316.6666 0

Tabla 4.2: Solucién 6ptima.

En conclusién, la funcién de valor éptimo es Vp(x) = 316.6 para cada x € X
y la politica éptima estd dada por fi(x) = M —xz,t=0,1,....T—1, 2 € X con
M =9.

Ahora bien, considerando que en la investigacién de operaciones a menudo
es dificil para un gerente controlar los sistemas de inventario, debido a que los
datos en cada etapa de observaciéon no siempre son ciertos, entonces se debe
aplicar un enfoque difuso. De esta forma, se tendra en cuenta el sistema de
inventario anterior en un entorno difuso, es decir, se considerard la funcién de
recompensa dada en el Supuesto 2.4:

R(z,a) = (BR(z,a),CR(x,a), DR(z,a), FR(x, a)),

con 0 < B < C < D < F. Entonces, por el Teorema 2.5, se deduce que la
politica éptima del problema de control 6ptimo difuso estd dada por 7* =
{fo,-s fr—1}, donde fi(x) =M —z,t=0,1,....T — 1, z € X y la funcién de
valor 6ptimo estd dada por

Vr(z) = Vr(z)(B,C, D, F),

xz e X.

4.2. Un problema de selecciéon de portafolio

Sean X = {xo0,x1}, 0 < xo0 < x1, A(x) =[0,1], x € X. La ley de transicién
esta dada por

Q{xo}Ix0,a) = p,
Q({x1}Ix0,a) =1 —p,
Q({x1}Ix1,a) =g,
Q({xo}x1,0) =1—gq,

—~ o~~~
=l e
DD U = W
D —
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para toda a € [0,1], donde 0 < p <1y 0 < ¢ < 1. La recompensa esta dada
por R(x,a), (x,a) € K que satisface:

Supuesto 4.1. (a) R depende solo de a, que es R(x,a) = U(a), para todo
(x,a) € K, donde U es no—negativa y continua.

(b) Emziste un a* € [0,1] tal que
m@%e[o,l]U(a) =U(a"),
para todo x € X.
Una interpretacién de este ejemplo se da en la siguiente observacion.

Observacion 4.1. Los estados xo y x1 representan el comportamiento de cier-
tos mercados bursdtiles, lo cual es malo (= xo) y bueno (= x1). Si asumimos
que, para cada a yt = 0,1,..., la probabilidad de ir de xo a xo es p (resp.
la probabilidad de xo to x1 es 1 — p); ademds, para cada a yt = 0,1,---, la
probabilidad de ir de x1 a x1 es q (resp. la probabilidad de ir desde x1 hasta xo
es 1 —q). Ahora, especificamente, supongamos que en un problema dindmico de
eleccion de cartera, hay dos activos disponibles para un inversionista: uno estd
libre de riesgo y se supone que la tasa de riesgo r > 0 es conocida y constante
a lo largo del tiempo y una varianza o?. Siguiendo el Ejemplo 1.24 en [?], la
utilidad esperada del inversionista podria ser dada por la expresion:

U(a) =ap+ (1 —a)r— §a202, (4.7)

donde a € [0,1] es la fraccion de su dinero que el inversionista invierte en el
activo riesgoso y el resto 1 — a, lo invierte en el activo sin riesgo. En (4.7) , k
representa el valor que el inversor le da a la varianza relativa a la experanza.
2
Observe que si | > %, entonces U definido en (4.7) es positivo en [0,1] (de
k 2

hecho, en este caso U(0) =r >0y U(1) = p— % >0 ); ademds, es posible
probar (ver [7]) que si 0 < u —r < ko?, entonces maz, enjo,11U (@) se obtiene
para a* € (0,1) dado por

* w—=r

ko2’

Por lo tanto, tomando R(x,a) =U(a), x € X y a € [0,1], donde U viene dado
por ([35]), y considerando las dos 4ltimas desigualdades dadas en el pdrrafo
anterior, se cumple el Supuesto 4.1.

Lema 4.1. Supongamos que el Supuesto 4.1 se mantiene. Entonces, por el
Teorema 2.4 ,

y f*(x) = a*, para toda x € X.
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Demostracion. En primer lugar, se encontraran las funciones de iteracién de
valor: V,,, paran =1,2,....
Por Teorema 2.4,

\% = max Ula

(x0) = mx Ula).

esto implica que Vi(xo) = U(a*). En un camino similar, es posible obtener que
Vi(x1) = U(a®).
Ahora, para n = 2,

Va(xo) = alél[%’i {U(a) + a[Vi(x1)(1 —p) + Vi(xo)pl}

= U(a™) +a[Vi(x1)(1 = p) + Vi(xo)p]
= U(a") +a[U(a")(1 —p) + U(a”)p]
— U(@")+aU(a").

Andlogamente, Va(x1) = U(a*) + aU(a*). Continuando en este sentido, se
obtiene que

Vi(x0) = Viu(x0) = U(a®) + aU(a*) + ... + o™ U (a"),

para todan=1,2,....

Por Teorema 2.4, V,,(x) — V(x), n = o0, x € X, el cual implica que V(x) =
U(a®)
-«

sigue que f*(x) = a*, para todo x € X.

, X € X.Y, de la Ecuacién de Programacién Dindmica (ver (2.53)), se

Ahora, supongamos que la funcién de recompensa difusa estd dada por
R(x,a) = (B,C, D, F)R(z,a),

with (z,a) € K. Entonces, como consecuencia del Teorema 2.6 se obtienen los
resultados. O

Lema 4.2. Para la versién difusa del problema de eleccién de cartera, resulta
que V(x) =V (x)(B,C,D,F) and f*(x) = a*, para todo x € X.

4.3. Un juego de dos personas

Ahora, se presentan un modelo de un juego estocastico entre dos jugado-
res que buscan maximizar sus recompensas totales descontadas. Denotemos
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por Ji y Jo los jugadores/inversores. Cada uno de ellos sigue un modelo de
decisién similar al propuesto en la Seccién (4.2). Esto es, J; tiene un mode-
lo de decisién del tipo: (X, A,Q, R1), donde X = {Xo,X:},0 < Xog < X7,
B = B(X) = [0,1],X € X. La ley de transicién @ se da como en la Seccién
(4.2) es independiente de la decisién a), y la recompensa viene dada por la
funcién R; = Us con

k
Ui(a) =ap; + (1 —a)ry — éaQUf,

con a € [0,1]. Ademas, se asume que 0 < p3—r; < ko7, entonces matqep,11U1(a)
es alcanzado en a* € (0, 1) dado por

«_ H1—T1

a
2
ko3

Sea [ el correspondiente conjunto de estrategias estacionarias para Jy. Ob-
servemos que

F:{Xn:)\iﬂizﬂ:)\izl,)\izo, fiEF,n21}.

i=1 i=1

Entonces, F también puede ser visto como el conjunto de estrategias mixtas
para Jq.

Ahora, para Js, el modelo de decisién es de la forma (X, B,Q, Rs) ,donde
X ={x0.x1}, 0 < x0 < x1, B=B(x) =[0,1], x € X. La ley de transicién Q
es dada como en (4.3)-(4.6), y la recompensa estd dada por Ry = Us con

k
Us(b) = apg + (1 — b)re — 526203,

donde b € [0,1], y también se supone que 0 < ps — ro < kgo3. Por lo tanto,
mazye(,1)U2(b) es alcanzado en b* € (0,1) dado por

* M2 — T2
b =
kQO’%

Sea G el conjunto correspondiente de estrategias estacionarias (o mixtas)
para Js.

El juego se desarrolla de la siguiente manera. Dado un estado inicial zg € X,
ambos jugadores toman una decisién ag € A(xg) y by € B(xg) de acuerdo a
las estrateguas mixtas f y g. Entonces cada jugador recibe una recompensa
esperada Ef:9[Uy (x¢, ag, bo)] and Ef:9[Us(x, ag, by)], respectivamente. El juego
entonces cambia a un nuevo estado z1 € X de acuerdo con la transicién Q(-|zo)
y luego el proceso se repite. Con el tiempo, ambos jugadores recibiran el total
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de sus recompensas esperadas por cada decisiéon tomada durante el juego, es
decir, recibiran

VJ]Xfa ZQE,ﬂUl ( )]a‘ndVJQva ZOCE% ,QUQ ( )]a

respectivamente, donde xo = x. Tenga en cuenta que el juego descrito cons-
tituye un juego estocéastico descontado entre dos jugadores en el que toman
decisiones de forma independiente y simultanea.

A continuacién, un par de estrategias (f*, g*) es llamadoa equilibrio de Nash
si

Vi, (x5 g%) = sup Vi, (x, [/, 9%)
f'er

VJz(X7f*?g*) = sup VJz(X f g)
9'eG

para cada x € X.

Lema 4.3. Para el juego de dos personas, el par (f*,g*) con f*(x) = a* y
g*(x) = b*, para toda x € X es un equilibrio de Nash, y

. % Ui(a*

VJl(X?f g ): 11£ Oé)

! Us(b%)
VJz(va*ag*): 12—Oé y

para todo x € X.

Demostracion. Observemos que, bajo las condiciones del problema de seleccion
de portafolio, para f € F, g € G, y 29 = X,

Vth’ ZaEfol )]

o]
Vi (X, 1,9) = Y a' By o[Un(g(r))-
t=0
Por lo tanto, una aplicacién directa del Lema 4.2 y el Teorema 2.6 permiten
obtener la demostracién de los siguientes resultados.
O
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Lema 4.4. Supongamos que la funcion de recompensa difusa estd dada por

R(z,a) = (B,C,D,F)R(z,a),

con (z,a) € K. Entonces, la version del juego de dos personas, el equilibrio de
Nash viene dado por (a’*¢ b*) Y VJ1 (X) = VJ1 (X7 f7 g)(Ba 07 Da F) and VJQ (X) =
VJz(X7f7g)(B7CaDaF)7 para todo X € X.

Como observacién final, siguiendo ideas similares dadas en la Seccién 2.4,
es posible obtener la solucién éptima del siguiente problema de control éptimo.

Considere los modelos decisién en versién estandar dados por

M,y

(X, A {A(z) :z € X},Q, Ry), (4.8)

My, = (X,A{A(z):z€X},Q,Rs), (4.9)

donde ambos modelos satisfacen los supuestos dados en la Seccién 2.3.1, y

0 < Ri(z,a) < Ra(z,a) <, (4.10)

para todo x < X,a € A(z),v es una constante positiva y Re = zR1,2z > 1.

Ahora, tenga en cuenta el problema de control éptimo difuso de horizonte
infinito con modelo decision:

M = (X,A{A@):z€X},Q,R) (4.11)

con

R(z,a) := (0, Ri(x,a), Ra(x,a),7) (4.12)

x € X,a € A(z). Nétese que R dada en (4.12) modela el hecho de que, en
sentido difuso, “la recompensa esta aproximadamente en el intervalo

[Ri(x,a), Ry(x,a)],z € X,a € A(z)”.

Sean v;, V; y fi ser la funcién objetivo, la funcién de valor éptimo y la politica
estacionaria 6ptima, respectivamente para el modelo M;,: = 1,2 y sea V por
el funcién de valor 6ptimo para M. Como en la demostracion del Teorema 2.5,
usando eso paracadam € Fy xz € X,



4.3. UN JUEGO DE DOS PERSONAS 67

vy (m,x) = vo(m, x) (4.13)

y es directo obtener que, paracadamT e F,x € X y a:

avy(m,z) < ave(f*, x) = ava(x)) (4.14)
y
2 * gl
on(mz)+ (1 —a)(i=5) = en(fLe)+0-a)(i—3) (“15)
= ava(x). (4.16)

Por tanto, de (4.14) y (4.15) resulta que

1-5

x € X,y fi = f5 es 6ptimo para M. Observe que V puede verse como el tipo
triangular:

) = (0%, 25 (4.17)

Viz) = (0,V2($)7 7) . (4.18)
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Resumen y conclusiones

En resumen, la teoria presentada en este trabajo tiene en cuenta la impre-
cision o ambigiiedad en la funcién de recompensa, lo cual nos permitié ampliar
la teoria estandar de PDMs dando solucién a dos problemas en tiempo discreto
con espacios de estados finitos:

= Kl primero de ellos con conjunto de acciones finito y criterio de recom-
pensa total esparada difusa.

= El segundo considera un conjunto de acciones compacto para el caso de
recompensa descontado total esperada difusa.

Ambos criterios tanto en horizontes finito e infinito. En ambos, las funciones
de recompensas fueron planteadas en forma difusa para modelar la incertidum-
bre, especificamente de tipo trapezoidal con una forma conveniente en funcién
de una recompensa estandar no difusa como esta dada en el Supuesto 2.4.

Para la realizacion de este trabajo fue necesario estudiar la teoria de Pro-
gramacién Dindmica y los conceptos elementales de la Teoria de 16gica difusa.
Dentro de la parte de légica difusa, se expusieron los conceptos principales
que se usaron durante el desarrollo de la tesis, como el de nimeros difusos,
a—cortes, operaciones entre niimeros difusos trapezoidales, orden maximo di-
fuso, métrica en el conjunto de los numeros difusos, variable aleatoria difusa y
esperanza de una variable aleatoria difusa trapezoidal dada por una variable
aleatoria multiplicada por un nimero trapezoidal. Dichos conceptos fueron ne-
cesarios ya que al trabajar con recompensas difusas trapezoidales, los criterios
de rendimientos se convierten en una variable aleatoria difusa de tipo trapezoi-
dal mediante la operacién de sumas tanto finitas como infinitas y por el hecho
de que el estado del sistema es una variable aleatoria.

Del drea de PDMs se exhibié el Modelo de Control de Markov y los tipos de
politicas, los cuales generan el espacio de probabilidad del Proceso estocastico
de interés, que es el Proceso de Decisién de Markov. Adicionalmente se recopilé
una lista de las condiciones necesarias para resolver los PDMs con la técnica
de Programacion Dindmica, las cuales garantizan que se cumpla la Condicién

69
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de Seleccién Medible y el método de aproximaciones sucesivas para cuando se
trabaja en horizonte infinito.

Cada uno de los problemas se presentaron en una versién nitida y fueron
transformados en una version difusa trapezoidal, y con los supuestos provistos
en la Seccién 2.2 para los problema éptimos no difusos, las principales conse-
cuencias que se obtienen son que la politica 6ptima del problema difuso coincide
con el problema estandar nitido y la funcién de valor 6ptimo difusa tiene una
forma trapezoidal conveniente.

Con la intencién de ilustrar la teoria desarrollada en este trabajo, se adicio-
naron cinco problemas de aplicaciones relacionados con PDMs en este contexto
difuso, de los cuales dos se abordaron a través de un PDM bajo recompensa
total esperada, siendo uno de parada 6ptima y el otro de apuesta. Los tres pro-
blemas restantes estuvieron relacionados con recompensa total descontada, uno
de un sistema de control de inventario difuso, debido a que en la investigacién
de operaciones a menudo es dificil para un gerente controlar los sistemas de
inventario, debido a que los datos en cada etapa de observacién no siempre son
ciertos, otro problema se traté con la seleccion de portafolio y el ultimo pro-
blema de aplicacion se refirié a un juego de dos personas. Es relevante senalar
que, en la version difusa del modelo de juego dado, las estrategias audaces y
timidas, que son bien conocidas en el contexto del juego, aparecen como las
estrategias 6ptimas para el jugador, y que la fortuna N que al final del juego
recibird el jugador puede ser sustituida por el hecho de que N pertenece a un
cierto intervalo.
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