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este proyecto, sin su apoyo habŕıa sido posible la realizar este trabajo de esta
tesis.

A mi director de tesis Dr. Hugo Adán Cruz Suárez por su inmensa paciencia
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Introducción

En este trabajo se trata la modelación de programas matemáticos acoplando
el ambiente estocástico con el difuso. Espećıficamente estudiamos los procesos
de decisión de Markov (PDMs) estacionarios considerando como criterios de
rendimiento a la recompensa total esperada y el caso descontado total, ambos
en tiempo discreto con espacio de estado finito y conjunto de acciones finito y
compacto. Las funciones de recompensas se plantearon en una versión difusa
([6]-[8]) con una forma conveniente de tipo trapezoidal en función de una re-
compensa estándar ńıtida.

La razón por la cual recurrimos al proceso matemático de difuminar a las
recompensas, los cuales son elementos de un conjunto de referencia, se debe
a que resolver el problema en versión ńıtida implica conocer los valores de los
coeficientes en la función objetivo, pero en muchas ocasiones no conocemos
esta o puede que esta información sea imprecisa o incierta, lo que hace que
el sistema sea mucho más complejo y por lo tanto, mas dif́ıcil de resolver, o
que simplemente no se pueda resolver. Pero al considerar los valores de las
recompensas como valores de un conjunto difuso trapezoidal, ya no estamos
restringiendo dichos valores a ser espećıficos, sino que les estamos permitiendo
encontrarse dentro de un rango de valores, de esta manera estaŕıamos modelan-
do el desconocimiento de información precisa. Aśı que ahora la modelación y la
metodoloǵıa de solución desarrollados para PDMs en este trabajo, consideran
incertidumbre en las recompensas.

Plantear a las recompensas como funciones difusas trapezoidales nos lleva
a la necesidad de utilizar herramientas de la teoŕıa de los conjuntos difusos
propuesta por L. Zadeh en su art́ıculo: [35], la cual surgió justamente de la
necesidad de una nueva forma de representar la imprecisión y la incertidum-
bre, y aśı solucionar problemas complejos con información de este tipo, en la
que la lógica tradicional no es suficiente. Esta teoŕıa está bien establecida y ha
sido extendida a varios campos de las ciencias matemáticas, como la teoŕıa de
control ([5] y [12]), y también ha sido de alto impacto en áreas aplicadas (ver
por ejemplo ([17] y [23]). Además en el control de sistemas, principalmente de
tráfico, trenes, metros, mecatrónica, lavadoras, aires a condicionado, ascenso-
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10 ÍNDICE GENERAL

res, robótica y en muchos otros sistemas ([14] y [15]). Estas son solo algunas
de las tantas situaciones donde se puede aplicar la teoŕıa de números difusos.

Ahora bien, se usarán las herramientas de la teoŕıa de números difusos
lo cuál nos permitirá representar a la función objetivo como un número tra-
pezoidal difuso, pero el problema a resolver no deja de ser un problema de
maximización: el de encontrar una poĺıtica que maximice a la función objetivo
ahora difusa, por lo que es necesario una relación de orden, en el sentido difuso,
que nos permita decidir si un valor difuso de la función objetivo es mayor o me-
nor que otro, cuando esta es evaluada en diferentes poĺıticas y, de esta manera,
comparar poĺıticas y encontrar las óptimas. Dicha maximización se estableció
con respecto al orden parcial en los α−cortes de números difusos (ver [16]).

El resultado obtenido de las operaciones con números difusos trapezoidales
también será un número difuso trapezoidal, por lo que el resultado no será
radicalmente un valor óptimo espećıfico, sino que se encontrará en un rango de
posibilidades.

La motivación de este trabajo surgió del hecho de que nuestro lenguaje es
impreciso, a diario usamos expresiones con rangos como; angosto, no tan angos-
to, más o menos grueso, grueso y muy grueso, o cuando decimos poco, mucho
o bastante, estamos usando palabras que contienen ambiguedad e imprecisión,
estos conceptos no tienen ĺımites perfectamente definidos, de esto podemos ob-
servar que razonamos de forma difusa, esta es la razón por la cual los conjuntos
con esta naturaleza se presentan con mucha frecuencia en el mundo real, aśı que
en muchos problemas matemáticos, los datos son imprecisos y es muy compli-
cado operarar con ellos, aśı que el proceso de la modelación y de resolución es
más complejo. Dado que la teoŕıa de números difusos representa la imprecisión
de cada dato considerándolos como intervalos de posibles valores con cierto
nivel de certeza, esta mejora en gran medida la clasificación y consigue acertar
más en la resolución de problemas que presentan este tipo de información, por
lo que se convierte en un método mucho más efectivo ya que se adapta mejor a
las expresiones del ser humano. Además, la teoŕıa difusa no solo permite efec-
tuar cálculos cuando hay información con incertidumbre, sino también cuando
tengamos que combinar información cuantitativa y cualitativa, trata a la vez
datos numéricos e información categórica con jerarqúıa, mediante aproximación
matemática, permitiéndonos tomar decisiones en situaciones donde se requiera
razonar de forma imprecisa o aproximada, lo que nos permite caracterizar de
una mejor manera las distintas aplicaciones [3]. Los trabajos de investigación
relacionados con el tema aqúı desarrollado son los siguientes: [20] y [31]. En
ambos trabajos, versiones del problema de control difuso descontado total con
espacios de estados y acciones finitos.

El contenido de este trabajo está estructurado de la forma siguiente: el
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Caṕıtulo 1 introduce los conceptos básicos de la teoŕıa de conjuntos difusos,
destacando a los números difusos trapezoidales junto con su aritmética y propie-
dades de interés fundamentales para desarrollar los resultados que se aplicarán
en los caṕıtulos posteriores. Se describe el orden entre números difusos y la
métrica utilizada en las que se basó el procedimiento propuesto. Finalmente,
dado que los estados del sistemas son aleatorios, lo que hace que las recom-
pensas sean aleatorias difusas y la esperanza en la función objetivo se trate de
la esperanza de variable aleatoria difusa, se establece la definición de los ele-
mentos aleatorios con valores de números difuso y sus correspondientes valores
esperados, [11], [33] y [35]. Con esto estaŕıamos proporcionando las herramien-
tas necesarias de la parte de la teoŕıa de números difusos. En la primera parte
Caṕıtulo 2, se brindan los conceptos básicos de la teoŕıa estándar sobre los
PDMs [26] con espacio estado finitos tanto con criterio de recompensa total y
recompensa descontada. Para tales tipos de PDMs, la función de recompensa se
plantea difusa trapezoidal conveniente en función de una recompensa estándar
ńıtida. El problema de control difuso consiste en determinar una poĺıtica de
control que maximice la recompensa total esperada difusa y una que maximice
la recompensa descontada esperada difusa. La poĺıtica óptima y la función de
valor óptimo para el problema de control difuso se caracterizan por medio de la
ecuación de programación dinámica del problema de control óptimo estándar
y, se obtiene que la poĺıtica de control óptimo del problema estándar y del
difuso coinciden. Además la función de valor óptimo difuso tiene una forma
trapezoidal af́ın en función de la función de valor óptimo estándar, quedando
caracterizada su solución por la solución del problema estándar. Por lo tanto,
problema de control difuso se reduce al problema de control óptimo estándar.
Este es el principal aporte de este trabajo en el campo del control difuso. En
los Caṕıtulo 3 y 4 ilustramos la teoŕıa desarrollada, proporcionando aplicacio-
nes de esta a problemas en extensiones difusas para un problema de inventario
[24], de paro óptima, de apuesta, selección de portafolio y un juego entre dos
personas [32]. Finalmente se brindan las conclusiones.
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Caṕıtulo 1

Conceptos básicos de teoŕıa
difusa

Antes de proporcionar las definiciones y resultados básicos sobre la teoŕıa de
lógica difusa que son fundamentales en el desarrollo de esta tesis, iniciaremos
dando una breve explicación sobre los conjuntos difusos y la teoŕıa de lógica
difusa con el fin de poder distinguir mejor entre estos conjuntos y los que no lo
son.

Conjuntos como por ejemplo, el de las computadoras, sabemos muy bien
quienes son sus elementos, este incluye a todas las computadoras, pero excluye a
los celulares. Conjuntos como estos se conocen como conjuntos ńıtidos, certeros
o clásicos, ya que cada elemento del conjunto de referencia o pertenece o no
pertenece a él, y bien sabemos que dicha pertenencia está determinada por la
función indicadora, la cual toma solo uno de los valores del conjunto {0, 1} para
cada elemento del conjunto de referencia, esta es la manera en que la función
indica si el elemento pertenece o no al conjunto. Pero también existen conjuntos
difusos, por ejemplo, el de las personas sabias, el de las personas altas o el de
los vasos anchos entre otros. Si consideramos los juicios declarativos:

Una persona de 30 años es sabia.

Una persona de 170 cm es alta.

Un vaso de 8 cm de diámetro es ancho.

No podŕıamos responder ni que son absolutamente verdaderos ni que son com-
pletamente falsos de forma objetiva, por lo cual no podemos definir claramente
la pertenencia de los elementos al conjunto de las personas sabias, al de las
personas altas ni al de los vasos anchos porque, ¿a partir de qué momento de-
cidimos que la persona deja de ser sabia o alta, o que el vaso deja de ser ancho

13



14 CAPÍTULO 1. CONCEPTOS BÁSICOS DE TEORÍA DIFUSA

y pasan a ser de la otra clasificación?, si una persona de 170 cm es considera-
da alta y le quitamos 5 mm ¿ya no es considerada como alta sino como una
persona de baja estatura?. Recordemos que la altura promedio de una persona
mexicana se encuentra entre 1.58 y 1.64 metros. En estos casos no solo vamos
a considerar dos opciones, que es sabia o que no es sabia, que es alta o que
no es alta, que es ancho o que no es ancho. El conjunto de las personas altas
es un subconjunto difuso del conjunto de todas las personas, y nos permitirá
considerar toda una gama de opciones, personas muy altas, altas, de estatura
promedio, de estatura baja y de estatura muy baja. No hay una transición clara
entre lo que es falso y lo que es verdadero, contrariamente a si los considerára-
mos como conjuntos clásicos.

La teoŕıa de lógica difusa se aplica a conceptos que ni son totalmente ciertos
ni completamente falsos, considerando una tercera posibilidad de pertenencia,
la pertenencia parcial, que es cuando un elemento puede pertenecer parcialmen-
te a un subconjunto dado. Esta es la diferencia fundamental entre los conjuntos
difusos y los ńıtidos, que un elemento puede estar parcialmente ausente o pre-
sente, y esto no sucede en los conjuntos ńıtidos, donde la pertenencia y la
ausencia de un elemento a un conjunto son mutuamente excluyentes. La teoŕıa
de conjuntos difusos considera la pertenencia de los elementos de un conjunto
como una transición que es gradual al permitir que sus valores de veracidad
estén dentro del intervalo [0, 1], donde 0 indica la falsedad total, 1 indica la
verdad absoluta, y cualquier valor de pertenencia entre cero y 1 permite medir
pertenencia parcial de un elemento del conjunto de referencia al subconjunto
difuso dado. Por esta razón, la teoŕıa de conjuntos difusos es conocida como
una lógica de múltiples valores, ya que permite definir a los valores intermedios
entre verdadero o falso, o como en el ejemplo de la altura de las personas, define
a los valores intermedios entre alto o bajo, o entre śı o no, es decir, traslada la
transición entre la pertenencia y no pertenencia a un conjunto que es gradual y
mientras mayor sea el grado de pertenencia (más cercano a 1), más pertenece
el elemento al subconjunto difuso.

La definición formal de un subconjunto difuso se muestra a continuación.

1.1. Conjuntos difusos

Definición 1.1. Sea Λ un conjunto no vaćıo. Entonces un subconjunto difuso
Γ en Λ se define en términos de una función de pertenencia Γ̃ : Λ −→ [0, 1].

Esta función de pertenencia Γ̃, no es más que una función que permite entre-
lazar los elementos del conjunto de referencia Λ con los elementos del intervalo
[0, 1], ya que asigna a cada elemento x de Λ un valor real Γ̃(x) dentro del in-
tervalo [0, 1], el cual mide qué tanto pertenece x del conjunto de referencia Λ
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al subconjunto Γ con caracteŕısticas de impresición.

El grado de pertenencia considera la transición gradual desde la no perte-
nencia hasta la pertenencia total de x ∈ Λ al conjunto difuso Γ. Aśı, Γ̃(x) = 0

significa que x no pertenece a Γ, Γ̃(x) = 1 significa pertenencia total de x en Γ y

0 < Γ̃(x) < 1 significa pertenencia parcial de x en Γ. Mientras más cercano a 1
sea el grado de pertenencia de x, más pertenece x al subconjunto difuso Γ de Λ.

Aśı que, cuando trabajamos con un subconjunto difuso, lo primero que
necesitamos hacer es representarlo de la manera más precisa posible definiendo
una función de pertenencia que caracterice a dicho conjunto, esta no es única,
ya que va a depender de la realidad que pretendamos describir, sin embargo,
suelen usarse algunas funciones clásicas comunes como las que se muestran más
adelante las cuales dan flexibilidad a la modelización que utiliza expresiones
lingúısticas.

1.2. α−cortes

Uno de los conceptos más convenientes por su gran utilidad dentro de la
teoŕıa de conjuntos difusos para realizar operaciones aritméticas entre ellos, es
la de sus α−cortes, ya que permiten descomponerlos y para aśı determinar de
manera más simple algunas propiedades de las operaciones aritméticas entre
números difusos.

Definición 1.2. El α-corte de un conjunto difuso Γ, denotado por Γα, se
define como el conjunto Γα := {x ∈ Λ | Γ̃(x) ≥ α} (0 < α ≤ 1) y Γ0 se define

como la clausura de {x ∈ Λ | Γ̃(x) > 0} denotado por cl{x ∈ Λ | Γ̃(x) > 0}.

Denotaremos por Γ0 y Γ1 al soporte y al nucleo de cualquier conjunto difuso
Γ, respectivamente.

La definición de los α−cortes indica que son las proyecciones de los cortes
a través del gráfico de un conjunto difuso sobre el conjunto de referencia Λ.
Estos permiten describir a todos los niveles con el que se tiene una seguridad
de que los elementos pertenecen o no al conjunto difuso.

1.3. Números difusos

Los números difusos son una clase especial de conjuntos difusos.
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Definición 1.3. Un número difuso Γ es un subconjunto difuso definido en el
conjunto de números reales R (es decir, tomando Λ = R en la Definición 1.1),
que satisface:

a) Γ̃ es normal, es decir, existe x0 ∈ R con Γ̃(x0) = 1;

b) Γ̃ es convexa, lo que implica que Γ̃α es convexo para todo α ∈ [0, 1];

c) Γ̃ es semicontinua superiormente;

c) Γ0 es compacto.

La función de pertenencia debe representar a los números reales cercanos a
un número real espećıfico r, y ya que r satisface la condición, entonces se debe
cumplir que Γ̃(r) = 1, esta es la razón por la cual la función de pertenencia de
un número difuso es normal.

Las propiedades citadas en la Definición 1.3 implican que la función de
pertenencia corresponde a un números difuso si y solo si, es de la siguiente
forma:

Γ′(x) =



0 si x ≤ w1

l(x) si x ∈ (w1, a)

1 si x ∈ [a, b]

r(x) si x ∈ (b, w2)

0 si x ≥ w2

(1.1)

con 0 ≤ w1 ≤ a ≤ b ≤ w2 ∈ R, [19], donde l(x) es una función continua por la
derecha y creciente en (w1, a) y r(x) una función decreciente y continua por la
izquierda en (b, w2).

Al conjunto de los números difusos se denotará por F(R), este conjunto es
una extensión de los números reales.

Existe una gran diversidad de formas para las funciones de pertenencia
asociadas a un número difuso. Ejemplos de las más usadas son la trapezoidal
y la triangular, por tener formas gráficas más simples, lo que permite que se le
asocie una interpretación más natural [10]. La ecuación de un número difuso
trapezoidal se muestra a continuación.

Definición 1.4. Un número difuso Γ se llama número difuso trapezoidal
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si su función de pertenencia tiene la siguiente forma:

Γ̃(x) =



0 si x ≤ l
x−l
m−l si l < x ≤ m

1 si m < x ≤ n
p−x
p−n si n < x ≤ p

0 si p < x ,

(1.2)

donde l, m, n y p son números reales conocidos, con l < m ≤ n < p. Un
número difuso trapezoidal simplemente se denota por (l,m, n, p).

El caso en el que m = n en (1.4) se llamará número difuso triangular y se
denotará simplemente por (l,m, p).

Ejemplos gráficos de cómo es un número trapezoidal y triangular difuso se
muestran en las Figuras 3.2 y 1.2 respectivamente.

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

Figura 1.1: Número difuso trapezoidal (0.5, 3, 5, 7).
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Figura 1.2: Número difuso triangular (0.5, 3, 7) .

Las funciones de pertenencia triangulares se usan para describir valores in-
termedios como el concepto de tibio sin considerar un margen de aproximación
o de tolerancia alrededor del valor que se toma como el mejor representante
del concepto lingǘıstico asociado al conjunto difuso y también para aproximar
cualquier número difuso [3] y [36]. Por ejemplo, la temperatura del agua tibia
se puede representar con el número difuso triangular (180, 240, 300).

Cuando se pretende describir valores intermedios como tibio, maduro o altu-
ra promedio pero implicando un margen de aproximación o de tolerancia alrede-
dor del valor que se toma como el mejor representante del concepto lingǘıstico
asociado al conjunto difuso, se usa la función de pertenencia trapezoidal. Por
ejemplo, una persona es considerada madura si su edad está comprendida entre
35 y 55 años. Aśı que el conjunto de las personas maduras se puede representar
con el número trapezoidal (0, 35, 55, 85).

Podemos considerar el caso degenerado en el que l = m = p, obteniéndose
la representación difusa del número real m con la función de pertenencia dada
por:

m̃(x) =

{
1 si x = m

0 si x ̸= m.
(1.3)

Estas funciones de pertenencia de números difusos que acabamos de pre-
sentar, son de las más simples de asociarles una interpretación de manera muy
natural, por lo que son de las más especiales. Esto es lo que las hace ser de las
más estudiadas, usadas y generalizadas en sistemas difusos [1] y [22].

Podemos observar claramente que para el caso de los números difusos, las
proyecciones de sus α−cortes son intervalos cerrados y acotados en R, todos los
α−cortes son subconjuntos del soporte Γ0, este es el intervalo más grande y a
medida que α aumenta, los α−cortes se van haciendo intervalos más pequeños,
siendo Γ1 el más pequeño de todos. Aśı, la familia de los α−cortes forma una
sucesión decreciente de conjuntos ńıtidos compactos.

Más espećıficamente, para un número difuso trapezoidal, los α−cortes se
observan en la Figura 1.3.
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Figura 1.3: Representación gráfica para los α−cortes de un número difuso tra-
zoidal.

Recordemos que una de las condiciones que debe complir un conjunto difuso
para ser un número difuso, es que el soporte sea compacto, y debido a que es
subconjunto de R por tratarse de un número difuso, entonces es un interva-
lo cerrado y acotado, lo cual implica que todos sus α−cortes, también serán
compactos, espećıficamente intervalos cerrados y acotados pues forman una su-
cesión decreciente de conjuntos ńıtidos. Esto facilitará concretar las operaciones
aritméticas de números difusos en términos de las operaciones aritméticas de
los intervalos cerrados.

Lema 1.1. Para un número difuso trapezoidal Γ = (l,m, n, p), los α−cortes
correspondientes están dados por Γα = [(m− l)α+ l, p− (p− n)α], α ∈ [0, 1]:

Demostración. Usando la Definición 1.2, (l,m, n, p)(x) ≥ α si y solo si

x− l

m− l
≥ α y

p− x

p− n
≥ α.

Esto es equivalente a

x ≥ (m− l)α+ l ⇔ x ≤ p− (p− n)α,

por lo tanto

(l,m, n, p)α = [(m− l)α+ l, p− (p− n)α].

Se puede observar fácilmente que los α−cortes para un número difuso trian-
gular (l,m, p), son de la forma:

(l,m, p)α = [(m− l)α+ l, p− (p−m)α].
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Ejemplo 1.1. El α−corte del número difuso trapezoidal (2, 5, 7, 10) es

(2, 5, 7, 10)α = [(5− 2)α+ 2, 10− (10− 7)α] = [3α+ 2, 10− 3α] ∀α ∈ [0, 1].

Para α = 0.5,

(2, 5, 7, 10)0.5 = [3.5, 8.5].

1.4. Aritmética de los números difusos

Necesitamos un teorema de representación [13] y [34] que es una herramien-
ta básica para el análisis de números difusos, ya que nos permite descomponer
a cualquier conjunto difuso en una familia de conjuntos no difusos utilizando
los α−cortes. Aśı también nos permite a partir de una familia de α−cortes ani-
dados, reconstrúır a un conjunto difuso, por lo que si un problema es formulado
en el marco de los conjuntos difusos, este puede ser resuelto transformando esos
conjuntos difusos en su correspondiente familia de α−cortes para determinar
la solución mediante técnicas no difusas.

Teorema 1.1. Sea C(R) el conjunto de todos los subconjuntos convexos y com-
pactos de R que cumole:

a) Para cualquier Γ ∈ F(R), Γ(x) = supα∈[0,1]{min(α,1Γα
(x))}, x ∈ R.

b) Rećıprocamente, para una familia de subconjuntos decreciente {Dα ∈
C(R)|α ∈ [0, 1]}, el conjunto Γ(x) := supα∈[0,1]{min(α,1Dα

(x)), x ∈
R}, x ∈ R satisface que Γ ∈ F(R).

Esto significa que todo número difuso se puede representar totalmente por los
α−cortes.

Definición 1.5. Sean Γ y Υ conjuntos difusos. Si “ ⋆ ” denota la suma,
resta, multiplicación o divivión entre números difusos, entonces se define un

conjunto difuso en R, Γ ⋆ Υ, mediante la función de membreśıa: ˜(Γ ⋆Υ)(u) =

supu=x⋆y mı́n{Γ̃(x), Υ̃(y)}, para todo u ∈ R.

Proposición 1.1. Se puede probar que si Γ y Υ son números difusos, entonces

1) Γ ⋆Υ es también un número difuso.

2) (Γ ⋆ Υ)α = Γα ⋆ Υα (para el caso del cociente, siempre que el cero no
pertenezca a Υα para todo α).

Esto se prueba mediante la definición estandar de las operaciones entre
conjuntos en R.
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De los incisos 1), 2) y el Teorema 1.1, podemos concluir que

(Γ ⋆Υ)(x) = sup
α∈[0,1]

{min(α,1(Γ⋆Υ)α(x)), x ∈ R}

= sup
α∈[0,1]

{min(α,1(Γα⋆Υα)(x)), x ∈ R}.

Esta forma de operar aritméticamente entre los números difusos a través de
las operaciones de sus α−cortes es muy conveniente, ya que los α−cortes de los
números difusos son intervalos cerrados y acotados, aśı definimos las operacio-
nes entre los números difusos en términos de las operaciones entre intervalos,
por lo cual, la ráız de los cálculos entre números difusos se encuentra en el
análisis de intervalos.

Definición 1.6. La aritmética de intervalos está definida a través de:

a) [a, b] + [c, d] = [a+ c, b+ d]

b) [a, b]− [c, d] = [a− d, b− c]

c) [a, b].[c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

d) [a, b]/[c, d] = [min(ac ,
a
d ,

b
c ,

b
d ),max(ac ,

a
d ,

b
c ,

b
d )]

Como consecuencia de esto, es posible obtener el siguiente resultado para
números difusos trapezoidales [28].

En lo que sigue, usaremos las notaciones +⋆ y
∑⋆

para aclarar que estamos
operando con conjuntos difusos.

Lema 1.2. Si Γ = (l1,m1, n1, p1) y Υ = (l2,m2, n2, p2) son dos números
difusos trapezoidales y λ un número real positivo, entonces se sigue que

a) Γ +∗ Υ = (l1 + l2,m1 +m2, n1 + n2, p1 + p2).

b) Si {(lk,mk, nk, pk) : 1 ≤ k ≤ M} es un conjunto finito de M números
difusos trapezoidales entonces

M∑∗

k=1

(lk,mk, nk, pk) =

(
M∑
k=1

lk,

M∑
k=1

mk,

M∑
k=1

nk,

M∑
k=1

pk

)
.

y

c) λΓ = (λl, λm, λn, λp).
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Demostración. a) Usando (1.1) se tiene que

Γα = [(m1 − l1)α+ l1, p1 − (p1 − n1)α]

Υα = [(m2 − l2)α+ l2, p2 − (p2 − n2)α].

Entonces, por la Definición 1.6 a) de suma de intervalos y por el inciso
2) de la Proposición 1.1, se tiene que

(Γ + Υ)α = Γα +Υα

= [((m1 +m2)− (l1 + l2))α+ (l1 + l2), (p1 + p2)− ((p1 + p2)− (n1 + n2))α].

Por lo tanto, la función de membreśıa de la suma es

(r̂ + ŝ)(x) =



0 si x ≤ (l1 + l2)
x−(l1+l2)

(m1+m2)−(l1+l2)
si (l1 + l2) ≤ x ≤ (m1 +m2)

1 si (m1 +m2) ≤ x ≤ (n1 + n2)
(p1+p1)−x

(p1+p2)−(n1+n2)
si (n1 + n2) ≤ x ≤ (p1 + p2)

0 si (p1 + p2) ≤ x.

(1.4)

La función de pertenencia en (1.4) está asociada al número difuso

(l1 + l2,m1 +m2, n1 + n2, p1 + p2).

b) Esta prueba se realiza por inducción.

c) Usando el inciso b), se realiza la prueba.

1.5. Orden máximo en F(R)
En optimización difusa o en la toma de decisiones en entornos difusos, es de

fundamental importancia ordenar o clasificar conjuntos difusos. En este trabajo
emplearemos el orden máximo de números difuso el cual se basa en el orden de
los α−cortes, por lo que se define en términos del orden de intervalos cerrados
y acotados en R definido de la siguiente forma:

Definición 1.7. Sea Γ,Υ ∈ F(R), Γα = [ΓL
α,Γ

U
α ] y Υα = [ΥL

α,Υ
U
α ]. Entonces

Γ ⩽∗ Υ si y solo si Γα ≤ Υα para todo α ∈ [0, 1], es decir, Γ ⩽∗ Υ si y solo si
ΓL
α ≤ ΥL

α y ΓU
α ≤ ΥU

α para todo α ∈ [0, 1].
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Ejemplo 1.2. (2, 5, 6, 10)α = [3α+2, 10−3α] y (7, 9, 13, 17)α = [2α+7, 17−3α].
Además, ya que 3α + 2 ≤ 2α + 7 y 10 − 3α ≤ 17 − 3α para todo α ∈ [0, 1],
entonces (2, 5, 6, 10) ≤∗ (7, 9, 13, 17).

No es dif́ıcil verificar que el orden “ ≤∗ ” es un orden parcial en F(R).

Observación 1.1. Tomamos z1, z2 ∈ R, y sean Γ y Υ números difusos con
funciones de pertenencia dadas por Γ(x) = Υ(x) = 1, x = zk y Γ(x) = Υ(x) =
0, x ̸= zk, k = 1, 2, respectivamente. Entonces, es fácil ver que Γ ⩽∗ Υ es
equivalente a z1 ≤ z2.

1.6. Métrica en el conjunto de números difusos

Definición 1.8. Sea C(R) el conjunto de todos los intervalos acotados Y ce-
rrados en R. Para Ψ = [al, au], Φ = [bl, bu] ∈ C(R) definamos

ρC(R)(Ψ,Φ) = máx(|al − bl| , |au − bu|). (1.5)

Lema 1.3. [2] La función d y el conjunto C(R) cumplen las siguientes propie-
dades:

a) ρC(R) define una métrica sobre C(R).

b) (C(R), ρC(R)) es un espacio métrico completo.

Ahora si Γ,Υ ∈ F(R), entonces Γα y Υα son conjuntos compactos porque
su función de pertenencia es semicontinua superior y tiene soporte compacto.
Por lo tanto, se define ρ̃F(R) : F(R)× F(R) −→ R por

ρ̃F(R)(Γ,Υ) = sup
α∈[0,1]

ρF(C)(Γα,Υα). (1.6)

Lema 1.4. [27] ρ̃F(R) es una métrica en F(R) .

Definición 1.9. Se dice que una sucesión {Γn} de números difusos es conver-
gente al número difuso µ, escrito como ĺım∗

n−→∞ Γn = µ.

Hacieindo uso del Lema 1.2 b) para números difusos trapezoidales y de la
métrica de Hausdorf 1.6, se puede verificar que se cumple la siguiente afirma-
cion:

Lema 1.5. Si {yk = (lk,mk, nk, pk) : k ≥ 1} es una sucesión de números di-
fusos trapezoidales tales que

∑∞
k=1 lk,

∑∞
k=1 mk,

∑∞
k=1 nk y

∑∞
k=1 pk convergen,

entonces

t∑∗

k=1

yk,
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converge cuando t −→ ∞ al número difuso trapezoidal:( ∞∑
k=1

lk,

∞∑
k=1

mk,

∞∑
k=1

nk,

∞∑
k=1

pk

)
.

Lema 1.6. [27] (F(R), ρ̃F(R)) es un espacio métrico completo.

1.7. Variable aleatoria difusa

Siguiendo [21] y [25] se establecen las siguientes definiciones sobre varia-
bles aleatorias difusas y sus esperanzas. Para esto, C(R) denota la clase de
subconjuntos compactos no vaćıos de R, y si (Ω1,A1) y (Ω2,A2) son espacios
medibles, entonces A1 ⊗A2 denota la σ−álgebra generada por el producto de
las σ−álgebras A1 y A2.

En muchos de los problemas que se presentan en la realidad que involucran
aleatoriedad, los datos que se requieren considerar son imprecisos. Este tipo de
datos es lo que se conoce como variables aleatorias difusas, es decir, además de
estar presente la aleatoriedad, también está la incertidumbre que se debe a la
imprecisión en la definición de los datos. Los problemas que se consideran en
los próximos caṕıtulos son de este tipo, por tal razón, incluimos los conceptos
relacionados con variables aleatorias difusa y fundamentar la formalidad de di-
cho concepto.

Las variables aleatorias difusas en el sentido de [25], representan elementos
aleatorios cuyos valores son números y han sido un modelo útil para un gran
cantidad de elementos aleatorios con valores imprecisos.

Ahora, se definirá una variable aleatoria difusa. En este caso, se adoptará
la definición propuesta en [25].

Definición 1.10. Sea (Ω,A) un espacio medible y (R,B(R)) el espacio medible
del conjunto de los números reales. Una función Ỹ : Ω −→ F(R) se dice que es
una variable aleatoria difusa asociada con (Ω,A), si la sección Ỹα : Ω −→ C(R)
que es la función de nivel α definida por Ỹα(ω) = (Ỹ (ω))α para todo ω ∈ Ω y
α ∈ [0, 1] satisface que Gr(Ỹα) = {(ω, x) ∈ Ω× R | x ∈ (Ỹ (ω))α} ∈ A ⊗ B(R),
para todo α ∈ [0, 1]. Equivalentemente, Ỹ debe verse como un intervalo genera-
lizado con una función de pertenencia µ y α−corte: Y (ω)α = [Y −(ω), Y +(ω)].

Definición 1.11. Sea (Ω,F , P ) un espacio de probabilidad y X̃ una variable
aleatoria discreta con rango {s̃1, s̃2, ..., s̃l} ⊆ F(R). La esperanza matemática
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de Ỹ es un número difuso, E(Ỹ ), tal que

E(Ỹ ) =

l∑
i=1

s̃iP (Ỹ = s̃i). (1.7)

Definición 1.12. Dado un espacio de probabilidad (Ω,A, P ) una variable alea-
toria difusa Ỹ asociada a (Ω,A) se dice que es una variable aleatoria difusa
integrable acotada con respecto a (Ω,A, P ) si existe una función h : Ω −→ R,
h ∈ L1(Ω,A, P ) tal que para todo (ω, x) ∈ Ω×R con x ∈ Ỹ0(ω), se cumple que
|x| ≤ h(ω).

1.8. Esperanza de una variable aleatoria difusa

Ahora presentemos la formalización del valor esperado de una variable alea-
toria difusa, destacando una de sus propiedades relevantes para nuestro estudio
en los próximos caṕıtulos.

Definición 1.13. Dada una variable aleatoria difusa acotada e integrable Ỹ
asociada con respecto el espacio de probabilidad (Ω,A, P ), entonces el valor

esperado difuso de Ỹ en el sentido de Aumann es el único conjunto difuso de
R, E∗[Ỹ ] tal que para cada α ∈ [0, 1]:(
E∗[Ỹ ]

)
α
=

{∫
Ω

f(ω)dP (ω) | f : Ω −→ R, f ∈ L1(P ), f(ω) ∈ (Ỹ (ω))α [P ]

}
. (1.8)

Lema 1.7. Sea (Ω,A, P ) un espacio de probabilidad. Sea Y una variable alea-
toria discreta no negativa asociada a (Ω,A, P ) tal que E[Y ] existe. Entonces,
Ỹ = Y (B,C,D, F ) es una variable aleatoria difusa asociada a (Ω,A, P ), y

E∗[Ỹ ] = E[Y ](B,C,D, F ). (1.9)

Demostración. Sea Y una variable aleatoria discreta no negativa con rango
finito o numerable denotada por Y [Ω] = {y1, y2, ...} y sea [Y = yj ] := {ω ∈
Ω | Y (ω) = yj}, j = 1, 2, .... Tomemos Θ = (B,C,D, F ) con α-cortes Θα =
[q(α), s(α)], α ∈ [0, 1]. Fijemos α ∈ [0, 1]. Considere la multifunción dada por

Ỹα(ω) := (Ỹ (ω))α = (Y (ω)Θ)α = Y (ω)[q(α), s(α)], (1.10)

ω ∈ Ω.

Ahora, notemos que

Gr(Ỹα) = {(ω, x) ∈ Ω× R | x ∈ Ỹα(ω)}
= {(ω, x) ∈ Ω× R | x ∈ Y (ω)[q(α), s(α)]}

=
⋃
j

([Y = yj ]× yj [q(α), s(α)]).
(1.11)
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Por lo tanto, Gr(Ỹα) ∈ A⊗B(R). Como α es arbitraria, de la Definición 1.10 se
deduce que Ỹ es una variable aleatoria difusa. A continuación, tenga en cuenta
que, para cada ω ∈ Ω,

Ỹ0(ω) = Y (ω)[B,F ].

Definamos h : Ω −→ R dado por

h(ω) := Y (ω)F,

ω ∈ Ω. Entonces, trivialmente:

|x| ≤ h(ω),

(ω, x) ∈ Ω×R con x ∈ Y (ω)[B,F ]. Además, claramente E[h] = FE[Y ] es finito.
Por lo tanto, a partir de la Definición 1.12, Ỹ es una variable aleatoria difusa
integrable acotada con respecto a (Ω,A, P ). Ahora, a partir de la Definición
1.13, existe un único valor esperado difuso E∗[Ỹ ], para cada α,

E[Y ]Θα =

[∫
Ω

Y (ω)dP (ω)

]
[q(α), s(α)]

=

[∫
Ω

Y (ω)dP (ω)

]
{x : x ∈ [q(α), s(α)]}

=

{∫
Ω

Y (ω)xdP (ω) : Y (ω)x ∈ Y (ω)[q(α), s(α)]

}
=

{∫
Ω

f(ω)dP (ω) : f : Ω −→ R, f ∈ L1(P ), f(ω) ∈ (Ỹ (ω))αa.s[P ]

}
=

(
E∗[Ỹ ]

)
α

(1.12)

por lo cual, (E∗[Ỹ ])α = E[Y ][q(α), s(α)] para cada α, es el α-corte del número
trapezoidal dado para

E[Y ](B,C,D, F ),

es decir,
E∗[Ỹ ] = E[Y ](B,C,D, F ).

Lema 1.8. Sean X̃ y Ỹ variables aleatorias difusas de tipo trapezoidales. En-
tonces

a) E[X̃] ∈ F(R).

b) E[X̃ + Ỹ ] = E[X̃] + E[Ỹ ].

c) E[λX̃] = λE[X̃], λ ≥ 0.
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Los conceptos y resultados sobre números difusos que hemos presentado
hasta ahora, son la base para los resultados obtenidos en el Caṕıtulo 2 sobre
PDMs con criterios de rcompensa esperada total y el caso descontado.
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Caṕıtulo 2

PDMs: Versión ńıtida y
difusa

Cuando se intenta resolver problemas relacionados con sistemas que evolu-
cionan de forma aleatoria y que consideran las recompensas que se obtendrán
de las decisiones actuales y a las posibles oportunidades de toma de decisiones
en el futuro, puede suceder que la probabilidad de que ocurra un evento esté
en función solamente de lo ocurrido en la etapa inmediata anterior que se ha
observado (estado actual del sistema) y no de toda la historia observada en el
pasado, es decir, que satisface la propiedad de Markov. Adicional a esto, los
datos requeridos para la modelación podŕıan ser imprecisos. Por tal razón, en
este caṕıtulo se presentará primeramente la teoŕıa de Procesos de Decisión de
Markov (PDMs) en su versión ńıtida, los cuales son una clase muy especial
de modelos de decisión secuencial que están planteados con algún componente
estocástico y que modelan la evolución temporal de muchos sistemas aleatorios
que satisfacen la propiedad de Markov. Luego introduciremos un MDP difuso
conveniente de PDM difuso en las próximas secciones. La literatura detallada
sobre la teoŕıa de procesos de decisión de Markov se puede consultar en las
referencias: [18] y [26].

2.1. Modelo de decisión de Markov: caso ńıtido

A continuación, explicamos el modelo de decisión de Markov, el cual es un
modelo de toma de decisiones secuenciales con la propiedad de Markov, es decir,
es un modelo que consiste de una serie de etapas llamadas épocas de decisión
en las que en cada una de ellas, se observa el estado del sistema, se toma una
decisión bajo la incertidumbre sobre el estado del sistema en la próxima época
de desición, y que además la probabilidad de que ocurra un evento dependa

29
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solamente del estado actual del sistema. El estado actual entonces proporciona
toda la información útil para pronósticos, por lo que el desarrollo pasado puede
ser olvidado porque sólo el presente influye.

Definición 2.1. Un modelo de decisión de Markov es una qúıntupla que con-
siste de los siguientes elementos:

M := (X,A, {A(x) : x ∈ X}, Q,R) (2.1)

donde

a) X es un conjunto finito, el cual es llamado el espacio de estados del
sistema.

b) A es un espacio de Borel denominado el espacio de control o de acciones
factibles.

c) Definimos {A(x) : x ∈ X} es una familia no vaćıa de subconjuntos A(x)
de A, donde los elementos son las acciones factibles cuando el estado del
sistema es x.

d) Q es una ley de transición, el cual es un kernel estocástico en X dado
K := {(x, a) : x ∈ X, a ∈ A(x)}. Donde K es denominado el conjunto de
pares de estado−acciones factibles del sistema.

d) R : K −→ R es una función de recompensa en un paso.

2.1.1. Poĺıticas

Dado un Modelo de control de Markov, introduciremos el concepto de poĺıti-
ca.

Definición 2.2. Una poĺıtica es una sucesión π = {πt : t = 0, 1, ...} de kérneles
estocásticos πt en el conjunto de control A dada la historia Ht del proceso hasta
el tiempo t, donde Ht := K×Ht−1, t = 1, 2, ... y H0 = X.

Las poĺıticas o estrategias son fórmulas que eligen una acción en cualquier
evento que ocurra en el futuro. El conjunto de todas las poĺıticas es denotado
por Π.

Definición 2.3. Una poĺıtica de Markov determińıstica es una sucesión π :=
{ft} tal que ft ∈ F para t = 0, 1, ..., donde F denota el conjunto de todas las
funciones f : X −→ A tales que f(x) ∈ A(x), para toda x ∈ X.

Al conjunto de todas las poĺıticas Markovianas las denotaremos por M.

Definición 2.4. Una poĺıtica de Markov π = {ft} se dice que es estacionaria
si ft es independiente de t, es decir que ft = f para toda t = 0, 1....
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En este caso, π es identificada como f y F denota el conjunto de poĺıticas
estacionarias.

2.1.2. Construcción del proceso de Markov

El modelo de control de Markov y las poĺıticas generan el espacio de proba-
bilidad que da lugar al Proceso estocástico de interés (el Proceso de Decisión de
Markov). Dicho espacio de probabilidad es (Ω′,F ′), el cual consiste del espacio
muestral canónico Ω′ = H∞ := (X × A)∞ y F ′ la correspondiente σ−álgebra
producto. Los elementos de Ω′ son sucesiones de las forma ω = (x0, a0, x1, a1...)
con xt ∈ X y at ∈ A para toda t = 0, 1, .... Las proyecciones xt y at son llama-
das las variables de estados y acciones, respectivamente.

Sea π = {πt} una poĺıtica arbitraria y µ una medida de probabilidad ar-
bitraria en X llamada la distribución inicial. Entonces, por el teorema de C.
Ionescu-Tulcea [26], existe una única medida de probabilidad Pπ

µ en (Ω′,F ′) la
cual tiene soporte en H∞, es decir, Pπ

µ (H∞) = 1 y tal que, para cada B ∈ B(X),
C ∈ B(A) y ht ∈ Ht

Pπ
µ (x0 ∈ B) = µ(B),

Pπ
µ (at ∈ C|ht) = πt(C|ht), (2.2)

Pπ
µ (xt+1 ∈ B|ht, at) = Q(B|xt, at).

La tercera ecuación en (2.2) se llama propiedad de Markov, aśı que con
conocimiento del presente, el pasado ejerce ninguna influencia en el futuro.

El proceso estocástico (Ω′,F ′, Pπ
µ {x}) es llamado Proceso de Decisión

de Markov a tiempo discreto o Proceso de Decisión de Markov.

Observación 2.1. El operador esperanza con respecto a Pπ
µ lo denotaremos

por Eµ,π. Si µ está concentrada en un estado inicial x ∈ X, entonces Pπ
µ y

Eµ,π son escritas como Pπ
x y Ex,π, respectivamente.

2.1.3. Ley de transición para un modelo de ecuaciones
en diferencias

Con frecuencia, la ley de transición de un proceso de control de Markov es
especificado por una ecuación en diferencias de la forma

xt+1 = F (xt, at, ξt), (2.3)
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t = 0, 1, 2, ..., con x0 = x ∈ X conocida, donde {ξt} es una sucesión de variables
aleatorias independientes e identicamente distribuidas (i.i.d.) con valores en un
espacio finito S y una distribución común ∆ independiente del estado inicial
x0 y F : K× S −→ X es una función medible conocida. En tal caso, la ley de
transición Q está dada por:

Q(B|x, a) = P (xt+1 ∈ B|xt = x, at = a)

= P (F (xt, at, ξt) ∈ B|xt = x, at = a)

= P (F (x, a, ξt) ∈ B)

=

∫
X

IB(F (x, a, s))dµ(s) (2.4)

= E[IB(F (x, a, ξ))],

con B ∈ B(X) y (x, a) ∈ K, donde IB es la función indicadora del conjunto
B ⊆ X,E es la esperanza con respecto a la distribución µ y ξ es un elemento
genérico de la sucesión {ξt}.

2.2. PDMs con recompensa total esperada

En esta sección consideremos un Modelo de Decisión de Markov estaciona-
rio a tiempo discreto y un conjunto de poĺıticas Π, definimos a continuación el
criterio de rendimiento conocido como recompensa total esperada.

Definición 2.5. Para cada x ∈ X y π ∈ Π, la recompensa total esperada en la
etapa N es la ganancia cuando se ha usado la estrategia π, dado que el estado
inicial del sistema es x y se define por

v(π, x) := Eπ,x

[
N−1∑
t=0

R(Xt, at) +RN (Xn)

]
π ∈ Π, x ∈ X. (2.5)

El criterio de recompensa total esperada cuando se ha usado la estrategia
π, dado que el estado inicial del sistema es x se define por

v(π, x) := Eπ,x

[ ∞∑
t=0

R(Xt, at)

]
. (2.6)

Definición 2.6. El máximo beneficio es entonces la función de valor óptimo
y se defne como:
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V (x) := sup
π∈Π

v(π, x), x ∈ X. (2.7)

2.2.1. Problema de control óptimo para el modelo

El problema de control óptimo consiste en encontrar una poĺıtica π∗ ∈ Π
tal que

v(π∗, x) = V (x) (2.8)

x ∈ X, en tal caso, π∗ es llamada una poĺıtica óptima. Esta es una sucesión
especial ya que cuando operamos con ella, se obtiene el mejor beneficio.

El siguiente teorema, proporciona un algoritmo para encontrar la función
de valor V (x) y a una poĺıtica óptima π∗. Bajo condiciones adecuadas sobre la
función de recompensa en un paso y la ley de transición se caracterizan las fun-
ciones de valores óptimos V mediante una ecuación funcional. El conocimiento
de V permite obtener una poĺıtica óptima determinista Markoviana estaciona-
ria.

Teorema 2.1. Sean V0, V1, ..., VN funciones en X definidas hacia atrás por

VN (x) := RN (x) (2.9)

y para t = N − 1, N − 2, ..., 1, 0

Vt(x) := máxA(x)

[
R(x, a) +

∫
Vt+1(y)Q(dy|x, a)

]
. (2.10)

Supongamos que estas funciones son medibles y que para cada t = 0, 1, 2, 3..., N−
1, existe un selector ft ∈ F tal que ft(x) ∈ A(x) alcanza el máximo en la ecua-
ción (2.10) para todo x ∈ X. Esto es que ∀x ∈ X y t = 0, 1, ..., N − 1,

Vt(x) := R(x, ft) +

∫
Vt+1(y)Q(dy|x, ft). (2.11)

Entonces, la poĺıtica de Markov determińıstica π∗ = {f0, f1, ..., fN−1} es
óptima y la función de valor V es igual a V0, es decir,

V (x) = V0(x) = v(π∗, x) ∀x ∈ X. (2.12)
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Este teorema impone al modelo de control de Markov una importante supo-
sición, la cual se denomina condición selección medible, el cual puede enunciarse
de varias maneras. Los siguientes supuestos son una recopilación de las con-
diciones necesarias para resolver los PDMs con la técnica de Programación
Dinámica, que se basan en garantizar que se cumpla la Condición de Selección
Medible y el método de aproximaciones sucesivas si se trabaja en horizonte
infinito.

Lema 2.1. Dado un modelo de control de Markov y sea u : X −→ R una
función medible, entonces

u∗(x) := máxA(x)

[
R(x, a) +

∫
u(y)Q(dy|x, a)

]
(2.13)

es medible y existe un selector f ∈ F tal que la función entre corchetes alcanza
su máximo en f(x) ∈ A(x) para todo x, es decir

u∗(x) := R(x, f) +

∫
u(y)Q(dy|x, f). (2.14)

Enunciamos algunas condiciones generales bajo las cuales se sostiene el su-
puesto del Lema 2.1.

Condición 2.1. a) El conjunto de restricciones de control A(x) es compac-
to para todo x ∈ X;

b) La recompensa R es tal que R(x, .) es l.s.c. (semicontinua inferior) en
A(x) para cada x ∈ X;

c) La función
∫
X
v(y)Q(dy|x, a) definida en K satisface una de las dos con-

diciones siguientes:

1)
∫
X
v(y)Q(dy|x, .) es l.s.c. en A(x) para cada x ∈ X y cada función

acotada continua v en X;

2)
∫
X
v(y)Q(dy|x, .) es l.s.c. en A(x) para cada x ∈ X y cada función

acotada medible v en X.

Condición 2.2. a) A(x) es compacto para todo x ∈ X y la multifunción
x 7→ A(x) es l.s.c.

b) La recompensa R es l.s.c. y acotada por debajo.

c) La ley de transición cumple una de los siguientes supuestos:

1) Débilmente continua, es decir,
∫
X
v(y)Q(dy|x, a) es continua y aco-

tada en K para cada función acotada continua v en X.
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2) Fuertemente continua,
∫
X
v(y)Q(dy|x, a) es continua y acotada en

K para cada función medible acotada medible v en X.

Definición 2.7. Una función v : K −→ R se dice que es inf−compacta en K,
si para todo x ∈ X y r ∈ R, el conjunto {a ∈ A(x)|v(x, a) ≤ r} es compacto.

Condición 2.3. a) La recompensa R es inf−compacta en K, l.s.c. y acotada
inferiormente

b) La ley de transición cumple uno de los siguientes supuestos:

1) Débilmente continua.

2) Fuértemente continua.

Teorema 2.2. a) Cada una de las Condiciones 2.1 y 2.2, implican el Su-
puesto 2.1 para cualquier función medible no−negativa.

b) La Condition 2.3 implica el Lema 2.1 si, bajo (b1), v es non−negativa
l.s.c., o, bajo (b2), si u es una función medible nonnegativa. Si, adicio-
nalmente, la multifunctión

x 7→ A∗(x) := {a ∈ A(x)|u∗ = c(x, a) +

∫
u(y)Q(dy|x, a)}

es semicontinua inferiormente, entonces u∗ es semicontinua inferiormen-
te.

En las dos secciones siguientes consideremos el espacio de estados de tipo
discreto, por lo que las ecuaciones (2.5-2.7) quedan de la siguiente forma:

Recompensa total esperada:

V (i, π) = Ei,π

[ ∞∑
t=0

R(xt, at)

]
. (2.15)

Recompensa en T−etapas.

V (i, π) = Ei,π

[
T∑

t=0

R(xt, at)

]
. (2.16)

Por lo tanto, una estrategia π∗ es óptima si para todo i ∈ X

V (i) = sup
π∈Π

V (i, π∗). (2.17)

La función V es llamada la función de valor óptimo.
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Supuesto 2.1. 1. Para cada (i, a) ∈ K, R(i, a) ≥ 0

2. V (i) < ∞, para cada i ∈ X.

Lema 2.2. [26] y [29]

La función de valor óptimo satisface la siguiente ecuación de optimalidad:
para cada i ∈ X,

V (i) = sup
a∈A(i)

R(i, a) +
∑
j∈X

pi.j(a)V0(j)

 . (2.18)

Si W : X −→ [0,∞) satisface que W (i) ≥ supa∈A(i)[R(i, a)+
∑

pi.j(a)W (j)]

para cada i ∈ X, entonces W ≥ V0.

Lema 2.3. [9]. Bajo el supuesto 2.1, existe una poĺıtica estacionaria óptima
f0.

2.3. PDMs con recompensa total esperada di-
fusa

Ahora presentamos el nuevo modelo de decisión de Markov difuso.

Definición 2.8. Un modelo de decisión de Markov es una qúıntupla que con-
siste de los siguientes elementos:(

X,A, {A(i) | i ∈ X}, {pij(a) | i, j ∈ X}, a ∈ A(i)}, R̃
)
, (2.19)

El modelo de decisión de Markov difuso tiene los mismos componentes que
el modelo de decisión de Markov ńıtido (2.1), solo que ahora se considera una
función de recompensa difusa. Aśı, la evolución de un sistema difuso estocástico
es la siguiente: si el sistema está en el estado xt = x ∈ X en el tiempo t y se
aplica el control at = a ∈ A(x), entonces pasan dos cosas:

a) se obtiene una recompensa difusa R̃(x, a).

b) el sistema transita al siguiente estado xt+1 de acuerdo con la ley de
transición Q, es decir,

Q(B|x, a) = Prob(xt+1 ∈ B|xt = x, at = a),

con B ⊆ X.
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Los conjuntos de poĺıticas estacionarias y aleatorias coinciden para am-
bos modelos, además, para cada i ∈ X y π ∈ Π existe un espacio canónico
(Ω,A, Pi,π) con la sucesión correspondiente {x0, a0, x1, a1, ...} de estados y de-
cisiones respectivamente.

Antes de definir una función objetivo para el modelo (2.19), se establecerá

la función de recompensa difusa R̃ a utilizar, la que será espećıficamente de
tipo trapezoidal bajo el siguiente supuesto.

Supuesto 2.2. Sea R(i, a) ≥ 0 para cada (i, a) ∈ K y sean B, C, D, y F
números no negativos tales que: 0 ≤ B < C ≤ D < F . Se supondrá que

R̃(i, a) = R(i, a) (B,C,D, F ) , (2.20)

para todo i ∈ X y a ∈ A(i), donde R : K −→ R es una función de recompensa no
negativa como se consideró en la sección anterior y (B,C,D, F ) es un número
trapezoidal como en (1.4).

Observación 2.2. Observemos que 0̃ ⩽∗ R̃(i, a), para todo i ∈ X y a ∈ A(i).

Lema 2.4. Sea i ∈ X y π ∈ Π, y sea (Ω,A, Pi,π) el espacio canónico corres-
pondiente fijo. Sea Y una variable aleatoria discreta no negativa asociada a
(Ω,A, Pi,π) tal que Ei,π[Y ] existe. Supongamos que se cumple el Supuesto 2.2.
Tome i ∈ X y π ∈ Π, y sea (Ω,A, Pi,π) el espacio canónico correspondiente
fijo. Entonces,

a) Para cada T ≥ 0,

T∑∗

t=0

R̃ (xt, at) :=

T∑
t=0

R (xt, at) (B,C,D, F ), (2.21)

es una variable aleatoria difusa y

E∗
i,π

[
T∑∗

t=0

R̃ (xt, at)

]
= Ei,π

[
T∑

t=0

R (xt, at)

]
(B,C,D, F ). (2.22)

b) Definamos:

Hfinite =

{
ω ∈ Ω |

∞∑
t=0

R (xt, at) (ω) < +∞

}
y

H∞ =

{
ω ∈ Ω |

∞∑
t=0

R (xt, at) (ω) = +∞

}
.
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Entonces,

∞∑∗

t=0

R̃ (xt, at) (ω) =

{∑∞
t=0 R (xt, at) (ω)(B,C,D, F ), ω ∈ H

0̃, ω ∈ H∞

(2.23)
es una variable aleatoria difusa, y

E∗
i,π

[ ∞∑∗

t=0

R̃ (xt, at)

]
= Ei,π

[ ∞∑
t=0

R (xt, at)

]
(B,C,D, F ). (2.24)

Demostración. a) Observe que para cada T ≥ 0,
∑T

t=0 R (xt, at) es una
variable aleatoria discreta no negativa (recuerde que X y A son conjuntos
finitos). En consecuencia, la parte a) se sigue del Lema 1.7, con Y =∑T

t=0 R (xt, at).

b) Consideremos para cada T ≥ 0, ST :=
∑T

t=0 R (xt, at), con rango finito
dado por

ST [Ω] = {yT1 , yT2 , ..., yTkT
},

y considere los conjuntos medibles [ST = yTj ] := {ω ∈ Ω | Y (ω) = yTj },
j = 1, 2, ..., kT . Sean S =

∑∞
t=0 R (xt, at) y S̃ =

∑∗∞

t=0
R̃ (xt, at).

Notemos que por el Supuesto 2.2, 0 ≤ Ei,π[S] < ∞ lo que implica que
S es finito a.s. [Pπ

i ] (ver Ejercicio 4Q, p. 39 en [4]), es decir, el conjunto
medible H∞ satisface que Pπ

i (H∞) = 0. Ahora, del Lema 1.2 en [4] se
sigue que

S̊(ω) =

{
S(ω), ω ∈ H

0, ω ∈ H∞,
(2.25)

es medible, y con esto se tiene que S̃(ω) = S̊(ω)(B,C,D, F ), ω ∈ Ω, que
es

S̃(ω) =

{
S(ω)(B,C,D, F ), ω ∈ Hfinite

0̃, ω ∈ H∞.
(2.26)

Observe que, para ω ∈ H, es decir, si S(ω) < ∞ resulta que

ĺım
t−→∞

R(xt(ω), at(ω)) = 0,

y recordando que X y A son conjuntos finitos, se sigue que existe un
entero positivo τ = τ(ω) tal que

R(xt(ω), at(ω)) = 0,
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para todo t > τ , o
S(ω) = Sτ (ω),

y en este caso también se cumple que:

S̃(ω) = Sτ (ω). (2.27)

Ahora, tengamos en cuenta la multifunción dada por

S̃α(ω) := (S̃(ω))α = (S̊(ω)Θ)α = S(ω)[q(α), s(α)], (2.28)

ω ∈ Ω. (Recordar que Θ = (B,C,D, F ) con α-cortes Θα = [q(α), s(α)],
α ∈ [0, 1].)

Gr(S̃α) =
{
(ω, x) ∈ Ω× R | x ∈ S̊(ω)[q(α), s(α)]

}
=

+∞⋃
T=0

kT⋃
j=1

[ST = yTj ]× yTj [q(α), s(α)]

 ∪ [H∞ × {0}] .
(2.29)

Por lo tanto, Gr(S̃α) ∈ A ⊗ B(R). Dado que α es arbitrario, de la Defi-
nición 1.10 resulta que S̃ es una variable aleatoria difusa. Y similar a la
prueba de la parte a) de este lema se sigue que (2.24) se cumple.

Lema 2.5. Supongamos que el Supuesto 2.2 se cumple. Tomemos i ∈ X Y
π ∈ Π y sea (Ω,A, Pi.π) el espacio canónico correspondiente fijo. Entonces,
para cada T ≥ 0,

S̃T =

T∑
t=0

∗R̃(xt, at) =

T∑
t=0

R(xt, at)(B,C,D, F ), (2.30)

y

E∗
i,π

[
T∑

t=0

∗R̃(xt, at)

]
= Ei,π

[
T∑

t=0

R(xt, at)

]
(B,C,D, F ), (2.31)

Además,

S̃ =

∞∑
t=0

∗R̃(xt, at) =

∞∑
t=0

R(xt, at)(B,C,D, F ), (2.32)

y
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E∗
i,π

[ ∞∑
t=0

∗R̃(xt, at)

]
=

{
Ei,π [

∑∞
t=0 R(xt, at)] (B,C,D, F ),

0̃

Observación 2.3. a) El caso (degenerado) en el que en el modelo de deci-

sión (2.19) R̃(i, a) tiene una función de pertenencia dada por:

(R̃(i, a))′(x) =

{
1 si x = R(i, a)

0 si x ̸= R(i, a),
(2.33)

para todo i ∈ X y a ∈ A(i) implica que R̃ es una variable aleatoria difusa
y

E∗
i,π[R̃] = Ei,π[R]1̃, (2.34)

para todo i ∈ X y π ∈ Π. Aśı, el problema de control óptimo difuso des-
crito en (2.40) y (2.41) se reduce al problema de control óptimo descrito
en (2.1).

b) Tenga en cuenta que el Lema 2.4 es válido para todas las variables alea-
torias difusas y sus esperanzas.

2.3.1. Problema de control óptimo para el modelo difuso

Definición 2.9. Para cada i ∈ X y π ∈ Π, la esperanza difusa correspondiente
viene dada por:

Ṽ (i, π) := E∗
i,π

[ ∞∑∗

t=0

R̃ (xt, at)

]
= Ei,π

[ ∞∑
t=0

R (xt, at)

]
(B,C,D, F ). (2.35)

Ahora, sea i ∈ X y π ∈ Π, y T ≥ 0:

ṼT (i, π) :=

T∑∗

t=0

E∗
i,π

[
R̃ (xt, at)

]
, (2.36)

V ∗
T se conoce como recompensa total esperada difusa de T etapas.

Observación 2.4. Nótese que la recompensa total esperada difusa de T etapas
(ver (2.36)) es un número difuso trapezoidal, espećıficamente,

ṼT (i, π) = (BVT (i, π), CVT (i, π), DVT (i, π), FVT (i, π)) , (2.37)

para π ∈ Π y i ∈ X, donde ṼT es la recompensa total ńıtida de la etapa T .
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Lema 2.6. Supongamos que se cumple el Supuesto 2.2. Entonces, para cada
i ∈ X y π ∈ Π, {ṼT (i, π)} converge y

Ṽ (i, π) := lim∗
T→∞ṼT (i, π) =

∞∑∗

t=0

E∗
i,π

[
R̃ (xt, at)

]
= (BV (i, π), CV (i, π), DV (i, π), FV (i, π)), (2.38)

donde

V (i, π) =

∞∑
t=0

Ei,π [R (xt, at)] ∈ R.

Demostración. Sean π ∈ Π y x ∈ X fijos. Para simplificar la notación en esta
prueba se denotará V = V (π, x) and VT = VT (π, x). Entonces, los α−cortes de
(2.36), están dados por

∆T : = (BVT , CVT , DVT , FVT )α

= [B(1− α)VT + αCVT , F (1− α)VT + αDVT ].

Analogamente,

∆ : = (BV,CV,DV, FV )α

= [B(1− α)V + αCV, F (1− α)V + αDV ].

Por lo tanto, por (1.6), se obtiene que

ρ̃F(R)(ṼT (i, π), Ṽ (i, π)) = supα∈[0,1]ρF(C)(∆
T ,∆).

Ahora, debido a la identidad máx(c, b) = (c+ b+ |b− c|)/2 con b, c ∈ R, resulta
que

ρF(C)(∆T ,∆) = (1− α)D(V − VT ) + αC(V − VT ).

Entonces,

ρ̃F(R)(ṼT , Ṽ ) = supα∈[0,1](V − VT )(D − α(D − C))

= (V − VT )D.
(2.39)

Por tanto, cuando T tiende a infinito en (2.39), se concluye que

ĺım
T−→∞

ρ̃F(R)(ṼT , Ṽ ) = ĺım
T−→∞

(V − VT )D

= 0.
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Ahora, el problema de control óptimo difuso es el siguiente: determine πo ∈
Π (si existe) tal que:

Ṽ (i, π) ≤∗ Ṽ (i, πo), (2.40)

para todo i ∈ X y π ∈ Π. En este caso es posible escribir

Ṽ (i, πo) = sup∗π∈ΠṼ (i, π), (2.41)

i ∈ X y se dice que πo es óptimo. Además, la función Ṽo(i) = Ṽ (i, πo) para
i ∈ X se llamará función de valor óptimo difusa.

Lema 2.7. Supongamos que se cumple el Supuesto 2.2. Entonces, para cada
i ∈ X, Ṽo(i) es una función acotada, es decir, existe K̃ ∈ F(R) tal que Ṽo(i) ≤∗

K̃, i ∈ X.

Demostración. Tomemos π ∈ Π y i ∈ X fijos. Entonces, como consecuencia de
(2.38), el α−corte de Ṽ (i, π) está dado por

Ṽ (i, π)α = [BṼ (i, π) + αṼ (i, π)(C −B), F Ṽ (i, π)− αṼ (i, π)(F −D)].

Notemos que ya que X es finito, podemos encontrar un K > 0 tal que V (π, i) ≤
K. (Observe que debido a que X es finito, es posible tomar K para obtener
V (π, i) ≤ K, para todo i ∈ X.) En consecuencia, observe que

BṼ (i, π) + αṼ (i, π)(C −B) ≤ BK + α(C −B)K,

y

FṼ (i, π)− αṼ (i, π)(F −D) ≤ FK(1− α) + αDK

= FK − α(F −D)K.

En consecuencia, Ṽ (i, π) ⩽∗ K̃ := (BK,CK,DK,FK). Por lo tanto, Ṽo(i) ⩽∗

K̃ (ver (2.41)). Como i y π son arbitrarios, el resultado es el siguiente.

Teorema 2.3. Bajo el Supuesto 2.2 se cumplen las siguientes afirmaciones.

a) La poĺıtica óptima del problema de control difuso es la misma que la
poĺıtica óptima del problema de control óptimo.

b) La función de valor difuso óptima está dada por

Ṽ (i) = (BV (i), CV (i), DV (i)), i ∈ X. (2.42)

Demostración. a) Sean π ∈ Π y i ∈ X fijos. Primero observemos que (2.35)
es equivalente a

Ṽ (i, π) := (BV (i, π), CV (i, π), DV (i, π), FV (i, π)),
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como consecuencia del supuesto 2.2. Entonces, el α-corte de Ṽ (π, x) viene
dado por

Ṽ (π, x)α = [(C −B)V (i, π)α+BV (i, π), FV (i, π)− (F − C)αV (i, π)].

Ahora, por el Teorema 2.1, existe fo ∈ F tal que

(C −B)V (i, π)α+BV (i, π) ≤ (C −B)V (i, fo(i))α+BV (i, fo(i)).

y

FV (i, π)α− (F − C)αV (i, π) ≤ FV (i, fo(i))α− (F − C)V (i, fo(i)).

Dado que i ∈ X y π ∈ Π son arbitrarios, el resultado se cumple debido a
(2.41).

b) Por la parte a) de este Lema, se sigue que

Ṽ (x) = (BV (i, fo(i)), CV (i, fo(i)), DV (i, fo(i)), FV (i, fo(i))),

para cada i ∈ X, aplicando aśı el Teorema 2.1, se concluye que

Ṽ (i) = (BV (i), CV (i), DV (i), FV (i)), i ∈ X.

2.4. PDMs con recompensa total descontada (ca-
so ńıtido)

En esta sección, se consideran los Procesos de decisión de Markov con re-
compensa descontada total en tiempo discreto con espacios de estados finitos,
conjuntos de acción compactos tanto en el caso de horizonte finito e infinito.

Definición 2.10. (X,A, {A(x) : x ∈ X}, Q,R), un modelo de Markov, enton-
ces la recompenza descontada total esperada se define como sigue:

v(π, x) := Ex,π

[ ∞∑
t=0

βtR(Xt, at)

]
, (2.43)

π ∈ Π, x ∈ X, donde β ∈ (0, 1) es un factor de descuento dado. Además, la
recompensa descontada total esperada con un horizonte finito es definida de la
forma siguiente:

vT (π, x) := Ex,π

[
T−1∑
t=0

βtR(Xt, at)

]
, (2.44)
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para cada x ∈ X y π ∈ Π donde T es un entero positivo.

La función de valor óptimo está definida como

V (x) := supπ∈Πv(π, x), (2.45)

x ∈ X.

2.4.1. Problema de control óptimo para el modelo

El problema de control óptimo es encontrar una poĺıtica π∗ ∈ Π tal que

v(π∗, x) = V (x), (2.46)

x ∈ X, en tal caso, π∗ es llamada la poĺıtica óptima. Definiciones similares
pueden ser establecidas análogamente para vT . En este caso, VT denota la fun-
ción de valor óptimo para el problema de control óptimo con un horizonte finito.

Supuesto 2.3. a) Para cada x ∈ X, A(x) es un conjunto compacto en
B(A).

b) La función de Recompensa R es una función acotada y no−negativa.

c) Para cada x, y ∈ X. los mapeos a 7−→ R(x, a) y a 7−→ Q({y}}x, a) son
continuas en a ∈ A(x)

La prueba del siguiente teorema que proporciona el teorema de Programa-
ción Dinámica puede ser consultado en [18] y [26].

Teorema 2.4. Bajo el supuesto 2.3, las siguientes afirmaciones se cumplen:

a) Definamos WT (x) = 0 y para n = T − 1, ..., 1, 0, consideremos

Wn(x) := maxa∈A(x){R(x, a) + βE[Wn+1(F (x,A, ξ))]}. (2.47)

x ∈ X. Entonces para cada n = 0, 1, ..., T − 1, existe una fn ∈ F tal que

Wn(x) = R(x, a) + βE[Wn+1(F (x, fn(x), ξ))], (2.48)

x ∈ X. En este caso, π∗ = {f0, ..., fT−1} ∈ M es la poĺıtica óptima y
VT (x) = vT (π

∗, x) = W0(x), x ∈ X.
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b) La función de valor óptima V, satisface la siguiente ecuación de progra-
mación dinámica:

V (x) = maxa∈A(x){R(x, a) + βE[V (F (x, a, ξ))]}, (2.49)

x ∈ X.

c) Existe una poĺıtica f∗ ∈ F tal que el control f∗(x) ∈ A(x) que alcanza el
máximo en (2.49) es decir, para todo x ∈ X,

V (x) = R(x, f∗(x)) + βE[V (F (x, f∗(x), ξ))]. (2.50)

d) Definamos la función de iteración de valor como sigue:

Vn(x) = mina∈A(x){C(x, a) + βE[Vn−1(F (x, f∗(x), ξ))]}, (2.51)

para todo x ∈ X y n = 1, 2, ..., con V0(.) = 0. Entonces la secuencia de
puntos {Vn} de funciones de iteracion de valor converge puntualmente a
la función de valor óptimo V , es decir,

ĺım
n→∞

Vn(x) = V (x)

x ∈ X.

Observación 2.5. Como consecuencia del Teorema 2.4, los siguientes
hechos se mantienen:

a) Por la parte a) del Teorema 2.4, en el caso de recompensa esperada
descontada con un horioznte finito, el óptimo es alcanzado en una
poĺıtica Markoviana, por lo tanto,

supπ∈ΠvT (π, x) = supπ∈Π{vT (π, x)}, (2.52)

x ∈ X.

b) Por la parte c) del Teorema 2.4, en el caso de recompensa esperada
descontada con un horizonte infinito, el óptimo es alcanzado en una
poĺıtica óptima estacionaria. Entonces se sigue que:

supπ∈ΠvT (π, x) = supf∈FvT (f, x)}, x ∈ X. (2.53)
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2.5. PDMs descontado con recompensa difusa

En esta sección presentamos los procesos de decisión de Markov descontados
en tiempo discreto con espacios de estados finitos, conjuntos de acción com-
pactos de horizontes finitos e infinitos y recompensa difusa de tipo trapezoidal
bajo el criterio de recompenza difusa descontada total esperada. El problema
de control óptimo correspondiente se establece con respecto al orden máximo
difuso. La solución óptima difusa está relacionada a un PDM con descuento
af́ın con una recompensa no difusa. En el Caṕıtulo 4 se proporcionan aplica-
ciones de la teoŕıa desarrollada en un modelo de horizonte finito de un sistema
de inventario en el que se utiliza un algoritmo para calcular la solución óptima,
y, adicionalmente para el caso de horizonte infinito, un PDM y un competitivo
PDM (también conocido como juego estocástico) se suministran en un contexto
económico y financiero.

Consideremos un modelo de decisión de Markov difuso como en (2.19), don-
de los primeros cuatro componentes son los mismos que en el modelo dado en
(2.1). La componente R̃, corresponde a una función de recompensa difusa en K.

2.5.1. Criterio de recompenza difusa descontada total es-
perada

Para cada poĺıtica π ∈ M y estado x ∈ X, sea

ṽ(i, π) =

T−1∑
t=0

βtE∗
i,π

[
R̃(xt, at)

]
, (2.54)

donde T es un entero positivo y E∗
i,π es la esperanza con respecto a P̃π

x la cual
está definida por la expresión (1.7). La expresión dada en (2.54) se denomina
recompensa difusa descontada total esperada con un horizonte finito.

Ṽ (i, π) =

∞∑
t=0

βtE∗
i,π

[
R̃(xt, at)

]
, (2.55)

y, la esperanza en (2.55) está definida en (1.7), cuando {at} es inducida por
una poĺıtica estacionaria π.

De esta forma, el problema de control de interés es la maximización de la
recompensa difusa total descontada esperada en un horizonte finito o infinito
(ver (2.54) y (2.55), respectivamente). Se considera la siguiente suposición para
la función de recompensa del modelo difuso.
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Supuesto 2.4. Sea γ1, γ2, γ3 y γ4 números reales tales que 0 < γ1 < γ2 ≤ γ3 <
γ4. Supondremos que la recompensa difusa es un número difuso trapezoidal (ver
la Definición 1.4), espećıficamente

R̃(x, a) = R(x, a)(γ1, γ2, γ3, γ4) (2.56)

para cada (x, a) ∈ K, donde R : K −→ R es la función de recompensa del
modelo 2.19.

Observación 2.6. Observemos que, bajo el Supuesto 2.4 y la parte b) del Lema
1.2, la recompensa difusa (2.54) es un número difuso trapezoidal.

2.5.2. Problema de control óptimo para el modelo

En esta sección, se presentarán los resultados de la convergencia de la re-
compensa difusa (2.54) a la recompensa difusa descontada total esperada en el
horizonte infinito (2.55), cuando T tiende al infinito. Posteriormente se verifi-
cará la existencia de poĺıticas óptimas y la validez de la programación dinámica.

Lema 2.8. Supongamos que (2.4) se cumple. Entonces, para cada i ∈ X, π ∈ F
(ver Observación 2.5), {ṼT (π, i) : T = 0, 1, ...} converge y

ṽ(i, π) = limT→∞ṽT (π, i) =

∞∑
t=0

E∗
i,π

[
R̃ (xt, at)

]
= v(i, π)(γ1, γ2, γ3, γ4),

donde v(i, π) =
∑∞

t=0 Ei,π [R (xt, at)] ∈ R.

Demostración. Sean π ∈ Π y x ∈ X fijos. Para simplificar la notación en
esta demostración, denotaremos por v = v(π, x) y vT = vT (π, x) (ver (2.54) y
(2.55)). Entonces, el α-corte de (2.54) está dado por

∆T : = (γ1vT , γ2vT , γ3vT , γ4vT )α

= [γ1(1− α)vT + αγ2vT , γ4(1− α)vT + αγ3vT ].

Análagamente,

∆ : = (γ1v, γ2v, γ3v, γ4v)α

= [γ1(1− α)v + αγ2v, γ4(1− α)v + αγ3v].

Por lo tanto, por (1.6), se obtiene que

d̂(∆T ,∆) = supα∈[0,1]d(∆
T ,∆).
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Ahora, debido a la identidad máx(c, b) = (c + b + |b− c|)/2 con b, c ∈ R, se
tiene como resultado que

d(∆T ,∆) = (1− α)γ3(v − vT ) + αγ2(v − vT ).

Entonces,

d̂(∆T ,∆) = supα∈[0,1](v − vT )(γ3 − α(γ3 − γ2))

= (v − vT )γ3.
(2.57)

Por lo tanto, donde T tiende a infinito en (2.57), y concluimos que

ĺım
T−→∞

ρ(ṽT , ṽ) = ĺım
T−→∞

(v − vT )γ3

= 0.

La segunda ecuación es una consecuencia de (2.43) y (2.44).

Definición 2.11. El problema de control óptimo difuso con horizonte infinito
consiste en determinar una poĺıtica π∗ ∈ F tal que

ṽ(π, x) ≤∗ ṽ(π∗, x),

para toda π ∈ F y x ∈ X. En consequencia (ver Observación 2.5 (b)),

ṽ(π∗, x) = supπ∈Fṽ(π, x),

para todo x ∈ X (ver Observación 1.1). En este caso, la función difusa de valor
óptimo es definida de la siguiente forma:

Ṽ (x) = ṽ(π∗, x),

x ∈ X y π∗ es llamada la poĺıtica óptima para el problema de control óptimo
difuso.

Observación 2.7. Definiciones similares pueden ser establecidas para ṽT , la
recompensa difusa descontada total esperada con un horizonte finito T . En este
caso, el valor difuso óptimo es denotado por ṼT , y (Ver Observación 2.5(a)),

ṼT (x) = ṽT (π
∗, x) = supπ∈MṽT (π, x),

para toda x ∈ X, por supuesto, si tal π∗ existe, entonces esta es llamada la
poĺıtica óptima para el problema de control óptimo difuso con un horizonte T .

Una consecuencia directa de la Definición 2.11, Observación 2.7, y el Teo-
rema 2.7 es el próximo resultado.

Teorema 2.5. Bajo los Supuestos 2.3 y 2.4, las siguientes afirmaciones se
mantienen:
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a) La poĺıtica óptima π∗ del problema de control óptimo finito ńıtido (ver
(2.54)) es la poĺıtica óptima para ṽT , es decir. ṽT (π

∗, x) = supπ∈MṽT (π, x)
para todo π ∈ Π y x ∈ X.

b) la función de valor difusa óptima está dada por

ṼT (x) = VT (x)(γ1, γ2, γ3, γ4), (2.58)

x ∈ X, donde ṼT (x) = supπ∈MṽT (π, x), x ∈ X.

Demostración. a) Sean π ∈ M y x ∈ X fijos. Entonces, por (2.54), se obtiene
que

ṽt(π, x) = vT (π, x)(γ1, γ2, γ3, γ4),

donde el Supuesto 2.4 y el Lema 1.2 fueron aplicados. Ahora, observe-
mos que los α−corte de ṽT (π, x) están dados por los siguientes intervalos
cerrados:

ṽt(π, x)α = [γ1vT (π, x)+α(γ2−γ1)vT (π, x), γ4vT (π, x)−αvT (π, x)(γ4−γ3)].

Por otro lado, por el Teorema 2.4, existe una poĺıtica óptima π∗ ∈ M
tal que, vT (π, x) ≤ vT (π

∗, x). Entonces, notemos que los extremos de
ṽt(π, x)α satisfacen las siguientes inecuaciones:

γ1vT (π, x) + α(γ2 − γ1)vT (π, x) ≤ γ1vT (π
∗, x) + α(γ2 − γ1)vT (π

∗, x)

γ4vT (π, x)− αvT (π
∗, x)(γ4 − γ3) ≤ γ4vT (π

∗, x)− αvT (π
∗, x)(γ4 − γ3).

En consecuencia, ṽT (π, x) ≤∗ ṽT (π
∗, x). Ya que x ∈ X y π ∈ Π son

arbitrarios, el resultado sigue, debido a la Definición 2.11.

b) Por el Teorema 2.6 a), se sigue que

ṼT (x) = v(π∗, x)(γ1, γ2, γ3, γ4),

para cada x ∈ X, de esta manera, aplicando el Teorema 2.4, se concluye
que

ṼT (x) = VT (x)(γ1, γ2, γ3, γ4),

x ∈ X.

La prueba del Teorema 2.6 es similar a la prueba del Teorema 2.5, por eso
se omite.

Teorema 2.6. Bajo los Supuesto 2.3 y 2.4, la siguiente afirmación se cumple:

a) La poĺıtica óptima del problema de control difuso es la misma que la
poĺıtica óptima del problema de control óptimo ńıtido.

b) La función de valor difuso óptimo está dada por

Ṽ (x) = V (x)(γ1, γ2, γ3, γ4), x ∈ X. (2.59)

En el Caṕıtulo 4, los Teoremas 2.5 y 2.6 se ilustrarán en varios ejemplos.
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Caṕıtulo 3

Aplicaciones de PDMs con
recompensa total difusa

Este caṕıtulo se refiere a los procesos de decisión de Markov (PDM) en
los que tanto el estado como los espacios de decisión son finitos y la función
objetivo es la recompensa total esperada. Para este tipo de PDM, asumimos
que la función de recompensa es de tipo difuso. Espećıficamente, esta función
de recompensa difusa tiene una forma trapezoidal adecuada que es una función
de una recompensa estándar no difusa. Además, esta recompensa difusa se
aproxima, en un sentido difuso, a la recompensa no difusa correspondiente. El
problema de control difuso consiste en determinar una poĺıtica de control que
maximice la recompensa total esperada difusa, donde la maximización se realiza
con respecto al orden parcial en los α-cortes de números difusos. La poĺıtica
óptima y la función de valor óptimo para el problema de control óptimo difuso se
caracterizan mediante una versión de la ecuación de programación dinámica y,
como principales conclusiones, se obtiene que la poĺıtica óptima del problema
estándar y el difuso coinciden y la función de valor óptimo difuso tiene una
forma trapezoidal conveniente. Como ilustraciones, se presentan extensiones
difusas de un problema de parada óptima y de un modelo de juego red-black.

3.1. Un problema de paro óptima

Aqúı proporcionamos un ejemplo de un problema de paro óptimo visto co-
mo un PDM de recompensa total, el cual es una versión similar del Ejemplo
7.2.6 en [26] y su extensión al entorno difuso.

Consideremos el problema de determinar una poĺıtica de paro óptimo para
la cadena de Markov finita, en el que el sistema se mueve entre los estados
X = {i1, i2, i3, i4}, y matriz de transición:

51
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P =


0 1/3 2/3 0
4/5 1/5 0 0
1/3 0 1/3 1/3
0 0 0 1

 . (3.1)

Cada entrada de P describe la probabilidad de transición pij , para i, j ∈ X
′
.

Supongamos que en cada época de decisión, el controlador tiene dos accio-
nes admisibles: parar (Q) o continuar (C).

Si además, para cada i ∈ X
′
, A(i) = {C,Q}. Si en el estado i elegimos

el control C, el sistema se mueve al estado j ∈ X
′
con probabilidad pij , y si

elegimos Q, el sistema se mueve al estado δ, en el que no recibimos recompensa.
Observemos que X = X ′∪δ y A(δ) = {C}, por lo que δ es un estado recurrente.

Observe que X = {i1, i2, i3, i4, δ} y A(δ) = {C}. En particular, suponga-
mos que R(i1, Q) = g(i1) = 8, R(i2, Q) = g(i2) = 5, R(i3, Q) = g(i3) = 3,
R(i4, Q) = g(i4) = 0, y R(δ, C) = 0.

El objetivo consiste en determinar una poĺıtica que maximice la recompensa
total esperada, bajo el supuesto de que las recompensas se reciben solo al final.
Entonces, debido al Teorema 7.2.3 (a) en [26], la función de valor óptimo V0 es la
solución mı́nima en la clase funciones V + : {V : X −→ R : V ≥ 0 y V (x) <
∞ para cada s ∈ S}, la función de valor óptimo Vo es la solución mı́nima
w : X

′ −→ R con w ≥ 0 de la siguiente ecuación de programación dinámica:

w(i) = max{g(i),
∑
j∈X′

w(j)pij}. (3.2)

i ∈ X
′
con Vo(δ) = 0. Entonces, aplicando el enfoque de programación lineal,

(3.2) es equivalente al siguiente programa lineal:

MINIMIZAR : w(i1) + w(i2) + w(i3) + w(i4) (3.3)

sujeto a

w(i) ≥ g(i), (3.4)

w(i) ≥
∑
j∈X′

w(j)pij , (3.5)

i ∈ X
′
. Entonces, las desigualdades (3.4) y (3.5) son equivalentes a

3w(i1)− w(i2)− 2w(i3) ≥ 0,

w(i2)− V (i1) ≥ 0,

2w(i3)− w(i1)− w(i4) ≥ 0,

w(i1) ≥ 8, w(i2) ≥ 5, w(i3) ≥ 3, w(i4) ≥ 0.
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Aplicando el algoritmo śımplex se obtiene que el valor óptimo es Vo(i1) = 8,
Vo(i2) = 8, Vo(i3) = 4 y Vo(i4) = 0.

Teorema 3.1. Si el espacio de estados es finito, g(s) < ∞ ∀s ∈ S′, y g(s) ≥ 0
si s es un estado, entonces el valor del problema de parada óptima v∗ es la
solución mı́nima no negativa v ≥ g que satisface (3.5). Además, la poĺıtica
estacionaria (d∗)∞ definida mediante

d∗(i) =

 Q si i ∈ {i′ ∈ X ′ : v′(i) = g(i)}

C en otro caso.
(3.6)

es óptima.

En consecuencia, la poĺıtica estacionaria óptima fo viene dada por:

fo(i) =

 Q si i ∈ {i1, i4}

C si i ∈ {i2, i3}
. (3.7)

Ahora, considere la siguiente función de recompensa difusa trapezoidal:

R̃(i, Q) = R(i, Q)(0,
9

10
,
11

10
, 2),

i ∈ X
′
con la interpretación de que el número trapezoidal (0, 0, 0, 0) es igual a

0̃, y R̃(δ, C) = 0̃.

Concretamente, para la decisión Q las recompensas difusas vienen dadas
por:

R̃(i1, Q) = (0, 7,2, 8,8, 16),

R̃(i2, Q) = (0, 4,5, 5,5, 10),

R̃(i3, Q) = (0, 2,7, 3,3, 6),

R̃(i4, Q) = 0̃.

Observación 3.1. Tenga en cuenta que, por ejemplo, R̃(i1, Q) = (0, 7,2, 8,8, 16)
modela el hecho de que en el estado i1, la recompensa recibida solo al finalizar
está aproximadamente en el intervalo [7.2,8.8] en lugar de recibir la cantidad
exacta de g(i1) = 8 en el PDM estándar; el resto de las recompensas difusas
tienen una interpretación similar.
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Figura 3.1: Recompensas difusas trapezoidales.

Ahora, la poĺıtica óptima del problema de control difuso es la misma que la
poĺıtica óptima fo del problema de control óptimo dada en (3.7), y la función

de valor difuso óptimo Ṽo(i) es:

Ṽo(i) = (0,
9

10
Vo(i),

11

10
Vo(i), 2Vo(i)),

i ∈ X
′
. Y,

Ṽo(δ) = 0.

En consecuencia,

Ṽo(i1) = (0, 7,2, 8,8, 16),

Ṽo(i2) = (0, 7,2, 8,8, 16),

Ṽo(i3) = (0, 4,5, 4,4, 8),

Ṽo(i4) = 0̃.

Figura 3.2: Función de valor óptimo difuso trapezoidal.
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3.2. Modelo de apuesta

La primera parte de esta sección se basa en [30], pp. 73-83, y luego se pro-
porciona la extensión aproximada.

Una persona que posee i dólares ingresa a un casino de juego que permite
cualquier apuesta de la siguiente manera: si posee i dólares, entonces puede
apostar cualquier número entero positivo menor o igual a i. Además, si apuesta
j entonces

(a) gana j con probabilidad p o

(b) pierde j con probabilidad 1− p.

La pregunta establecida en [30] es: ¿Qué estrategia de juego maximiza la
probabilidad de que el individuo alcance una fortuna de N antes de quebrar?
La respuesta a esta pregunta encaja en el marco de los PDMs con la recom-
pensa total dada en la subsección anterior, donde el estado es la fortuna de los
jugadores, ya que si se supone que se gana una recompensa terminal de 1 si
alguna vez alcanzamos el estado N y todas las demás recompensas son cero,
entonces la recompensa total esperada es igual a la probabilidad de alcanzar el
estado N . En concreto, este modelo de juego se formula de la siguiente manera:

Descripción del modelo

(a) X = {0, 1, . . . , N}, donde decimos que el estado es i cuando la fortuna
actual es i.

(b) Sea [k] la parte entera de k. Si la fortuna presente es i, entonces nunca
valdŕıa la pena apostar más de N − i, es decir,

A = {0, 1, . . . , [N/2]}, A(0) = {0}, A(i) = {1, 2, . . . ,mı́n{i,N−i}}, i ̸= 0.

(c) pii+a(a) = p, pii−a(a) = q = 1− p, pN0(a) = 1, p00(0) = 1.

(d) R(i, a) = 0, i ̸= N, a ∈ A(i), y R(N, 0) = 1.

Observación 3.2. Sea G el conjunto de llegar alguna vez al estado N . Note
que, para cada estrategia π ∈ Π y i ∈ X, V (i, π) = Pi,π[G] [30].

Se define la estrategia t́ımida τ como aquella estrategia que siempre apuesta
a 1, y se define la estrategia audaz β como la estrategia que, si la fortuna
presente es i,
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(a) apuestas i si i ≤ N

2
,

(b) apuestas N − i si i ≥ N

2
.

De las Proposiciones 2.1 y el Corolario 2.6 en [30] se obtiene el siguiente lema.

Lema 3.1. (a) Si p ≥ 1

2
, entonces τ maximiza la probabilidad de alcanzar

alguna vez una fortuna N , es decir, en este caso, Vo(i) = V (i, τ), para
todo i ∈ X.

(b) Si p ≤ 1

2
, entonces β maximiza la probabilidad de alcanzar alguna vez

una fortuna N , es decir, en este caso, Vo(i) = V (i, β), para todo i ∈ X.

Ahora, se presentará el resultado sobre el modelo difuso red-black.

Teorema 3.2. Supongamos que se cumple el Supuesto 2.2.

(a) Si p ≥ 1

2
, entonces Ṽ (i, π) ≤∗ Ṽ (i, τ), para todo π ∈ Π y i ∈ X. Por lo

tanto τ es óptima y

Ṽ (i, τ) = (BV (i, τ), CV (i, τ), DV (i, τ), FV (i, τ)) , (3.8)

i ∈ X.

(b) Si p ≤ 1

2
, entonces Ṽ (i, π) ≤∗ Ṽ (i, β), para todo π ∈ Π y i ∈ X. Para

todo, β es óptima y

Ṽ (i, β) = (BV (i, β), CV (i, β), DV (i, β), FV (i, β)) , (3.9)

i ∈ X.

Observación 3.3. Observe que en el modelo red-black no difuso, el objetivo del
jugador es alcanzar al final del juego una cierta fortuna N . Ahora, siguiendo la
descripción del modelo no borroso rojo-negro y el Supuesto 2.2 se obtiene que
para el modelo borroso: R̃(i, a) = 0̃, i ̸= N, a ∈ A(i), y R̃(N, 0) = (B,C,D, F );
por lo tanto, tomando C ≤ N ≤ D, podŕıa interpretarse que el jugador recibe al
final del juego una cantidad entre los ĺımites C y D en lugar de que el jugador
obtenga la cantidad exacta N como en el modelo no difuso.



Caṕıtulo 4

Aplicaciones de PDMs
descontados difuso

En este caṕıtulo se proporcionan aplicaciones de la teoŕıa desarrollada en
la Sección 2.5 en la que se trató a los DMPs con un espacio de estado finito,
conjuntos de acción compactos con recompensa descontada de tipo trapezoidal
difusa, tanto con horizonte finito e infinito.

Ya que la principal motivación para analizar este tipo de PDMs fue pre-
dominantemente económico, se tratará un modelo de horizonte finito de un
sistema de inventario en el que se utiliza un algoritmo para calcular la solución
óptima, y, adicionalmente para el caso de horizonte infinito, un MDP en un
contexto económico y financiero es presentado.

4.1. Un sistema de control de inventario difuso

En esta sección, primero se presentará un ejemplo clásico de sistema de con-
trol de inventario [26], luego se introducirá un sistema de control de inventario
difuso trapezoidal. La solución óptima del inventario difuso se obtiene median-
te una aplicación del Teorema 2.5 y la solución del sistema de inventario ńıtido.

El siguiente ejemplo se aborda en [26], a continuación se presenta un re-
sumen de los puntos de interés para presentar su versión difusa. Considere la
siguiente situación: un almacén donde cada cierto peŕıodo de tiempo el gerente
realiza un inventario para determinar la cantidad de producto almacenado. Con
base en dicha información, se toma la decisión de pedir o no una cierta cantidad
de producto adicional a un proveedor. El objetivo del gestor es maximizar el
beneficio obtenido. Se supone que la demanda del producto es una distribución
de probabilidad conocida y aleatoria. Se tratarán los siguientes supuestos para

57
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proponer el modelo matemático.

Supuestos en el inventario

a) La decisión de una orden adicional se toma al principio del periodo y se
entrega de inmediato.

b) Las demandas de productos se reciben a lo largo del peŕıodo de tiempo,
pero se cumplida en el último instante del tiempo del plazo.

c) No hay pedidos pendientes.

c) Los ingresos y la distribución de la demanda no vaŕıan con el peŕıodo.

d) El producto solo se vende en unidades enteras.

e) El almacén tiene una capacidad para M unidades, donde M es un número
entero positivo.

Entonces, bajo la suposición anterior, el espacio de estado está dado por X :=
{0, 1, 2, ...,M}, el espacio de acción y el conjunto de acción admisible están da-
dos por A := {0, 1, 2, ...} y A(x) := {0, 1, 2, ...,M −x}, x ∈ X, respectivamente.

Ahora, considere las siguientes variables: sea xt el inventario en el tiempo
t = 0, 1, ..., la evolución del sistema está modelada por una dinámica que sigue
un proceso de Lindley

xt+1 = (xt + at −Dt+1)
+, (4.1)

con x0 = x ∈ X conocido, donde (z)+ = max{0, z}, z ∈ R, y

a) at denota el control o decisión aplicada en el instante t y representa la
cantidad ordenada por el gerente de inventario (o tomador de decisiones).

b) La secuencia {Dt} está conformada por variables aleatorias no negativas
independientes e idénticamente distribuidas con distribución común pj :=
P(D = j), j = 0, 1, ..., donde Dt denota la demanda en el periodo de
tiempo t.

Observe que la ecuación en diferencias dada en (4.1) induce un kernel es-
tocástico definido en X dado K := {(x, a) : x ∈ X, a ∈ A(x)}, como sigue

Q(xt+1 ∈ (−∞, y])|xt = x, at = a) = 1−∆(x+ a− y),

donde ∆ es la distribución de D con x ∈ X, y, a ∈ {0, 1, ...} y Q(xt+1 ∈
(−∞, y])|xt = x, at = a) = 0, si x ∈ X, a ∈ {0, 1, ...} y y < 0. Entonces se sigue
que
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Q({xt+1 = y}|x, a) =


0 if M ≥ y > x+ a

px+a−y if M ≥ x+ a ≥ y > 0

qx+a if M ≥ x+ a, y = 0.

La función de recompensa escalonada viene dada por R(x, a) = E[H(x +
a − (x + a −D)+)], (x, a) ∈ K , dónde H : {0, 1, ...} → {0, 1, ...} es la función
de ingresos, que es una función conocida y D es un elemento genérico de la
secuencia {Dt}. De manera equivalente, R(x, a) = F (x+ a), (x, a) ∈ K, donde

F (u) :=

u−1∑
k=0

H(k)pk +H(u)qu, (4.2)

con qu :=
∑∞

k=u pk. El objetivo de esta sección es maximizar la recompensa
total descontada con un horizonte finito, ver (2.54).
En particular, suponga que el horizonte es T = 156, el espacio de estado X =
{0, 1, ..., 9}, la función de ingreso H(u) = 5u y la ley de transición se da en la
Tabla 4.1.

Tabla 4.1: Ley de transición.

Algoritmo Para calcular el valor óptimo y la poĺıtica óptima.

Input: MDP

Output: El vector de valor óptimo.
Una poĺıtica óptima

Inicializar WT (x,A) = 0, W ∗
T (x) = 0,

KT (x) = W ∗
T (x).

t = T − 1
repeat
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for x ∈ S do
fx = 0
a(x) = fx
W (x, a(x)) = R(x, a(x))+

β
∑Z

i=0 Q(y|x+ a(x))Wt+1(y, 0)

A(x) = 1, ...,M − x
for a ∈ A(x) do

Wt(x, a) = R(x, a)+

β
∑Z

y=0 Q(y|x+ a)Wt+1(y, 0)

if Wt(x, a) ≥ W (x, a(x)) do
W (x, a(x)) = Wt(x, a)

fx = a
end for

Wt(x) = Wt(x, fx)

Wt(x, 0) = Wt(x)

if Wt(x) ≥ Kt+1(x) do
Kt(x) = Wt(x)

W ∗(x) = Kt(x)
end for

t = n− 1

until t = 0

En consecuencia, la salida del programa se obtiene como se ilustra en la
Tabla 4.2. En esta matriz, la última columna representa la poĺıtica óptima y la
penúltima columna, la función de valor, para cada estado x ∈ {0, 1, ..., 9}. La
otra entrada de la matriz representa lo siguiente:

G(x, a) := R(x, a) + αE[W1(F (x, a,D))],

(x, a) ∈ K.
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Tabla 4.2: Solución óptima.

En conclusión, la función de valor óptimo es VT (x) = 316.6 para cada x ∈ X
y la poĺıtica óptima está dada por ft(x) = M −x, t = 0, 1, ..., T − 1, x ∈ X con
M = 9.

Ahora bien, considerando que en la investigación de operaciones a menudo
es dif́ıcil para un gerente controlar los sistemas de inventario, debido a que los
datos en cada etapa de observación no siempre son ciertos, entonces se debe
aplicar un enfoque difuso. De esta forma, se tendrá en cuenta el sistema de
inventario anterior en un entorno difuso, es decir, se considerará la función de
recompensa dada en el Supuesto 2.4:

R̃(x, a) = (BR(x, a), CR(x, a), DR(x, a), FR(x, a)),

con 0 < B < C ≤ D < F . Entonces, por el Teorema 2.5, se deduce que la
poĺıtica óptima del problema de control óptimo difuso está dada por π̃∗ =
{f0, ..., fT−1}, donde ft(x) = M − x, t = 0, 1, ..., T − 1, x ∈ X y la función de
valor óptimo está dada por

ṼT (x) = VT (x)(B,C,D, F ),

x ∈ X.

4.2. Un problema de selección de portafolio

Sean X = {χ0, χ1}, 0 < χ0 < χ1, A(χ) = [0, 1], χ ∈ X. La ley de transición
está dada por

Q({χ0}|χ0, a) = p, (4.3)

Q({χ1}|χ0, a) = 1− p, (4.4)

Q({χ1}|χ1, a) = q, (4.5)

Q({χ0}|χ1, a) = 1− q, (4.6)
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para toda a ∈ [0, 1], donde 0 ≤ p ≤ 1 y 0 ≤ q ≤ 1. La recompensa está dada
por R(χ, a), (χ, a) ∈ K que satisface:

Supuesto 4.1. (a) R depende solo de a, que es R(χ, a) = U(a), para todo
(χ, a) ∈ K, donde U es no−negativa y continua.

(b) Existe un a∗ ∈ [0, 1] tal que

maxa∈[0,1]U(a) = U(a∗),

para todo χ ∈ X.

Una interpretación de este ejemplo se da en la siguiente observación.

Observación 4.1. Los estados χ0 y χ1 representan el comportamiento de cier-
tos mercados bursátiles, lo cual es malo (≡ χ0) y bueno (≡ χ1). Si asumimos
que, para cada a y t = 0, 1, ..., la probabilidad de ir de χ0 a χ0 es p (resp.
la probabilidad de χ0 to χ1 es 1 − p); además, para cada a y t = 0, 1, · · · , la
probabilidad de ir de χ1 a χ1 es q (resp. la probabilidad de ir desde χ1 hasta χ0

es 1−q). Ahora, especificamente, supongamos que en un problema dinámico de
elección de cartera, hay dos activos disponibles para un inversionista: uno está
libre de riesgo y se supone que la tasa de riesgo r > 0 es conocida y constante
a lo largo del tiempo y una varianza σ2. Siguiendo el Ejemplo 1.24 en [?], la
utilidad esperada del inversionista podŕıa ser dada por la expresión:

U(a) = aµ+ (1− a)r − k

2
a2σ2, (4.7)

donde a ∈ [0, 1] es la fracción de su dinero que el inversionista invierte en el
activo riesgoso y el resto 1− a, lo invierte en el activo sin riesgo. En (4.7) , k
representa el valor que el inversor le da a la varianza relativa a la experanza.

Observe que si µ >
kσ2

2
, entonces U definido en (4.7) es positivo en [0, 1] (de

hecho, en este caso U(0) = r > 0 y U(1) = µ− kσ2

2
> 0 ); además, es posible

probar (ver [?]) que si 0 < µ − r < kσ2, entonces maxa en[0,1]U(a) se obtiene
para a∗ ∈ (0, 1) dado por

a∗ =
µ− r

kσ2
.

Por lo tanto, tomando R(χ, a) = U(a), χ ∈ X y a ∈ [0, 1], donde U viene dado
por ([35]), y considerando las dos últimas desigualdades dadas en el párrafo
anterior, se cumple el Supuesto 4.1.

Lema 4.1. Supongamos que el Supuesto 4.1 se mantiene. Entonces, por el
Teorema 2.4 ,

V (χ) =
U(a∗)

1− α

y f∗(χ) = a∗, para toda χ ∈ X.
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Demostración. En primer lugar, se encontrarán las funciones de iteración de
valor: Vn, para n = 1, 2, . . ..
Por Teorema 2.4,

V1(χ0) = máx
a∈[0,1]

U(a),

esto implica que V1(χ0) = U(a∗). En un camino similar, es posible obtener que
V1(χ1) = U(a∗).

Ahora, para n = 2,

V2(χ0) = máx
a∈[0,1]

{U(a) + α[V1(χ1)(1− p) + V1(χ0)p]}

= U(a∗) + α[V1(χ1)(1− p) + V1(χ0)p]

= U(a∗) + α[U(a∗)(1− p) + U(a∗)p]

= U(a∗) + αU(a∗).

Análogamente, V2(χ1) = U(a∗) + αU(a∗). Continuando en este sentido, se
obtiene que

Vn(χ0) = Vn(χ0) = U(a∗) + αU(a∗) + . . .+ αn−1U(a∗),

para toda n = 1, 2, . . ..

Por Teorema 2.4, Vn(χ) → V (χ), n → ∞, χ ∈ X, el cual implica que V (χ) =
U(a∗)

1− α
, χ ∈ X. Y, de la Ecuación de Programación Dinámica (ver (2.53)), se

sigue que f∗(χ) = a∗, para todo χ ∈ X.

Ahora, supongamos que la función de recompensa difusa está dada por

R̃(x, a) = (B,C,D, F )R(x, a),

with (x, a) ∈ K. Entonces, como consecuencia del Teorema 2.6 se obtienen los
resultados.

Lema 4.2. Para la versión difusa del problema de elección de cartera, resulta
que Ṽ (χ) = V (χ)(B,C,D, F ) and f∗(χ) = a∗, para todo χ ∈ X.

4.3. Un juego de dos personas

Ahora, se presentan un modelo de un juego estocástico entre dos jugado-
res que buscan maximizar sus recompensas totales descontadas. Denotemos
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por J1 y J2 los jugadores/inversores. Cada uno de ellos sigue un modelo de
decisión similar al propuesto en la Sección (4.2). Esto es, J1 tiene un mode-
lo de decisión del tipo: (X,A,Q,R1), donde X = {X0, X1}, 0 < X0 < X1,
B = B(X ) = [0, 1],X ∈ X. La ley de transición Q se da como en la Sección
(4.2) es independiente de la decisión a), y la recompensa viene dada por la
función R1 = U2 con

U1(a) = aµ1 + (1− a)r1 −
k1
2
a2σ2

1 ,

con a ∈ [0, 1]. Además, se asume que 0 < µ1−r1 < k1σ
2
1 , entoncesmaxa∈[0,1]U1(a)

es alcanzado en a∗ ∈ (0, 1) dado por

a∗ =
µ1 − r1
kσ2

1

.

Sea F el correspondiente conjunto de estrategias estacionarias para J1. Ob-
servemos que

F =

{
n∑

i=1

λifi :

n∑
i=1

λi = 1, λi ≥ 0, fi ∈ F, n ≥ 1

}
.

Entonces, F también puede ser visto como el conjunto de estrategias mixtas
para J1.

Ahora, para J2, el modelo de decisión es de la forma (X,B,Q,R2) ,donde
X = {χ0, χ1}, 0 < χ0 < χ1, B = B(χ) = [0, 1], χ ∈ X. La ley de transición Q
es dada como en (4.3)-(4.6), y la recompensa está dada por R2 = U2 con

U2(b) = aµ2 + (1− b)r2 −
k2
2
b2σ2

2 ,

donde b ∈ [0, 1], y también se supone que 0 < µ2 − r2 < k2σ
2
2 . Por lo tanto,

maxb∈[0,1]U2(b) es alcanzado en b∗ ∈ (0, 1) dado por

b∗ =
µ2 − r2
k2σ2

2

.

Sea G el conjunto correspondiente de estrategias estacionarias (o mixtas)
para J2.

El juego se desarrolla de la siguiente manera. Dado un estado inicial x0 ∈ X,
ambos jugadores toman una decisión a0 ∈ A(x0) y b0 ∈ B(x0) de acuerdo a
las estrateguas mixtas f y g. Entonces cada jugador recibe una recompensa
esperada Ef,g

x0
[U1(x0, a0, b0)] and Ef,g

x0
[U2(x0, a0, b0)], respectivamente. El juego

entonces cambia a un nuevo estado x1 ∈ X de acuerdo con la transición Q(·|x0)
y luego el proceso se repite. Con el tiempo, ambos jugadores recibirán el total
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de sus recompensas esperadas por cada decisión tomada durante el juego, es
decir, recibirán

VJ1(χ, f, g) =

∞∑
t=0

αtEχ,f,g[U1(f(xt)] and VJ2(χ, f, g) =

∞∑
t=0

αtEχ,f,g[U2(g(xt)],

respectivamente, donde x0 = χ. Tenga en cuenta que el juego descrito cons-
tituye un juego estocástico descontado entre dos jugadores en el que toman
decisiones de forma independiente y simultánea.

A continuación, un par de estrategias (f∗, g∗) es llamadoa equilibrio de Nash
si

VJ1
(χ, f∗, g∗) = sup

f ′∈F
VJ1

(χ, f ′, g∗)

y

VJ2
(χ, f∗, g∗) = sup

g′∈G
VJ2

(χ, f∗, g′),

para cada χ ∈ X.

Lema 4.3. Para el juego de dos personas, el par (f∗, g∗) con f∗(χ) = a∗ y
g∗(χ) = b∗, para toda χ ∈ X es un equilibrio de Nash, y

VJ1(χ, f
∗, g∗) =

U1(a
∗)

1− α

y

VJ2
(χ, f∗, g∗) =

U2(b
∗)

1− α
,

para todo χ ∈ X.

Demostración. Observemos que, bajo las condiciones del problema de selección
de portafolio, para f ∈ F, g ∈ G, y x0 = χ,

VJ1
(χ, f, g) =

∞∑
t=0

αtEχ,f [U1(f(xt)]

y

VJ2
(χ, f, g) =

∞∑
t=0

αtEχ,g[U2(g(xt)].

Por lo tanto, una aplicación directa del Lema 4.2 y el Teorema 2.6 permiten
obtener la demostración de los siguientes resultados.



66 CAPÍTULO 4. APLICACIONES DE PDMS DESCONTADOS DIFUSO

Lema 4.4. Supongamos que la función de recompensa difusa está dada por

R̃(x, a) = (B,C,D, F )R(x, a),

con (x, a) ∈ K. Entonces, la versión del juego de dos personas, el equilibrio de
Nash viene dado por (a∗, b∗) y ṼJ1

(χ) = VJ1
(χ, f, g)(B,C,D, F ) and ṼJ2

(χ) =
VJ2(χ, f, g)(B,C,D, F ), para todo χ ∈ X.

Como observación final, siguiendo ideas similares dadas en la Sección 2.4,
es posible obtener la solución óptima del siguiente problema de control óptimo.

Considere los modelos decisión en versión estándar dados por

M1 = (X,A, {A(x) : x ∈ X}, Q,R1), (4.8)

y

M2 = (X,A, {A(x) : x ∈ X}, Q,R2), (4.9)

donde ambos modelos satisfacen los supuestos dados en la Sección 2.3.1, y

0 < R1(x, a) ≤ R2(x, a) < γ, (4.10)

para todo x ≤ X, a ∈ A(x), γ es una constante positiva y R2 = zR1, z > 1.

Ahora, tenga en cuenta el problema de control óptimo difuso de horizonte
infinito con modelo decisión:

M̃ = (X,A, {A(x) : x ∈ X}, Q, R̃) (4.11)

con

R̃(x, a) := (0, R1(x, a), R2(x, a), γ) (4.12)

x ∈ X, a ∈ A(x). Nótese que R dada en (4.12) modela el hecho de que, en
sentido difuso, “la recompensa está aproximadamente en el intervalo

[R1(x, a), R2(x, a)], x ∈ X, a ∈ A(x)”.

Sean vi, Vi y f∗
i ser la función objetivo, la función de valor óptimo y la poĺıtica

estacionaria óptima, respectivamente para el modelo Mi, i = 1, 2 y sea V por
el función de valor óptimo para M . Como en la demostración del Teorema 2.5,
usando eso para cada π ∈ F y x ∈ X,
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v1(π, x) = v2(π, x) (4.13)

y es directo obtener que, para cada π ∈ F, x ∈ X y α :

αv1(π, x) ≤ αv2(f
∗, x) = αv2(x)) (4.14)

y

αv1(π, x) + (1− α)(
γ

1− β
) ≤ αv2(f

∗, x) + (1− α)(
γ

1− β
) (4.15)

= αv2(x). (4.16)

Por tanto, de (4.14) y (4.15) resulta que

Ṽ (x) =

(
0, V2(x), V2(x),

γ

1− β

)
(4.17)

x ∈ X, y f∗
1 = f∗

2 es óptimo para M . Observe que V puede verse como el tipo
triangular:

Ṽ (x) =

(
0, V2(x),

γ

1− β

)
. (4.18)
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Resumen y conclusiones

En resumen, la teoŕıa presentada en este trabajo tiene en cuenta la impre-
cisión o ambigüedad en la función de recompensa, lo cual nos permitió ampliar
la teoŕıa estándar de PDMs dando solución a dos problemas en tiempo discreto
con espacios de estados finitos:

El primero de ellos con conjunto de acciones finito y criterio de recom-
pensa total esparada difusa.

El segundo considera un conjunto de acciones compacto para el caso de
recompensa descontado total esperada difusa.

Ambos criterios tanto en horizontes finito e infinito. En ambos, las funciones
de recompensas fueron planteadas en forma difusa para modelar la incertidum-
bre, espećıficamente de tipo trapezoidal con una forma conveniente en función
de una recompensa estándar no difusa como está dada en el Supuesto 2.4.

Para la realización de este trabajo fue necesario estudiar la teoŕıa de Pro-
gramación Dinámica y los conceptos elementales de la Teoŕıa de lógica difusa.
Dentro de la parte de lógica difusa, se expusieron los conceptos principales
que se usaron durante el desarrollo de la tesis, como el de números difusos,
α−cortes, operaciones entre números difusos trapezoidales, orden máximo di-
fuso, métrica en el conjunto de los números difusos, variable aleatoria difusa y
esperanza de una variable aleatoria difusa trapezoidal dada por una variable
aleatoria multiplicada por un número trapezoidal. Dichos conceptos fueron ne-
cesarios ya que al trabajar con recompensas difusas trapezoidales, los criterios
de rendimientos se convierten en una variable aleatoria difusa de tipo trapezoi-
dal mediante la operación de sumas tanto finitas como infinitas y por el hecho
de que el estado del sistema es una variable aleatoria.

Del área de PDMs se exhibió el Modelo de Control de Markov y los tipos de
poĺıticas, los cuales generan el espacio de probabilidad del Proceso estocástico
de interés, que es el Proceso de Decisión de Markov. Adicionalmente se recopiló
una lista de las condiciones necesarias para resolver los PDMs con la técnica
de Programación Dinámica, las cuales garantizan que se cumpla la Condición
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de Selección Medible y el método de aproximaciones sucesivas para cuando se
trabaja en horizonte infinito.

Cada uno de los problemas se presentaron en una versión ńıtida y fueron
transformados en una versión difusa trapezoidal, y con los supuestos provistos
en la Sección 2.2 para los problema óptimos no difusos, las principales conse-
cuencias que se obtienen son que la poĺıtica óptima del problema difuso coincide
con el problema estándar ńıtido y la función de valor óptimo difusa tiene una
forma trapezoidal conveniente.

Con la intención de ilustrar la teoŕıa desarrollada en este trabajo, se adicio-
naron cinco problemas de aplicaciones relacionados con PDMs en este contexto
difuso, de los cuales dos se abordaron a través de un PDM bajo recompensa
total esperada, siendo uno de parada óptima y el otro de apuesta. Los tres pro-
blemas restantes estuvieron relacionados con recompensa total descontada, uno
de un sistema de control de inventario difuso, debido a que en la investigación
de operaciones a menudo es dif́ıcil para un gerente controlar los sistemas de
inventario, debido a que los datos en cada etapa de observación no siempre son
ciertos, otro problema se trató con la selección de portafolio y el último pro-
blema de aplicación se refirió a un juego de dos personas. Es relevante señalar
que, en la versión difusa del modelo de juego dado, las estrategias audaces y
t́ımidas, que son bien conocidas en el contexto del juego, aparecen como las
estrategias óptimas para el jugador, y que la fortuna N que al final del juego
recibirá el jugador puede ser sustituida por el hecho de que N pertenece a un
cierto intervalo.
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