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Preface to the Second Edition

The calculus of probabilities, in an appropriate form, should interest equally
the mathematician, the experimentalist, and the statesman. . . . It is under its
influence that lotteries and other disgraceful traps cunningly laid for greed
and ignorance have finally disappeared.

Francois Arago, Eulogy on Laplace, 1827

Lastly, one of the principal uses to which this Doctrine of Chances may
be applied, is the discovering of some truths, which cannot fail of pleasing
the mind, by their generality and simplicity; the admirable connexion of its
consequences will increase the pleasure of the discovery; and the seeming
paradoxes wherewith it abounds, will afford very great matter of surprize
and entertainment to the inquisitive.

Abraham de Moivre, The Doctrine of Chances, 1756

This book provides an introduction to elementary probability and some of its simple
applications. In particular, a principal purpose of the book is to help the student to solve
problems. Probability is now being taught to an ever wider audience, not all of whom can
be assumed to have a high level of problem-solving skills and mathematical background.
It is also characteristic of probability that, even at an elementary level, few problems are
entirely routine. Successful problem solving requires flexibility and imagination on the
part of the student. Commonly, these skills are developed by observation of examples and
practice at exercises, both of which this text aims to supply.
With these targets in mind, in each chapter of the book, the theoretical exposition

is accompanied by a large number of examples and is followed by worked examples
incorporating a cluster of exercises. The examples and exercises have been chosen to
illustrate the subject, to help the student solve the kind of problems typical of examinations,
and for their entertainment value. (Besides its practical importance, probability is without
doubt one of the most entertaining branches of mathematics.) Each chapter concludes with
problems: solutions to many of these appear in an appendix, together with the solutions
to most of the exercises.
The ordering and numbering ofmaterial in this second edition has for themost part been

preserved from the first. However, numerous alterations and additions have been included
to make the basic material more accessible and the book more useful for self-study. In

xi



xii Preface to the Second Edition

particular, there is an entirely new introductory chapter that discusses our informal and
intuitive ideas about probability, and explains how (and why) these should be incorporated
into the theoretical framework of the rest of the book. Also, all later chapters now include a
section entitled, “Review and checklist,” to aid the reader in navigation around the subject,
especially new ideas and notation.
Furthermore, a new section of the book provides a first introduction to the elementary

properties of martingales, which have come to occupy a central position in modern prob-
ability. Another new section provides an elementary introduction to Brownian motion,
diffusion, and the Wiener process, which has underpinned much classical financial math-
ematics, such as the Black–Scholes formula for pricing options. Optional stopping and its
applications are introduced in the context of these important stochastic models, together
with several associated new worked examples and exercises.
The basic structure of the book remains unchanged; there are three main parts, each

comprising three chapters.
The first part introduces the basic ideas of probability, conditional probability, and

independence. It is assumed that the reader has some knowledge of elementary set theory.
(We adopt the now conventional formal definition of probability. This is not because of
high principles, but merely because the alternative intuitive approach seems to lead more
students into errors.) The second part introduces discrete random variables, probability
mass functions, and expectation. It is assumed that the reader can do simple things with
functions and series. The third part considers continuous random variables, and for this a
knowledge of the simpler techniques of calculus is desirable.
In addition, there are chapters on combinatorial methods in probability, the use of

probability (and other) generating functions, and the basic theory of Markov processes in
discrete and continuous time. These sections can be omitted at a first reading, if so desired.
In general, the material is presented in a conventional order, which roughly corresponds

to increasing levels of knowledge and dexterity on the part of the reader. Those who start
with a sufficient level of basic skills have more freedom to choose the order in which they
read the book. For example, you may want to read Chapters 4 and 7 together (and then
Chapters 5 and 8 together), regarding discrete and continuous random variables as two
varieties of the same species (which they are). Also, much of Chapter 9 could be read
immediately after Chapter 5, if you prefer.
In particular, the book is structured so that the first two parts are suitable to accompany

the probability component of a typical course in discrete mathematics; a knowledge of
calculus is not assumeduntil the final part of the book. This layout entails some repetition of
similar ideas in different contexts, and this should help to reinforce the reader’s knowledge
of the less elementary concepts and techniques.
The ends of examples, proofs, and definitions are indicated by the symbols �,

�, and�, respectively.
Finally, you should note that the book contains a random number of errors. I entreat

readers to inform me of all those they find.

D.S.
Oxford, January 2003



0
Introduction

A life which included no improbable events would be the real statistical
improbability.

Poul Anderson

It is plain that any scientist is trying to correlate the incoherent body of
facts confronting him with some definite and orderly scheme of abstract
relations, the kind of scheme which he can borrow only from mathematics.

G.H. Hardy

This chapter introduces the basic concepts of probability in an informal way.We discuss
our everyday experience of chance, and explain why we need a theory and how we start
to construct one. Mathematical probability is motivated by our intuitive ideas about like-
lihood as a proportion in many practical instances. We discuss some of the more common
questions and problems in probability, and conclude with a brief account of the history of
the subject.

0.1 Chance

My only solution for the problem of habitual accidents is to stay in bed all
day. Even then, there is always the chance that you will fall out.

Robert Benchley

It is not certain that everything is uncertain.
Blaise Pascal

You can be reasonably confident that the sun will rise tomorrow, but what it will be
shining on is a good deal more problematical. In fact, the one thing we can be certain of
is that uncertainty and randomness are unavoidable aspects of our experience.
At a personal level, minor ailments and diseases appear unpredictably and are resolved

notmuchmore predictably.Your income and spending are subject to erratic strokes of good
or bad fortune. Your genetic makeup is a random selection from those of your parents.
The weather is notoriously fickle in many areas of the globe. You may decide to play

1



2 0 Introduction

cards, invest in shares, bet on horses, buy lottery tickets, or engage in one or several other
forms of gambling on events that are necessarily uncertain (otherwise, gambling could
not occur).
At a different level, society has to organize itself in the context of similar sorts of

uncertainty. Engineers have to build structures to withstand stressful events of unknown
magnitude and frequency. Computing and communication systems need to be designed
to cope with uncertain and fluctuating demands and breakdowns. Any system should be
designed to have a small chance of failing and a high chance of performing as it was
intended. Financial markets of any kind should function so as to share out risks in an
efficient and transparent way, for example, when you insure your car or house, buy an
annuity, or mortgage your house.
This uncertainty is not confined to the future and events that have yet to occur; much

effort is expended by scientists (and by lawyers, curiously) who seek to resolve our doubt
about things that have already occurred. Of course, our ignorance of the past is perhaps not
quite as pressing as our ignorance of the future because of the direction in which time’s
arrow seems to be running. (But the arguments about the past are, paradoxically, somewhat
more bad tempered as a rule.) In addition, and maybe most annoyingly, we are not certain
about events occurring right now, even among those within our direct observation. At a
serious level, you can see the human genome expressing itself in everyone you know, but
the mechanisms remain largely a mystery. The task of unravelling this genetic conundrum
will require a great deal of probability theory and statistical analysis. At a more trivial
level, illusionists (and politicians) make a handsome living from our difficulties in being
certain about our own personal experience (and prospects).
It follows that everyone must have some internal concept of chance to live in the real

world, although such ideas may be implicit or even unacknowledged.
These concepts of chance have long been incorporated into many cultures in mytho-

logical or religious form. The casting of lots (sortilege) to make choices at random is
widespread;we are all familiarwith “the short straw” and the “luckynumber.”TheRomans,
for example, had gods of chance named Fortuna and Fors, and even today we have Lady
Luck. Note that if you ransack the archives of the literary response to this state of affairs,
one finds it to be extremely negative:

� “Fortune, that favours fools.” Ben Jonson
� “For herein Fortune shows herself more kind than is her custom.”William Shakespeare,

Merchant of Venice
� “Ill fortune seldom comes alone.” John Dryden
� “[T]he story of my life . . . wherein I spake of most disastrous chances.” William

Shakespeare, Othello
� Probability is the bane of the age. Anthony Powell, Casanova’s Chinese Restaurant

This list of reproaches to Fortune could be extended almost indefinitely; in fact, you may
have expressed similar sentiments yourself (although perhaps less poetically).
Nevertheless, it is a curious feature of human nature that, despite our oft-stated depreca-

tion of this randomness,many people seek out extra uncertainty. They enter lotteries, bet on
horses, and free-climb on rockfaces of dubious stability. A huge part of the entertainment
industry is geared toward supplying surprise and uncertainty. This simultaneous desire to
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be safe and yet at risk is an interesting trait that seems difficult to explain; fortunately,
however, that is not our problem here.
Instead, our task is to find a way of describing and analysing the concepts of chance

and uncertainty that we intuitively see are common to the otherwise remarkably diverse
examples mentioned above.

0.2 Models

. . . and blessed are those
whose blood and judgement are so well comingled
that they are not a pipe for Fortune’s finger
to sound what stop she please.

W. Shakespeare, Hamlet

In the preceding section, we concluded that large parts of our experience are unpre-
dictable and uncertain. To demonstrate the effect of chance in our lives, we gave a long list
of examples, and we could havemade it a great deal longer were it not for lack of space and
fear of boring the reader. However, to say that most things are unpredictable is to paint too
negative a picture. In fact, many things are certain (death and taxes, notoriously) and even
uncertain things are susceptible to judgment and insight. We learn that, in Monopoly, it is
good to own the orange set of properties; we know that casinos invariably make profits; we
believe that it does not really matter whether you call heads or tails when a coin is flipped
energetically enough; we learn not to be on top of the mountain during a thunderstorm;
and so on.
In fact, we often go further than these rough judgments and compare probabilities. Most

peoplewould agree that in roulette, black ismore likely than green (the zeros); a bookmaker
is more likely to show a profit than a loss on a book; the chance of a thunderstorm is greater
later in the day; and so on. This is another list that could be extended indefinitely, but the
point is that because probabilities are often comparable in this way it is natural to represent
them on a numerical scale. After all, such comparisons were the principal reason for the
development of numbers in the first place. It will later be shown that this numerical scale
should run from 0 to 1, but we first make some general remarks.
It seems that we do share a common concept of chance because we can discuss it and

make agreed statements and judgments such as those above. We therefore naturally seek
to abstract these essential common features, rather than discuss an endless list of examples
from first principles. This type of simple (or at least, simplified) description of a system
or concept is often called a model. Agreeing that probability is a number is the first step
on our path to constructing our model.
Most, perhaps all, of science conforms to this pattern; astronomy was originally de-

veloped to describe the visible movements of planets and stars; Newton’s and Einstein’s
theories of space, time, and motion were developed to describe our perceptions of moving
bodies with their mass, energy, and motion; Maxwell’s equations codify the properties of
electromagnetism; and so on. The first advantage of such models is their concise descrip-
tion of otherwise incomprehensibly complicated systems.
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The second, and arguably principal, advantage and purpose of having such a model
is that (if it is well chosen) it provides not only a description of the system, but also
predictions about how it will behave in the future. It may also predict how it would behave
in different circumstances, or shed light on its (unobserved) past behaviour.
Astronomy is one example we have mentioned; for another, consider the weather.

Without a model for forecasting, your only recourse is to recall the various ways in which
weather developed on the previous occasions when the situation seemed to resemble the
current one. There will almost certainly be no perfect match, and identifying a “good fit”
will be exceedingly time consuming or impossible.
Returning to chance and probability, we note that a primitive model for chance, used

by many cultures, represents it as a supernatural entity, or god. We mentioned this in the
previous section, and this procedure is, from one point of view, a perfectly reasonable and
consistent model for chance. It explains the data, with no contradictions. Unfortunately, it
is useless for practical purposes, such as prediction and judgment, because it is necessary
that the mind of the god in question should be unpredictable and capricious, and that
mind of Fortune (or whatever) is closed to us. Efforts to discover Fortune’s inclination by
propitiation of various kinds (sacrifice and wheedling) have met with outcomes that can
at best be described as equivocal. The Romans made use of more complicated and various
techniques, such as examining the behaviour of birds (augury) or casting lots (sortilege).
Relatedmodern techniques use tea leaves and astrology, but there is no evidence to suggest
that any of these methods rate better than utterly useless.
Fortunately, experience over the past millennium has shown that we can do much

better by using a mathematical model. This has many advantages; we mention only a
few. First, a useful model must be simpler than reality; otherwise, it would be no easier to
analyse than the real-life problem.Mathematicalmodels have this stripped-down quality in
abundance.
Second, mathematical models are abstract and are therefore quite unconstrained in their

applications. When we define the probabilities of events in Chapter 1, and the rules that
govern them, our conclusions will apply to all events of whatever kind (e.g., insurance
claims, computer algorithms, crop failures, scientific experiments, games of chance; think
of some more yourself).
Third, the great majority of practical problems about chance deal with questions that

either are intrinsically numerical or can readily be rephrased in numerical terms. The use
of a mathematical model becomes almost inescapable.
Fourth, if you succeed in constructing a model in mathematical form, then all the power

of mathematics developed over several thousand years is instantly available to help you
use it. Newton, Gauss, and Laplace become your (unpaid) assistants, and aides like these
are not to be lightly discarded.
In the next section, therefore, we begin our construction of a mathematical model for

chance. It turns out that we can make great progress by using the simple fact that our ideas
about probability are closely linked to the familiar mathematical ideas of proportion and
ratio.
Finally, we make the trivial point that, although the words chance, likelihood, proba-

bility, and so on mean much the same in everyday speech, we will only use one of these.
What follows is thus a theory of probability.
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0.3 Symmetry

Blind Fortune still bestows her gifts on such as cannot use them.
Ben Jonson

We begin with some basic ideas and notation. Many occurrences of probability appear
in everyday statements such as:

The probability of red in (American) roulette is 1838 .
The probability of a head when you flip a coin is 50%.
The probability of a spade on cutting a pack of cards is 25%.

Many other superficially different statements about probability can be reformulated to
appear in the above format. This type of statement is in fact so frequent and fundamental
that we use a standard abbreviation and notation for it. Anything of the form

the probability of A is p

will be written as:

P(A) = p.

In many cases, p may represent an adjective denoting quantity, such as “low” or “high.”
In the examples above, A and p were, respectively,

A ≡ red, p = 18/38
A ≡ heads, p = 50%
A ≡ spade, p = 25%.

You can easily think of many similar statements. Our first urgent question is, where did
those values for the probability p come from? To answer this, let us consider what happens
when we pick a card at random from a conventional pack. There are 52 cards, of which 13
are spades. The implication of the words “at random” is that any card is equally likely to
be selected, and the proportion of the pack comprising the spade suit is 13/52 = 1

4 . Our
intuitive feelings about symmetry suggest that the probability of picking a spade is directly
proportional to this fraction, and by convention we choose the constant of proportionality
to be unity. Hence,

P(spade) = 1

4
= 25%.

Exactly the same intuitive interpretation comes into play for any random procedure having
this kind of symmetry.

Example: American Roulette These wheels have 38 compartments, of which 18 are
red, 18 are black, and two are green (the zeros). If the wheel has been made with equal-
size compartments (and no hidden magnets, or subtle asymmetries), then the ball has 18
chances to land in red out of the 38 available. This suggests

P(red) = 18/38. �
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In the case of a fair coin, of course, there are only two equally likely chances to P(Head)=
50% and P(Tail) = 50%. This particular case of equal probabilities has passed into the
language in the expression a “fifty-fifty” chance (first used in print by P.G. Wodehouse in
his novel The Little Nugget).
In general, this argument (or expression of our intuition) leads to the following definition

of probability. Suppose that some procedurewith a randomoutcome has n distinct possible
outcomes, and suppose further that by symmetry (or by construction or supposition) these
outcomes are equally likely. Then if A is any collection of r of these outcomes, we define

P(A) = r

n
= number of outcomes in A

total number of outcomes
.(1)

Note that in this case we must have

0 ≤ P(A) ≤ 1,(2)

because 0 ≤ r ≤ n. Furthermore, if A includes all n possible outcomes, then P(A) = 1.
At the other extreme, P(A) = 0 if A contains none of the possible outcomes.
Here is another simple example.

(3) Example: Die With the probability of any event now defined by (1), it is elementary
to find the probability of any of the events that may occur when we roll a die. The number
shown may be (for example) even, odd, prime or perfect, and we denote these events by
A, B, C and D respectively. Here n = 6, and for A = {2 or 4 or 6} we have r = 3. The
probability that it shows an even number is

P(A) = P({2 or 4 or 6}) = 3

6
= 1

2
.

Likewise, and equally trivially, we find that

P(odd) = P(B) = P({1 or 3 or 5}) = 1

2

P(prime) = P(C) = P({2 or 3 or 5}) = 1

2

P(perfect) = P(D) = P({6}) = 1

6
.

These values of the probabilities are not inconsistent with our ideas about how the sym-
metries of this die should express themselves when it is rolled. �

This idea or interpretation of probability is very appealing to our common intuition.
It is first found nascent in a poem entitled “De Vetula,” which was widely distributed in
manuscript form from around 1250 onward. It is, of course, extremely likely that this idea
of probability had been widespread for many years before then. In succeeding years, most
probability calculations during the Renaissance and the ensuing scientific revolution take
this framework for granted.
However, there are several unsatisfactory features of this definition: first, there are plenty

of random procedures with no discernible symmetry in the outcomes; and second, it is
worrying that we do not need actually to roll a die to say that chance of a six is 16 . Surely,
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actual experiments should play some part in shaping and verifying our theories about the
physical world? We address this difficulty in the next section.

0.4 The Long Run

Nothing is more certain than incertaincies
Fortune is full of fresh variety
Constant in nothing but inconstancy

Richard Barnfield

Suppose that some random procedure has several possible outcomes that are not nec-
essarily equally likely. How can we define the probability P(A) of any eventuality A of
interest? For example, suppose the procedure is the rolling of a die that is suspected to
be weighted, or even clearly asymmetrical, in not being a perfect cube. What now is the
probability of a six?
There is no symmetry in the die to help us, but we can introduce symmetry another

way. Suppose you roll the die a large number n of times, and let r (n) be the number of
sixes shown. Then (provided the rolls were made under similar conditions) the symmetry
between the rolls suggests that (at least approximately)

P(six) = r (n)

n
= number of sixes

number of rolls
.

Furthermore, if you actually obtain an imperfect orweighted die and roll itmany times, you
will find that as n increases the ratio r (n)

n always appears to be settling down around some
asymptotic value. This provides further support for our taking r (n)

n as an approximation to
P(six).
Of course, this procedure can only ever supply an approximation to the probability in

question, as the ratio r (n)/n changes with n. This is the sort of price that we usually pay
when substituting empiricism for abstraction. There are other possible eventualities that
may also confuse the issue; for example, if told that a coin, in 1 million flips, showed
500,505 heads and 499,495 tails, you would probably accept it as fair, and you would
set P(head) = 1

2 . But suppose you were further informed that all the heads formed a run
preceding all the tails; would you now be quite so confident? Such a sequence might
occur, but our intuition tells us that it is so unlikely as to be irrelevant to this discussion. In
fact, routine gaming and other experience bears out our intuition in the long run. That is
why it is our intuition; it relies not only on our own experience, but also on our gambling
predecessors. You can believe in the symmetry and long-run interpretations for chances
in roulette without ever having spun the wheel or wagered on it (the author has done
neither).
This idea of the long run can clearly be extended to any random procedure that it is

possible to repeat an arbitrary number n of times under essentially identical conditions. If
A is some possible result and A occurs on r (n) occasions in n such repetitions, then we
say that

P(A) ≈ r (n)/n.(1)
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Thus, evaluating the ratio r (n)/n offers a way of measuring or estimating the probability
P(A) of the event A. This fact was familiar to gamblers in the Renaissance, and presumably
well before then. Cardano in hisBook on Games of Chance (written around 1520) observes
that “every die, even if it is acceptable, has its favoured side.” It may be assumed that
gamblers noticed that in the long run small biases in even a well-made die will be revealed
in the empirical proportions of successes for the six faces.
A similar empirical observation was recorded by John Graunt in his book Natural

and Political Observations Made Upon the Bills of Mortality (1662). He found that in a
large number of births, the proportion of boys born was approximately 14

27 . This came as
something of a surprise at the time, leading to an extensive debate. We simply interpret
the observation in this statement: the probability of an as yet unborn child being male is
approximately 14

27 . (Note that this empirical ratio varies slightly from place to place and
time to time, but it always exceeds 12 in the long run.)
Once again,we stress themost important point that 0 ≤ r (n)/n ≤ 1, because 0 ≤ r (n) ≤

n. It follows that the expression (1) always supplies a probability in [0, 1]. Furthermore,
if A is impossible (and hence never occurs), r (n)/n = 0. Conversely, if A is certain (and
hence always occurs), r (n)/n = 1.

0.5 Pay-Offs

Probability is expectation, founded upon partial knowledge.
George Boole

In reading the previous two sections, the alert reader will have already made the mental
reservation that many random procedures are neither symmetrical nor repeatable. Classic
examples include horse races, football matches, and elections. Nevertheless, bookmakers
and gamblers seem to have no qualms about quoting betting odds, which are essentially
linked to probabilities. (We explore this connection in more depth in Sections 0.7 and 1.6.)
How is it possible to define probabilities in these contexts?
One possible approach is based on our idea of a “fair value” of a bet, which in turn is

linked to the concept of mathematical averages in many cases. An illustrative example
of great antiquity, and very familiar to many probabilists, is provided by the following
problem.
A parsimonious innkeeper empties the last three glasses of beer (worth 13 each) from

one barrel and the last two glasses (worth 8 each) from another, and mixes them in a
jug holding five glasses. What is the “fair” price for a glass from the jug? The innkeeper
calculates the value of the beer in the jug as 3× 13+ 2× 8 = 55, and divides by 5 to
obtain his “fair” price of 11 each, although discriminating customersmaywell have another
view about that.
A similar idea extends to random situations. For example, suppose the benevolent but

eccentric uncle of Jack and Tom flips a fair coin; if it shows heads then Jack gets $1, if
it shows tails then Tom gets $1. If this is worth $p to Jack, it is worth the same to Tom.
Because the uncle certainly parts with $1, we have 2p = 1, which is to say that a “fair”
price for Jack to sell his share of the procedure before the uncle flips the coin is $µ, where

µ = 1

2
.
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More generally, if the prize at stake is $d, then a fair price for either of their expected
gifts is $d/2. More generally still, by a similar argument, if you are to receive $d with
probability p, then a fair price for you to sell this uncertain reward in advance of the
experiment is $dp.
But this argument has a converse. Suppose you are to receive $1 if some event A occurs

and nothing otherwise. Further suppose that you and Tom agree that he will give you $p
before the experiment occurs, and that he will get your reward whatever it may be. Then,
in effect, you and Tom have estimated and agreed that (at least approximately)

p = P(A).

To see this, note that if you believed P(A) were larger than p you would hold out for
a higher price, and Tom would not pay as much as p if he believed P(A) were less
than p.
Thus, probabilities can be defined, at least implicitly, whenever people can agree on

a fair price. Note that 0 ≤ p ≤ 1 in every case. Finally, we observe that the idea of fair
price can be extended and turns out to be of great importance in later work. For example,
suppose you roll a fair five-sided die; if faces 1, 2, or 3 turn up you win $13, if faces 4 or 5
turn up you win $8. What is a fair price for one roll? Essentially the same arithmetic and
ideas as we gave above for the parsimonious innkeeper reveals the fair price (or value) of
one roll to be $11 because

13× 3

5
+ 8× 2

5
= 11.

We will meet this concept again under the name “expectation.”

0.6 Introspection

Probability is a feeling of the mind.
Augustus de Morgan

In the previous three sections, we defined probabilities, at least approximately, in sit-
uations with symmetry, or when we could repeat a random procedure under essentially
the same conditions, or when there was a plausible agreed “fair price” for a resulting
prize. However, there are many asymmetric and non-repeatable random events, and for
many of these we would feel distinctly unsatisfied, or even unhappy, with the idea that
their probabilities should be determined by gamblers opening a book on the question. For
example, what is the probability that some accused person is guilty of the charge? Or the
probability of life on another planet? Or the probability of you catching a cold this week?
Or the probability that Shakespeare wrote some given sonnet of doubtful provenance? Or
the probability that a picture called “Sunflowers” is by van Gogh? Or the probability that
Riemann’s hypothesis is true? (It asserts that all the nontrivial zeros of a certain function
have real part+ 1

2 .) Or the probability that π
e is irrational? In this last question, would the

knowledge that eπ is irrational affect the probability in your judgment?
In these questions, our earlier methods seem more or less unsatisfactory, and, indeed,

in a court of law you are forbidden to use any such ideas in deciding the probability of
guilt of an accused. One is led to the concept of probability as a “degree of belief.”
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If we assign a probability to any of these eventualities, then the result must of necessity
be a personal or subjective assessment. Your figure need not be the same asmine or anyone
else’s, and any probability so obtained is called subjective or personal.
In fact, there is a strong (although perhaps minority) body of opinion that maintains that

all probabilities are subjective (cf the remark of A. de Morgan at the head of this section).
They argue that appeals to symmetry, the long run, or fair value, merely add a spurious
objectivity to what is essentially intuition, based on personal experience, logical argument,
and experiments (where these are relevant). The examples above are then simply rather
trivial special cases of this general definition.
According to this approach, a probability is a measure of your “degree of belief” in the

guilt of the accused, the truth of some assertion, or that a die will show a six. In the classical
case based on dice, etc., this belief rests on symmetry, as it does in the “long-run” relative-
frequency interpretation. The “fair price” approach uses the beliefs of all those concerned
in fixing such a price. Furthermore, the approach via degrees of belief allows (at least in
principle) the possibility that such probabilities could be determined by strictly logical
statements relating what we know for sure to the uncertain eventuality in question. This
would be a kind of inductive probability logic, an idea that was first suggested by Leibniz
and later taken up by Boole. During the past century, there have been numerous clever and
intriguing books about various approaches to establishing such an axiomatic framework.
This argument is clearly seductive, and for all the above reasons it is tempting to regard all

types of probability as a “feeling of themind,” or as a “degree of belief.” However, there are
several drawbacks. First, in practice, it does not offer a wholly convincing and universally
accepted way of defining or measuring probability, except in the cases discussed above.
Thus, the alleged generality is a little artificial because different minds feel differently.
Second, setting this more general idea in a formal framework requires a great deal more

effort and notation, which is undesirable for a first approach. Finally, it is in any case
necessary for practical purposes to arrange things so that the rules are the same as those
obtained from the simpler arguments that we have already outlined.
For these reasons, we do not further pursue the dream of a universal interpretation of

probability; instead, we simply note this remark of William Feller:

All definitions of probability fall short of the actual practice.

0.7 FAQs

Neither physicists nor philosophers can give any convincing account of what
“physical reality” is.

G.H. Hardy

“What is the meaning of it, Watson?” said Holmes, solemnly, as he laid
down the paper. . . . “It must tend to some end, or else our universe is ruled
by chance, which is unthinkable.”

A. Conan Doyle, The Adventure of the Cardboard Box

In the preceding sections, we agree to develop a mathematical theory of probability
and discuss some interpretations of probability. These supply definitions of probability in



0.7 FAQs 11

some simple cases and, in any case, we interpret probability as an extension of the idea of
proportion.
The net result of this preliminary reconnaissance is our convention (or rule) that prob-

ability is a number between zero and unity inclusive, where impossibility corresponds to
0, and certainty corresponds to 1.
In Chapter 1, we probe more deeply into our ideas about probability, to discover more

subtle and important rules that describe its behaviour, and generate our mathematical
model. However, there are a few very common doubts and queries that it is convenient to
dispose of here.

(1) The first, and perhaps in one way, key question is to ask if anything is really random?
This is called the question of determinism, and its importance was realised early
on. One point of view is neatly expressed by Laplace in these two extracts from his
monumental work on probability:

The path of a molecule is fixed as certainly as the orbits of the planets: the only difference
between the two is due to our ignorance. Probability relates partly to this ignorance and
partly to our knowledge. . . . Thus, given a sufficiently great intelligence that could encom-
pass all the forces of nature and the details of every part of the universe, . . . nothing would
be uncertain and the future (as well as the past) would be present before its eyes.

This is called “determinism” because it asserts that the entire future is determined
by a complete knowledge of the past and present. There are many problems with this,
not the least of them being the unattractive corollary that people do not have free
will. Your every action is inevitable and unavoidable. However, no one actually be-
lieves this, unless wasting time on fruitless cerebration is also unavoidable, and so on.
The difficulties are clear; fortunately, on one interpretation of quantum theory, certain
activities of elementary particles are genuinely unpredictable, an idea expressed by
Heisenberg’s uncertainty principle. But this view also leads to paradoxes and contra-
dictions, not the least of which is the fact that some events must perforce occur with
no cause. However, causeless events are about as unattractive to the human mind as
the nonexistence of free will, as expressed by Einstein’s remark, “In any event, I am
sure that God does not dice.” At this point we abandon this discussion, leaving readers
to ponder it for as long as they desire. Note, first, that however long you ponder it, you
will not produce a resolution of the problems and, second, that none of this matters to
our theory of probability.

(2) If you accept that things can be random, the second natural question is to ask: What
is probability really? The answer to this is that our intuition of probability begins as
a large portmanteau of empirical observations that the universe is an uncertain place,
with many areas of doubt and unpredictability. In response to this, we form a theory of
probability, which is a description of what we observe in terms of (mathematical) rules.
In the sense in which the question is usually posed, we here neither know nor care
what probability “really” is. (If we were engaged in a certain type of philosophical
investigation, this question might concern us, but we are not.) It is the same in all
sciences; we label certain concepts such as “mass,” “light,” “particle,” and describe
their properties bymathematical rules.Wemay never knowwhat light or mass “really”
are, nor does it matter. Furthermore, for example, even if it turned out that mass is
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supplied by the Higgs boson, the next question would be to ask what is a boson
“really”? You might just as well ask what are numbers really?

(3) When it is appreciated that probability is our constructed model, it is next natural to
ask is it the only one or are there others?
There are indeed many other theories devised to explain uncertain phenomena. For

example, the quantum theory designed to explain the odd behaviour of elementary
particles uses a probabilistic structure quite different from that seen here. Another
area in which a different theoretical structure would be necessary is in applying prob-
ability to questions of legal proof “beyond reasonable doubt” or “on the balance of
probabilities.” The answer in this case is still a matter for debate.
At the other extreme, attempts have been made to construct more general theories

with a smaller set of rules. So far, none of these is in general use.
(4) Accepting that we need a theory, another natural question is; Does it have to be so

abstract and complicated? The answer here is (of course) yes, but the reason is not just
the perversity of professors. The first point is that probability is not directly tangible
in the same way as the raw material of many branches of physics. Electricity, heat,
magnetism, and so on, will all register on the meters of appropriate instruments. There
is no meter to record the presence of probability, except us. But we are imperfect
instruments, and not infrequently rather confused. It is the case that most people’s
intuition about problems in chance will often lead them grossly astray, even with very
simple concepts. Although many examples appear later, we mention a few here:
(a) The base rate fallacy. This appears in many contexts, but it is convenient to display

it in the framework of amedical test for a disease that affects one person in 100,000.
You have a test for the disease that is 99% accurate. (That is to say, when applied to
a sufferer, it shows positive with probability 99%; when applied to a nonsufferer,
it shows negative with probability 99%.) What is the probability that you have
the disease if your test shows a positive result? Most people’s untutored intuition
would lead them to think the chance is high, or at least not small.
In fact, the chance of having the disease, given the positive result, is less than

one in a 1,000; indeed, it is more likely that the test was wrong.
(b) The Monty Hall problem. This is now so well-known as to hardly need stating, but

for all our extraterrestrial readers here it is: You are a contestant in a game show.
A nice car and two feral goats are randomly disposed behind three doors, one to
each door. You choose a door to obtain the object it conceals. The presenter does
not open your chosen door, but opens another door that turns out to reveal a goat.
Then the presenter offers you the chance to switch your choice to the final door.
Do you gain by so doing? That is to say, what is the probability that the final door
conceals the car?
Many people’s intuition tells them that, given the open door, the car is equally

likely to be behind the remaining two; so there is nothing to be gained by switch-
ing. In fact, this is almost always wrong; you should switch. However, even this
simple problem raises issues of quite surprising complexity, which require our
sophisticated theory of probability for their resolution.

(c) Coincidences. Twenty-three randomly selected people are listening to a lecture on
chance. What is the probability that at least two of them were born on the same



0.7 FAQs 13

day of the year? Again, untutored intuition leads most people to guess that the
chances of this are rather small. In fact, in a random group of 23 people, it is more
likely than not that at least two of them were born on the same day of the year.
This list of counterintuitive results could be extended indefinitely, but this should

at least be enough to demonstrate that onlymathematics can save people from their
flawed intuition with regard to chance events.

(5) A very natural FAQ that requires an answer is: What have “odds” got to do with
probability? This is an important question, because there is a longstanding link be-
tween chance and betting, and bookmakers quote their payouts in terms of these
“odds.” The first key point is that there are two kinds of odds: fair odds and pay-off
odds.
(a) Fair odds: If the occurrence of some event is denoted by A, then Ac denotes the

nonoccurrence of A, (≡ the event that A does not occur). If the probability of A is
p and the probability of Ac is q, then the odds against A are q : p; (pronounced q
to p). The odds on A are p : q. In the case of n equally likely outcomes of which
r yield A and n − r yield Ac, the odds on A are r : n − r . Thus, the odds against
a six when rolling a fair die are 5 to 1, and so on.

(b) Pay-off odds. These are the odds that are actually offered by bookmakers and
casinos. In a sense, they could be called Unfair Odds because they are fixed to
ensure that the advantage lies with the casino. For example, suppose you bet on
an even number arising in an American roulette wheel. We have noted above that
the probability P(E) of an even number is 18

38 = 9
19 , so the fair odds on an even

number are 9 : 10; the fair odds against are 10 : 9. However, the pay-off odds in the
casino are 1 : 1, which is to say that you get your stake and the same again if you
win. The fair value of this $1 bet (as discussed in section 0.5) is therefore

9

19
× 2 = 18

19
= 1− 1

19
.

The fact that this is less than your stake is an indication that these odds are stacked
against you.
Of course, if the casino paid out at the fair odds of 10 : 9, the value of a bet of

$1 is

9

19

(
10

9
+ 1

)
= 1,

which is equal to your stake, and this is to be regarded as fair.
The difference between the fair odds (which reflect the actual probabilities) and

the pay-off odds is what guarantees the casino’s profit in the long run.
We conclude with a couple of less problematical questions that arise in more

everyday circumstances.
(6) “The weather forecast gave only a 5% chance of rain today, but then it did rain. What

is the use of that?”
One sympathizes with this question, but of course the whole point of probability

is to discuss uncertain eventualities in advance of their resolution. The theory cannot
hope to turn uncertainty into certainty; instead, it offers the prospect of discussing
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these chances rationally, with the intention of making better-informed decisions as a
result. It is always better to play with the odds than against them.

(7) Will a knowledge of probability enableme to design a betting system towin at roulette?
Absolutely not! [unless, of course, your betting system comprises the one simple rule:
“Buy a casino.”]

0.8 History

Errors using inadequate data are much less than those using no data at all.
Charles Babbage

The excitement that a gambler feels whenmaking a bet is equal to the amount
he might win multiplied by the chance of winning it.

Blaise Pascal

One of the most interesting features of the history of probability is how remarkably
short it is. The Ancient Greeks and others had been prompted (by everyday problems and
their curiosity) to develop an extensive knowledge of geometry, astronomy, and numbers.
Other branches of mathematics made great strides during the Italian Renaissance.
Nevertheless, it was left to Pascal, Fermat, and Huygens to inaugurate mathematical
probability in 1654 to 1656, with their work on the Problem of the Points (which
concerned the fair division of the prize or stakes in unfinished games of chance), and the
Gamblers Ruin Problem (see Examples 2.11 and 4.12).
This tardy start is all the more surprising when one notes that games of chance, using

dice and other familiar randomisers, were certainly widespread throughout the classical
era, and were almost certainly common before that period.
For example, the game known as Alea was widespread throughout the Roman Empire

at all levels of society. At various times, laws proscribed or restricted it; Marcus Aurelius
was so addicted to the game that he had a personal croupier to roll his dice. The 6×
6 squared boards, often inscribed appropriately, are found across the imperial domain.
Various numbers of dice were used, usually three; the most desirable outcome was called
the Venus throw, the least desirable was the Dogs. Note that the Latin for die is alea (from
whichwe get aleatorymeaning random), and the game used counters, fromwhich theword
calculus has also entered our language. The game was also played by the Greeks, with the
legend that it was invented by Palamedes to occupy the tedious years of the Trojan wars,
particularly the celebrated siege. (Another legend attributes it to the Lydians, who used it
to distract their minds from hunger during famine.) The Greeks called the game pessoi,
after the counters, a die was tessera. It seems safe to say that the origins of the game are
lost in early antiquity.
Despite these ancient origins, there is no evidence that anyone attempted to calculate

chances, and play accordingly, until the second millennium. A poem entitled “De Vetula,”
dated to around 1250 ad, includes elementary calculations of chances involving dice.
Similar ideas and calculations can be found sporadically throughout Europe over the next
four centuries, but the spirit of the times and difficulties of communication hampered any
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serious development. Nevertheless, we find Cardano writing a book around 1520, entitled
On Games of Chance, in which the ideas of symmetry and long-run frequency are nearly
clear. Galileo was certainly taking such notions for granted in the early 17th century when
he calculated the odds on rolling 9 or 10, respectively, with three dice.
Following the ground-breaking correspondence of Pascal and Fermat on the problem

of the points (which had been known but unsolved for two centuries previously), there
was a comparatively swift and substantial development. Christiaan Huygens (1657) wrote
a book on numerous problems in probability, followed by the books of James Bernoulli
(1713), Pierre de Montmort (1708), and Abraham de Moivre (1718, 1738, 1756).
The final edition of de Moivre’s book includes a law of large numbers, a central limit

theorem (see Sections 7.5.11 and 8.9), and quite sophisticated solutions of problems using
generating functions (see Section 3.6 and Chapter 6). The pace of development accelerated
during the 19th century, until the structure that is most in use today was rigorously codified
by A. Kolmogorov in his book of 1933, Grundbegriffe der Wahrscheinlichkeitsrechnung.
(We note, however, that other systems have been, are being, and will be used to model
probability.)

Review In this chapter, we discuss our intuitive ideas about chance and suggest how
they can help us to construct a more formal theory of probability. In particular, we exploit
the interpretations of chances as a simple proportion in situations with symmetry and as
relative frequency in the long run. These suggest that:

� Any probability should be a number between zero and one, inclusive.
� Things that are impossible should have zero probability.
� Things that are certain should have probability one.

Thus, we can picture probabilities as lying on a scale between zero and one, where the
more unlikely eventualities have their probabilities nearer to zero and the more likely
eventualities have their probabilities nearer to one. The following chapters use similar
arguments to develop more complicated rules and properties of probability.

Appendix: Review of Elementary Mathematical Prerequisites

It is difficult to make progress in any branch of mathematics without using the ideas and
notation of sets and functions. Indeed, it would be perverse to try to do so because these
ideas and notation are helpful in guiding our intuition and solving problems. (Conversely,
almost the whole of mathematics can be constructed from these few simple concepts.) We
therefore give a brief synopsis of what we need here for completeness, although it is likely
that the reader will already be familiar with this.

Notation

We use a good deal of familiar standard mathematical notation in this book. The basic
notation for sets and functions is set out below. More specialized notation for probability
theory is introduced as required throughout the book, and recorded in Chapter Reviews
and the Index of Notation.
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We take this opportunity to list some fundamental notation that you are likely to see
soon:

e the base of natural logarithms; Euler’s number
log x the logarithm of x to base e, unless otherwise stated
log2x the logarithm of x to base 2
π the ratio of circumference to diameter for a circle
� the universal set
n! n(n − 1) . . . 3.2.1; factorial n
|x | modulus or absolute value of x
[x] the integer part of x
R the real line
Z the integers
x ∧ y = min{x, y} the smaller of x and y
x ∨ y = max{x, y} the larger of x and y
x+ = x ∨ 0

n∑
r=1

ar = a1 + · · · + an summation symbol

n∏
r=1

ar = a1 a2 . . . an product symbol

Sets

A set is a collection of things that are called the elements of the set. The elements can be
any kind of entity: numbers, people, poems, blueberries, points, lines, and so on, endlessly.
For clarity, upper case letters are always used to denote sets. If the set S includes some

element denoted by x , then we say x belongs to S and write x ∈ S. If x does not belong
to S, then we write x �∈ S.
There are essentially two ways of defining a set, either by a list or by a rule.

Example If S is the set of numbers shown by a conventional die, then the rule is that
S comprises the integers lying between 1 and 6 inclusive. This may be written formally
as follows:

S = {x : 1 ≤ x ≤ 6 and x is an integer}.
Alternatively, S may be given as a list:

S = {1, 2, 3, 4, 5, 6}. �

One important special case arises when the rule is impossible; for example, consider the
set of elephants playing football on Mars. This is impossible (there is no pitch on Mars)
and the set therefore is empty; we denote the empty set by φ. We may write φ as { }.
If S and T are two sets such that every element of S is also an element of T , then we

say that T includes S and write either S ⊆ T or S ⊂ T . If S ⊂ T and T ⊂ S, then S and
T are said to be equal and we write S = T .
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Note that φ ⊂ S for every S. Note also that some books use the symbol “⊆” to denote
inclusion and reserve “⊂” to denote strict inclusion, that is to say, S ⊂ T if every element
of S is in T and some element of T is not in S. We do not make this distinction.

Combining Sets

Given any nonempty set, we can divide it up, and given any two sets, we can join them
together. These simple observations are important enough to warrant definitions and no-
tation.

Definition Let A and B be sets. Their union, denoted by A ∪ B, is the set of elements
that are in A or B, or in both. Their intersection, denoted by A ∩ B, is the set of elements
in both A and B. �

Note that in other books the union may be referred to as the join or sum; the intersection
may be referred to as the meet or product. We do not use these terms. Note the following.

Definition If A ∩ B = φ, then A and B are said to be disjoint. �

We can also remove bits of sets, giving rise to set differences, as follows.

Definition Let A and B be sets. That part of A that is not also in B is denoted by A\B,
called the difference of A from B. Elements that are in A or B but not both, comprise the
symmetric difference, denoted by A�B. �

Finally, we can combine sets in a more complicated way by taking elements in pairs,
one from each set.

Definition Let A and B be sets, and let

C = {(a, b) : a ∈ A, b ∈ B}
be the set of ordered pairs of elements from A and B. Then C is called the product of A
and B and denoted by A × B. �

Example Let A be the interval [0, a] of the x-axis, and B the interval [0, b] of the
y-axis. Then C = A × B is the rectangle of base a and height b with its lower left vertex
at the origin, when a, b > 0. �

Venn Diagrams

The above ideas are attractively and simply expressed in terms of Venn diagrams. These
provide very expressive pictures, which are often so clear that theymake algebra redundant
(see Figure 0.1).
In probability problems, all sets of interest A lie in a universal set �, so that A ⊂ �

for all A. That part of � that is not in A is called the complement of A, denoted by Ac.
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Figure 0.1 Venn diagrams.

Formally,

Ac = �\A = {x : x ∈ �, x �∈ A}.
Obviously, from the diagram or by consideration of the elements

A ∪ Ac = �, A ∩ Ac = φ, (Ac)c = A.

Clearly, A ∩ B = B ∩ A and A ∪ B = B ∪ A, but we must be careful when making more
intricate combinations of larger numbers of sets. For example, we cannot write down
simply A ∪ B ∩ C ; this is not well defined because it is not always true that

(A ∪ B) ∩ C = A ∪ (B ∩ C).

We use the obvious notation
n⋃

r=1
Ar = A1 ∪ A2 ∪ · · · ∪ An,

n⋂
r=1

Ar = A1 ∩ A2 ∩ · · · ∩ An.

Definition If A j ∩ Ak = φ for j �= k and

n⋃
r=1

Ar = �,

then the collection (Ar ; 1 ≤ r ≤ n) is said to form a partition of �. �
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Size

When sets are countable, it is often useful to consider the number of elements they contain;
this is called their size or cardinality. For any set A, we denote its size by |A|; when sets
have a finite number of elements, it is easy to see that size has the following properties.
If sets A and B are disjoint, then

|A ∪ B| = |A| + |B|,
and more generally, when A and B are not necessarily disjoint,

|A ∪ B| + |A ∩ B| = |A| + |B|.
Naturally, |φ| = 0, and if A ⊆ B, then

|A| ≤ |B|.
Finally, for the product of two such finite sets A × B, we have

|A × B| = |A| × |B|.
When sets are infinite or uncountable, a great deal more care and subtlety is required in

dealing with the idea of size. However, we intuitively see that we can consider the length
of subsets of a line, or areas of sets in a plane, or volumes in space, and so on. It is easy to
see that if A and B are two subsets of a line, with lengths |A| and |B|, respectively, then
in general

|A ∪ B| + |A ∩ B| = |A| + |B|.
Therefore |A ∪ B| = |A| + |B| when A ∩ B = φ.
We can define the product of two such sets as a set in the plane with area |A × B|, which

satisfies the well-known elementary rule for areas and lengths

|A × B| = |A| × |B|
and is thus consistent with the finite case above. Volumes and sets in higher dimensions
satisfy similar rules.

Functions

Suppose we have sets A and B, and a rule that assigns to each element a in A a unique
element b in B. Then this rule is said to define a function from A to B; for the corresponding
elements, we write

b = f (a).

Here the symbol f (·) denotes the rule or function; often we just call it f . The set A is
called the domain of f , and the set of elements in B that can be written as f (a) for some
a is called the range of f ; we may denote the range by R.
Anyone who has a calculator is familiar with the idea of a function. For any function

key, the calculator will supply f (x) if x is in the domain of the function; otherwise, it says
“error.”
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Inverse Function

If f is a function from A to B, we can look at any b in the range R of f and see how it
arose from A. This defines a rule assigning elements of A to each element of R, so if the
rule assigns a unique element a to each b this defines a function from R to A. It is called
the inverse function and is denoted by f −1(·):

a = f −1(b).

Example: Indicator Function Let A ⊂ � and define the following function I (·) on
�:

I (ω) = 1 if ω ∈ A,

I (ω) = 0 if ω �∈ A.

Then I is a function from� to {0, 1}; it is called the indicator of A because by taking the
value 1 it indicates that ω ∈ A. Otherwise, it is zero. �

This is about as simple a function as you can imagine, but it is surprisingly useful. For
example, note that if A is finite you can find its size by summing I (ω) over all ω:

|A| =
∑
ω∈�

I (ω).

Series and Sums

Another method I have made use of, is that of Infinite Series, which in many
cases will solve the Problems of Chance more naturally than Combinations.

A. de Moivre, Doctrine of Chances, 1717

What was true for de Moivre is equally true today, and this is therefore a convenient
moment to remind the reader of some general and particular properties of series. Note that
n! = n(n − 1) . . . 3.2− 1, and that 0! = 1, by convention. Also,(

n

r

)
= n!

r !(n − r )!

and

M(a, b, c) = (a + b + c)!

a!b!c!
.

Finite Series

Consider the series

sn =
n∑

r=1
ar = a1 + a2 + · · · + an.
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The variable r is a dummy variable or index of summation, so any symbol will suffice:

n∑
r=1

ar ≡
n∑

i=1
ai .

In general,

n∑
r=1
(axr + byr ) = a

n∑
r=1

xr + b
n∑

r=1
yr .

In particular,

n∑
r=1

1 = n;

n∑
r=1

r = 1

2
n(n + 1), the arithmetic sum;

n∑
r=1

r2 = 1

6
n(n + 1)(2n + 1) = 2

(
n + 1
3

)
+
(

n + 1
2

)
;

n∑
r=1

r3 =
( n∑

r=1
r

)2
= 1

4
n2(n + 1)2;

n∑
r=0

(
n
r

)
xr yn−r = (x + y)n, the binomial theorem;

∑
a + b + c = n

a, b, c ≥ 0

M(a, b, c)xa ybzc =
∑

a + b + c = n
a, b, c ≥ 0

(
a + b + c

a + b

)(
a + b

a

)
xa ybzc

= (x + y + z)n, the multinomial theorem;
n∑

r=0
xr = 1− xn+1

1− x
, the geometric sum.

Limits

Often, we have to deal with infinite series. A fundamental and extremely useful concept
in this context is that of the limit of a sequence.

Definition Let (sn; n ≥ 1) be a sequence of real numbers. If there is a number s such
that |sn − s| may ultimately always be as small as we please, then s is said to be the limit
of the sequence sn. Formally, we write

lim
n→∞ sn = s

if and only if for any ε > 0, there is a finite n0 such that |sn − s| < ε for all n > n0. �
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Notice that sn need never actually take the value s, it must just get closer to it in the
long run (e.g., let xn = n−1).

Infinite Series

Let (ar ; r ≥ 1) be a sequence of terms, with partial sums

sn =
n∑

r=1
ar , n ≥ 1.

If sn has a finite limit s as n →∞, then the sum∑∞
r=1 ar is said to converge with sum

s. Otherwise, it diverges. If
∑∞

r=1 |ar | converges, then
∑∞

r=1 ar is said to be absolutely
convergent.
For example, in the geometric sum in I above, if |x | < 1, then |x |n → 0 as n →∞.

Hence,

∞∑
r=0

xr = 1

1− x
, |x | < 1,

and the series is absolutely convergent for |x | < 1. In particular, we have the negative
binomial theorem:

∞∑
r=0

(
n + r − 1

r

)
xr = (1− x)−n.

This is true even when n is not an integer. For example,

(1− x)−1/2 =
∞∑

r=0

(
r − 1

2
r

)
xr =

∞∑
r=0

(
r − 1

2

)

×
(

r − 1

2
− 1

)
. . .

(
r − 1

2
− (r − 1)

)
xr/r !

= 1+ 1

2
x + 3

2
× 1

2
× x2

2!
+ 5

2
× 3

2
× 1

2
× x3

3!
+ · · ·

=
∞∑

r=0

(
2r
r

)( x

4

)r
.

In particular, we often use the case n = 2:
∞∑

r=0
(r + 1)xr = (1− x)−2.

Also, by definition, for all x , where e is the base of natural logarithms,

exp x = ex =
∞∑

r=0

xr

r !
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and, for |x | < 1,

− log(1− x) =
∞∑

r=1

sr

r
.

An important property of ex is the exponential limit theorem:

as n →∞,
(
1+ x

n

)n
→ ex .

This has a useful generalization: let r (n, x) be any function such that nr (n, x)→ 0 as
n →∞, then {

1+ x

n
+ r (n, x)

}n
→ ex , as n →∞.

Finally, note that we occasionally use special identities such as

∞∑
r=1

1

r2
= π2

6
and

∞∑
r=1

1

r4
= π4

90
.
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Probability

And of all axioms this shall win the prize.
‘Tis better to be fortunate than wise.

John Webster

Men’s judgements are a parcel of their fortunes.
W. Shakespeare, Antony and Cleopatra

1.1 Notation and Experiments

In the course of everyday life, we become familiar with chance and probability in various
contexts. We express our ideas and assessments in many ways, such as:

It will very likely rain.
It is almost impossible to hole this putt.
That battery may work for a few more hours.
Someone will win the lottery, but it is most unlikely to be one of us.
It is about a 50-50 chance whether share prices will rise or fall today.

You may care to amuse yourself by noting more such judgments of uncertainty in what
you say and in the press.
This large range of synonyms, similes, and modes of expression may be aesthetically

pleasing in speech and literature, butwe need to becomemuchmore precise in our thoughts
and terms. To aid clarity, we make the following.

(1) Definition Any well-defined procedure or chain of circumstances is called an experi-
ment. The end results or occurrences are called the outcomes of the experiment. The set
of possible outcomes is called the sample space (or space of outcomes) and is denoted by
the Greek letter �. �

In cases of interest, we cannot predict with certainty how the experiment will turn out,
rather we can only list the collection of possible outcomes. Thus, for example:

Experiment Possible outcomes
(a) Roll a die One of the faces
(b) Flip a coin Head or tail

24



1.1 Notation and Experiments 25

(c) Buy a lottery ticket Win a prize, or not
(d) Deal a bridge hand All possible arrangements of 52 cards into

four equal parts
(e) Run a horse race Any ordering of the runners

Typically, probability statements do not refer to individual outcomes in the sample
space; instead, they tend to embrace collections of outcomes or subsets of �. Here are
some examples:

Experiment Set of outcomes of interest
(a) Deal a poker hand Have at least a pair
(b) Buy a share option Be in the money at the exercise date
(c) Telephone a call centre Get through to a human in less than 1 hour
(d) Buy a car It runs without major defects for a whole year
(e) Get married Stay married

Clearly this is another list that you could extend without bound. The point is that in
typical probability statements of the form

the probability of A is p,

which we also write as

P(A) = p,

the symbol A represents groups of outcomes of the kind exemplified above. Furthermore,
we concluded in Chapter 0 that the probability p should be a number lying between 0
and 1 inclusive. A glance at the Appendix to that chapter makes it clear that P(.) is in fact
simply a function on these subsets of �, which takes values in [0, 1]. We make all this
formal; thus:

(2) Definition An event A is a subset of the sample space �. �

(3) Definition Probability is a function, defined on events in �, that takes values in
[0, 1]. The probability of the event A is denoted by P(A). �

(4) Example: Two Dice Suppose the experiment in question is rolling two dice. (Note
that in this book a “die” is a cube, conventionally numbered from 1 to 6, unless otherwise
stated.) Here are some events:

(a) A = Their sum is 7.
(b) B = The first die shows a larger number than the second.
(c) C = They show the same.
We may alternatively display these events as a list of their component outcomes, so

A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)},
and so on, but this is often very tedious.
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Of course this experiment has the type of symmetry we discussed in Section 0.3, so we
can also compute

P(A) = P(C) = 1

6
, and P(B) = 15

36
= 5

12
. �

(5) Example: Darts A dart is thrown to hit a chess board at random. Here, “at random”
clearly means that it is equally likely to hit any point of the board. Possible events are:

(a) A = It hits a white square.
(b) B = It lands within one knight’s move of a corner square.
This problem is also symmetrical in the sense of Section 0.3, and sowe calculateP(A) = 1

2
and P(B) = 1

8 .
�

Of course, the brief definitions above raise more questions than they answer. How
should the probability function behave when dealing with two or more events? How can
it be extended to cope with changes in the conditions of the experiment? Many more
such questions could be posed. It is clear that the brief summary above calls for much
explanation and elaboration. In the next few sections, we provide a few simple rules (or
axioms) that define the properties of events and their probabilities. This choice of rules
is guided by our experience of real events and their likelihoods, but our experience and
intuition cannot prove that these rules are true or say what probability “really” is. What we
can say is that, starting with these rules, we can derive a theory that provides an elegant and
accurate description of many random phenomena, ranging from the behaviour of queues
in supermarkets to the behaviour of nuclear reactors.

1.2 Events

Let us summarise our progress to date. Suppose we are considering some experiment such
as tossing a coin. To say that the experiment is well defined means that we can list all the
possible outcomes. In the case of a tossed coin, the list reads: (head, tail). For a general
(unspecified) experiment, any particular outcome is denoted by ω; the collection of all
outcomes is called the sample space and is denoted by �.
Any specified collection of outcomes in� is called an event. Upper case letters such as

A, B, and C are used to denote events; these may have suffices or other adornments such
as Ai , B̄, C∗, and so on. If the outcome of the experiment is ω and ω ∈ A, then A is said
to occur. The set of outcomes not in A is called the complement of A and is denoted by
Ac.
In particular, the event that contains all possible outcomes is the certain event and is

denoted by �. Also, the event containing no outcomes is the impossible event and is
denoted by φ. Obviously, φ = �c. What we said in Chapter 0 makes it natural to insist
that P(�) = 1 and that P(φ) = 0.
It is also clear from our previous discussions that the whole point of probability is to

say how likely the various outcomes are, either individually or, more usually, collectively
in events. Here are some more examples to illustrate this.



1.2 Events 27

Example: Opinion Poll Suppose n people are picked at random and interrogated as to
their opinion (like or dislike or do not care) about a brand of toothpaste. Here, the sample
space � is all collections of three integers (x, y, z) such that x + y + z = n, where x is
the number that like it, y the number that dislike it, and z the number that do not care.
Here an event of interest is

A ≡ more like it than dislike it
which comprises all the triples (x, y, z) with x > y. Another event that may worry the
manufacturers is

B ≡ the majority of people do not care,
which comprises all triples (x, y, z), such that x + y < z. �

Example: Picking a Lottery Number In one conventional lottery, entries and the
draw choose six numbers from 49. The sample space is therefore all sextuples {x1, . . . , x6},
where all the entries are between 1 and 49, and no two are equal. The principal event of
interest is that this is the same as your choice. �

Example: Coins If a coin is tossed once, then � = {head, tail}. In line with the
notation above, we usually write

� = {H, T }.
The event that the coin shows a head should strictly be denoted by {H}, but in common
withmost other writers we omit the braces in this case, and denote a head by H . Obviously,
H c = T and T c = H .
Likewise, if a coin is tossed twice, then

� = {H H, H T, T H, T T },
and so on. This experiment is performed even more often in probability textbooks than it
is in real life. �

Because events are sets, we use the usual notation for combining them; thus:

A ∩ B denotes outcomes in both A and B; their intersection.
A ∪ B denotes outcomes in either A or B or both; their union.
A�B denotes outcomes in either A or B, but not both; their symmetric difference.
A\B denotes outcomes in A that are not in B; their difference.
∞⋃
j=1

A j denotes outcomes that are in at least one of the countable collection (A j ; j ≥ 1);
their countable union.

[Countable sets are in one–one correspondence with a subset of the positive integers.]
A ⊆ B denotes that every outcome in A is also in B; this is inclusion.
A = {ω1, ω2, ω3, . . . , ωn} denotes that the event A consists of the outcomes ω1, . . . , ωn

A × B denotes the product of A and B; that is, the set of all ordered pairs (ωa, ωb), where
ωa ∈ A and ωb ∈ B.
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Figure 1.1 The interior of the rectangle represents the sample space �, and the interior of the
circle represents an event A. The point ω represents an outcome in the event Ac. The diagram

clearly illustrates the identities Ac ∪ A = � and �\A = Ac.

These methods of combining events give rise to many equivalent ways of denoting an
event. Some of the more useful identities for any events A and B are:

A�B = (A ∩ Bc) ∪ (Ac ∩ B)(1)
A = (A ∩ B) ∪ (A ∩ Bc)(2)

A\B = A ∩ Bc(3)
Ac = �\A(4)

A ∩ Ac = φ(5)
A ∪ Ac = �.(6)

These identities are easily verified by checking that every element of the left-hand side is
included in the right-hand side, and vice versa. You should do this.
Such relationships are often conveniently represented by simple diagrams.We illustrate

this by providing some basic examples in Figures 1.1 and 1.2. Similar relationships hold

Figure 1.2 The interior of the smaller circle represents the event A; the interior of the larger
circle represents the event B. The diagram illustrates numerous simple relationships; for example,
the region common to both circles is A ∩ B ≡ (Ac ∪ Bc)c. For another example, observe that

A� B = Ac � Bc.
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between combinations of three or more events and some of these are given in the problems
at the end of this chapter.
When A ∩ B = φ we say that A and B are disjoint (or mutually exclusive).

(7) Example A die is rolled. The outcome is one of the integers from 1 to 6. We may
denote these by {ω1, ω2, ω3, ω4, ω5, ω6}, or more directly by {1, 2, 3, 4, 5, 6}, as we
choose. Define:

A the event that the outcome is even,
B the event that the outcome is odd,
C the event that the outcome is prime,
D the event that the outcome is perfect (a perfect number is the sum of its prime factors).

Then the above notation compactly expresses obvious statements about these events. For
example:

A ∩ B = φ A ∪ B = �

A ∩ D = {ω6} C\A = B\{ω1}
and so on. �

It is natural and often useful to consider the number of outcomes in an event A. This is
denoted by |A|, and is called the size or cardinality of A.
It is straightforward to see, by counting the elements on each side, that size has the

following properties.
If A and B are disjoint, then

|A ∪ B| = |A| + |B|,(8)

and more generally, for any A and B

|A ∪ B| + |A ∩ B| = |A| + |B|.(9)

If A ⊆ B, then

|A| ≤ |B|.(10)

For the product A × B,

|A × B| = |A||B|.(11)

Finally,

|φ| = 0.(12)

(13) Example The Shelmikedmu are an elusive and nomadic tribe whose members are
unusually heterogeneous in respect of hair and eye colour, and skull shape. A persistent
anthropologist establishes the following facts:

(i) 75% have dark hair, the rest have fair hair.
(ii) 80% have brown eyes; the rest have blue eyes.
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(iii) No narrow-headed person has fair hair and blue eyes.
(iv) The proportion of blue-eyed broad-headed tribespeople is the same as the proportion

of blue-eyed narrow-headed tribespeople.
(v) Those who are blue-eyed and broad-headed are fair-haired or dark-haired in equal

proportion.
(vi) Half the tribe is dark-haired and broad-headed.
(vii) The proportion who are brown-eyed, fair-haired, and broad-headed is equal to the

proportion who are brown eyed, dark-haired, and narrow-headed.

The anthropologist also finds n, the proportion of the tribe who are narrow-headed, but
unfortunately this information is lost in a clash with a crocodile on the difficult journey
home. Is another research grant and field trip required to find n? Fortunately, not if the
anthropologist uses set theory. Let

B be the set of those with blue eyes
C be the set of those with narrow heads
D be the set of those with dark hair

Then the division of the tribe into its heterogeneous sets can be represented by Figure 1.3.
This type of representation of sets and their relationships is known as a Venn diagram.
The proportion of the population in each set is denoted by the lower case letter in each
compartment, so

a = |Bc ∩ Cc ∩ Dc|/|�|,
b = |B ∩ Cc ∩ Dc|/|�|,

Figure 1.3 Here the interior of the large circle represents the entire tribe, and the interior of the
small circle represents those with narrow heads. The part to the right of the vertical line represents
those with dark hair, and the part above the horizontal line represents those with blue eyes. Thus,
the shaded quadrant represents those with blue eyes, narrow heads, and fair hair; as it happens,

this set is empty by (iii). That is to say B ∩ C ∩ Dc = φ, and so g = 0.
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and so on. The required proportion having narrow heads is

n = |C |/|�| = e + f + g + h

and, of course, a + b + c + d + e + f + g + h = 1. The information in (i)–(vii), which
survived the crocodile, yields the following relationships:

c + d + e + f = 0.75(i)
a + d + e + h = 0.8(ii)

g = 0(iii)
f + g = b + c(iv)

b = c(v)
c + d = 0.5(vi)

a = e(vii)

The anthropologist (who has a pretty competent knowledge of algebra) solves this set of
equations to find that

n = e + f + g + h = e + f + h = 0.15+ 0.1+ 0.05 = 0.3
Thus, three-tenths of the tribe are narrow-headed. �

This section concludes with a technical note (which you may omit on a first reading). We
have noted that events are subsets of �. A natural question is, which subsets of � are
entitled to be called events?
It seems obvious that if A and B are events, then A ∪ B, Ac, A ∩ B, and so on should

also be entitled to be events. This is a bit vague; to be precise, we say that a subset A of
� can be an event if it belongs to a collection F of subsets of �, obeying the following
three rules:

� ∈ F ;(14)
ifA ∈ F then Ac ∈ F ;(15)

ifA j ∈ F for j ≥ 1, then
∞⋃
j=1

A j ∈ F .(16)

The collection F is called an event space or a σ -field.
Notice that using (1)–(6) shows that if A and B are in F , then so are A\B, A�B and

A ∩ B.

(17) Example (7) Revisited It is easy for you to check that {φ, A, B, �} is an event
space, and {φ, A ∪ C, B\C, �} is an event space.However, {φ, A, �} and {φ, A, B, D, �}
are not event spaces. �

In general, if � is finite, it is quite usual to take F to be the collection of all subsets of �,
which is clearly an event space. If � is infinite, then this collection is sometimes too big
to be useful, and some smaller collection of subsets is required.
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1.3 The Addition Rules for Probability

An event A has probability P(A). But any experiment may give rise to a great many events
of interest, and we have seen in Section 1.2 that these can be combined in numerous ways.
We need some rules that tell us how to deal with probabilities of complicated events.
Naturally, we continue to require that for any event A

0 ≤ P(A) ≤ 1(1)

and, in particular, that the certain event has probability 1, so

P(�) = 1.(2)

It turns out that we require only one type of rule, the addition rules. The simplest form of
this is as follows:

The Basic Addition Rule If A and B are disjoint events, then

P(A ∪ B) = P(A)+ P(B).(3)

This rule lies at the heart of probability. First, let us note that we need such a rule, because
A ∪ B is an event when A and B are events, and we therefore need to know its probability.
Second, note that it follows from (3) (by induction) that if A1, A2, . . . , An is any collection
of disjoint events, then

P

(
n⋃

i=1
Ai

)
= P(A1)+ · · · + P(An).(4)

The proof is a simple exercise, using induction.
Third, note that it is sometimes too restrictive to confine ourselves to a finite collection

of events (we have seen several sample spaces, with infinitely many outcomes), and we
therefore need an extended version of (4).

Extended Addition Rule If A1, A2, . . . is a collection of disjoint events, then

P(A1 ∪ A2 ∪ · · ·) = P(A1)+ P(A2)+ · · · .(5)

Equation (5), together with (1) and (2),

0 ≤ P(A) ≤ 1 and P(�) = 1,
are sometimes said to be the axioms of probability. They describe the behaviour of the
probability functionPdefinedon subsets of�. In fact, in everydayusage,P is not referred to
as a probability function but as a probability distribution. Formally, we state the following.

Definition Let� be a sample space, and suppose thatP(·) is a probability function
on a family of subsets of � satisfying (1), (2), and (5). Then P is called a probability
distribution on �. �
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The word distribution is used because it is natural to think of probability as something
that is distributed over the outcomes in�. The functionP tells you just how it is distributed.
In this respect, probability behaves like distributedmass, and indeed inmany books authors
do speak of a unit of probability mass being distributed over the sample space, and refer to
P as a probability mass function. This metaphor can be a useful aid to intuition because,
of course, mass obeys exactly the same addition rule. If two distinct objects A and B have
respective masses m(A) and m(B), then the mass of their union m(A ∪ B) satisfies

m(A ∪ B) = m(A)+ m(B).

Of course, mass is also nonnegative, which reinforces the analogy.
We conclude this section by showing how the addition rule is consistent with, and

suggested by, our interpretations of probability as a proportion.
First, consider an experiment with equally likely outcomes, for which we defined prob-

ability as the proportion

P(A) = |A||�| .

If A and B are disjoint then, trivially, |A ∪ B| = |A| + |B|. Hence, in this case,

P(A ∪ B) = |A ∪ B|
|�| = |A||�| +

|B|
|�| = P(A)+ P(B).

Second, consider the interpretation of probability as reflecting relative frequency in the
long run. Suppose an experiment is repeated N times. At each repetition, events A and B
may or may not occur. If they are disjoint, they cannot both occur at the same repetition.
We argued in Section 0.4 that the relative frequency of any event should be not too far
from its probability. Indeed, it is often the case that the relative frequency N (A)/N of an
event A is the only available guide to its probability P(A). Now, clearly

N (A ∪ B) = N (A)+ N (B).

Hence, dividing by N , there is a powerful suggestion that we should have

P(A ∪ B) = P(A)+ P(B).

Third, consider probability as a measure of expected value. For this case, we resurrect
the benevolent plutocrat who is determined to give away $1 at random. The events A and
B are disjoint. If A occurs, you get $1 in your left hand; if B occurs you get $1 in your right
hand. If (A ∪ B)c occurs, then Jack gets $1. The value of this offer to you is $P(A ∪ B);
the value to your left hand is $P(A); and the value to your right hand is $P(B). Obviously,
it does not matter in which hand you get the money, so

P(A ∪ B) = P(A)+ P(B).

Finally, consider the case where we imagine a point is picked at random anywhere in
some plane region � of area |�|. If A ⊆ �, we defined

P(A) = |A||�| .
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Because area also satisfies the addition rule, we have immediately, when A ∩ B = φ, that

P(A ∪ B) = P(A)+ P(B).

It is interesting and important to note that in this case the analogy with mass requires the
unit probability mass to be distributed uniformly over the region �. We can envisage this
distribution as a lamina of uniform density |�|−1 having total mass unity. This may seem
a bizarre thing to imagine, but it turns out to be useful later.
In conclusion, it seems that the addition rule is natural and compelling in every case

where we have any insight into the behaviour of probability. Of course, it is a big step to
say that it should apply to probability in every other case, but it seems inevitable. Doing
so has led to remarkably elegant and accurate descriptions of the real world.
This property (4) is known as finite additivity and (5) is countable additivity. Note that

if A ⊆ B, then

P(A) ≤ P(B)(6)

and finally, using A ∪ Ac = �, we have

P(φ) = 0.(7)

Once again, these statements are quite consistent with our intuition about likelihoods, as
reinforced by experience.
Historically, the theory of probability has its roots firmly based in observation of games

of chance employing cards, dice, and lotteries.

(8) Example Three dice are rolled and the numbers on the upper faces are added together.
The outcomes 9 and 10 can each be obtained in six distinct ways; thus:

10 = 1+ 3+ 6 = 1+ 4+ 5 = 2+ 2+ 6 = 2+ 3+ 5 = 2+ 4+ 4 = 3+ 3+ 4
9 = 1+ 2+ 6 = 1+ 3+ 5 = 1+ 4+ 4 = 2+ 2+ 5 = 2+ 3+ 4 = 3+ 3+ 3.

Some time before 1642, Galileo was asked to explain why, despite this, the outcome 10
is more likely that the outcome 9, as shown by repeated experiment. He observed that the
sample space � has 63 = 216 outcomes, being all possible triples of numbers from 1 to
6. Of these, 27 sum to 10, and 25 sum to 9, so P(10) = 27

216 and P(9) = 25
216 .

This provides an explanation for the preponderance of 10 over 9. �

It is just this kind of agreement between theory and experiment that justifies our adoption
of the rules above. We will see many more examples of this.

1.4 Properties of Probability

We have agreed that, given a space F of events A, the probability function P(·) satisfies
the following rules (or axioms) that we display as a definition.
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Definition The function P(·) : F → [0, 1] is a probability function if

P(A) ≥ 0 for all A ∈ F,(1)

P(�) = 1(2)

and

P

( ∞⋃
j=1

A j

)
=

∞∑
j=1

P(A j )(3)

whenever A1, A2, . . . are disjoint events (which is to say that Ai ∩ A j = φ whenever
i �= j). �

In passing,we note that (3) is known as the property of countable additivity. Obviously, it
impliesfinite additivity so that, in particular, if A ∩ B = φ, thenP(A ∪ B) = P(A)+ P(B).
From these three rules we can derive many important and useful relationships, for

example,

P(φ) = 0(4)

P(Ac) = 1− P(A),(5)

P(A\B) = P(A)− P(A ∩ B),(6)

P(A ∪ B) = P(A)+ P(B)− P(A ∩ B),(7)

P

(
n⋃
1

Ai

)
=

n∑
1

P(Ai )−
∑
i< j

P(Ai ∩ A j )+
∑

i< j<k

P(Ai ∩ A j ∩ Ak)+ · · ·(8)

+ (−)n+1P(A1 ∩ A2 ∩ . . . ∩ An).

The following examples begin to demonstrate the importance and utility of (1)–(8).

(9) Example Let us prove (4), (5), and (7) above. First, by (2) and (3), for any A ∈ F,
1 = P(�) = P(A ∪ Ac) = P(A)+ P(Ac)

which proves (5). Now, setting A = � establishes (4). Finally, using (3) repeatedly, we
obtain

P(B ) = P(B ∩ A)+ P(B ∩ Ac),(10)

and

P(A ∪ B) = P(A ∪ (B ∩ Ac)) = P(A)+ P(B ∩ Ac) = P(A)+ P(B)− P(B ∩ A)

by (1),

which proves (7). �
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You should now prove (6) as an elementary exercise; the proof of (8) is part of Problem
12.

(11) Example: Inequalities for P(·) (i) If A ⊆ B then B ∩ A = A, so from (10)

P(B) = P(A)+ P(B ∩ Ac) ≥ P(A) by (1).

(ii) For any A, B, we have Boole’s inequalities

P(A)+ P(B) ≥ P(A ∪ B) by, (7).
≥ max{P(A),P(B)} by part (i)
≥ P(A ∩ B) by part (i) again
≥ P(A)+ P(B)− 1 by (7) again

(12)

�

(13) Example: Lottery An urn contains 1000 lottery tickets numbered from 1 to 1000.
One is selected at random. A fairground performer offers to pay $3 to anyone who has
already paid him $2, if the number on the ticket is divisible by 2, 3, or 5. Would you pay
him your $2 before the draw? (If the ticket number is not divisible by 2, 3, or 5 you lose
your $2.)

Solution Let Dk be the event that the number drawn is divisible by k. Then

P(D2) = 500

1000
= 1

2

and so on. Also

P(D2 ∩ D3) = P(D6) = 166

1000

and so forth. Using (8) with n = 3 and making several similar calculations, we have
P(D2 ∪ D3 ∪ D5) = P(D2)+ P(D3)+ P(D5)+ P(D2 ∩ D3 ∩ D5)

−P(D2 ∩ D3)− P(D3 ∩ D5)− P(D2 ∩ D5)

= 10−3(500+ 333+ 200+ 33− 166− 66− 100) = 367

500
.

The odds on winning are thus better than 2:1, and you should accept his generous
offer. ��

1.5 Sequences of Events

This section is important, but may be omitted at a first reading.
Often, we are confronted by an infinite sequence of events (An; n ≥ 1) such that A =

limn→∞ An exists. In particular, if An ⊆ An+1 for all n, then

lim
n→∞ An =

∞⋃
j=1

A j = A,(1)

and A is an event by (1.2.16). It is of interest, and also often useful, to know P(A). The
following theorem is therefore important as well as attractive.
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(2) Theorem If An ⊆ An+1 ∈ F for all n ≥ 1 and A = limn→∞ An , then

P(A) = lim
n→∞P(An).

Proof. Because An ⊆ An+1, we have (A j+1\A j ) ∩ (Ak+1\Ak) = φ, for k �= j. Also,
setting A0 = φ

n⋃
1

(A j\A j−1) = An.

Furthermore,

P(An+1\An) = P(An+1)− P(An).(3)

Hence, because A0 = φ

P(A) = P
(
lim

n→∞ An
) = P

( ∞⋃
j=0

A j+1\A j

)

=
∞∑
j=0

P(A j+1\A j ) by (1.4.3)

= lim
n→∞P(An) by (3). �

From this result, it is a simple matter to deduce that if An ⊇ An+1 for all n, then

lim
n→∞P(An) = P(A).(4)

With a bit more work, one can show more generally that if limn→∞ An = A, then (4) is
still true. Because of this, the function P(.) is said to be a continuous set function.

1.6 Remarks

Simple problems in probability typically require the calculation of the probability P(E) of
some event E , or at least the calculation of bounds for P(E). The underlying experiment
may be implicit or explicit; in any case, the first step is always to choose the sample space.
(Naturally, we choose the one that makes finding P(E) easiest.)
Then you may set about finding P(E) by using the rules and results of Section 1.4, and

the usual methods for manipulating sets. Useful aids at this simple level include Venn
diagrams, and identities such as de Morgan’s laws, namely:(

n⋃
i=1

Ai

)c

=
n⋂

i=1
Ac

i(1)

and (
n⋂

i=1
Ai

)c

=
n⋃

i=1
Ac

i .(2)
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These are readily established directly or by induction, as follows. First, draw a Venn
diagram to see that (A ∪ B)c = Ac ∩ Bc.

Now if
n⋃

j=1
A j = Bn , then

(
n+1⋃
j=1

A j

)c

= (An+1 ∪ Bn)
c = Ac

n+1 ∩ Bc
n .

Hence, (1) follows by induction on n. The result (2) can also be proved directly, by
induction, or by using (1). You can do this, and you should do it now.
We end this sectionwith a note for themore demanding reader. It has been claimed above

that probability theory is of wide applicability, yet most of the examples in this chapter
deal with the behaviour of coins, dice, lotteries, and urns. For most of us, weeks or even
months can pass without any involvement with dice or urns. (The author has never even
seen an urn, let alone removed a red ball from one.) The point is that such simple problems
present their probabilistic features to the reader unencumbered by strained assumptions
about implausible models of reality. The penalty for simplicity is that popular problems
may become hackneyed through overuse in textbooks. We take this risk, but reassure the
reader that more realistic problems feature largely in later chapters. In addition, when
considering some die or urn, students may be pleased to know that they are treading in
the footsteps of many eminent mathematicians as they perform these calculations. Euler
or Laplace may have pondered over exactly the same difficulty as you, although perhaps
not for so long.

1.7 Review and Checklist for Chapter 1

We began by introducing the idea of experiments and their outcomes, with events and
their probabilities. Then we used our experience of chance events, and intuitive ideas
about probability as a proportion, to formulate a set of rules (or axioms) for probability.
Of these, the addition rule is the most important, and we derived several useful corollaries
thatwill be in constant use. In the course of this,we also introduced some standard notation.
For convenience, the key rules and results are summarized here.

Notation

� sample space of outcomes ≡ certain event
A, B,C possible events in �
φ impossible event
P(.) the probability function
P(A) the probability that A occurs
A ∪ B either A or B occurs, or both occur (union)
A ∩ B both A and B occur (intersection)
Ac A does not occur (complement)
A\B difference: A occurs and B does not
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A�B either A or B, but not both
A ⊆ B if A occurs, then B occurs
{Ai } is a partition of � if the Ai are disjoint with union �
A ∩ B = φ A and B are disjoint
F event space (or σ -field)
|A| cardinality (or size) of A

Axioms and Rules

Any subset A of � is an event if it belongs to a collection F of subsets of � such that

� � ∈ F
� if A ∈ F , then Ac ∈ F
� if Ai ∈ F for i ≥ 1, then

∞⋃
i=1

Ai ∈ F .
A function P(.) defined on events is a probability function or probability distribution if

� P(A) ≥ 0 for all A in F
� P(�) = 1
� P

( ∞⋃
1

Ai

)
=∑

iP(Ai ) for any disjoint events {Ai }.

The function P(.) obeys the following rules:

Range: 0 ≤ P(A) ≤ 1
Impossible event: P(φ) = 0
Inclusion-exclusion: P(A ∪ B) = P(A)+ P(B)− P(A ∩ B)
Complement: P(A) = 1− P(Ac)
Difference: P(A\B) = P(A)− P(B) when B ⊆ A
General inclusion-exclusion:

P

(
n⋃
1

Ai

)
=

∑
i

P(Ai )−
∑
i< j

P(Ai ∩ A j )+ · · · − (−1)nP
(

n⋂
1

Ai

)
.

Boole’s inequalities:

P

(
n⋃
1

Ai

)
≤
∑

i

P(Ai ).

Checklist of Terms for Chapter 1

1.1 experiment
outcome
sample space
event
probability
Venn diagram

1.2 certain event
impossible event
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event space
σ -field

1.3 addition rules
probability distribution
countable additivity

1.4 axioms of probability
Boole’s inequalities

1.5 continuous set function
1.6 de Morgan’s Laws

WORKED EXAMPLES AND EXERCISES

1.8 Example: Dice

You roll two dice. What is the probability of the events:

(a) They show the same?
(b) Their sum is seven or eleven?
(c) They have no common factor greater than unity?

Solution First,wemust choose the sample space.Anatural representation is as ordered
pairs of numbers (i, j), where each number refers to the face shown by one of the dice. We
require the dice to be distinguishable (one red and one green, say) so that 1 ≤ i ≤ 6 and
1 ≤ j ≤ 6. Because of the symmetry of a perfect die, we assume that these 36 outcomes
are equally likely.

(a) Of these 36 outcomes, just six are of the form (i , i), so using (1.3.1) the required
probability is

|A|
|�| =

6

36
= 1

6
.

(b) There are six outcomes of the form (i, 7− i) whose sum is 7, so the probability that
the sum is 7 is 6

36 = 1
6 .

There are two outcomes whose sum is 11—namely, (5, 6) and (6, 5)—so the prob-
ability that the sum is 11 is 2

36 = 1
18 .

Hence, using (1.4.3), the required probability is 16 + 1
18 = 2

9 .
(c) It is routine to list the outcomes that do have a common factor greater than unity. They

are 13 in number, namely:

{(i, i); i ≥ 2} , (2, 4), (4, 2), (2, 6), (6, 2), (3, 6), (6, 3), (4, 6), (6, 4).
This is the complementary event, so by (1.4.5) the required probability is

1− 13

36
= 23

36
.

Doing it this way gives a slightly quicker enumeration than the direct approach.
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(1) Exercise What is the probability that the sum of the numbers is 2, 3, or 12?
(2) Exercise What is the probability that:

(a) The sum is odd?
(b) The difference is odd?
(c) The product is odd?

(3) Exercise What is the probability that one number divides the other?
(4) Exercise What is the probability that the first die shows a smaller number than the second?
(5) Exercise What is the probability that different numbers are shown and the smaller of the two

numbers is r, 1 ≤ r ≤ 6?

Remark It was important to distinguish the two dice. Had we not done so, the sample
space would have been {(i, j); 1 ≤ i ≤ j ≤ 6}, and these 21 outcomes are not equally
likely, either intuitively or empirically. Note that the dice need not be different colours in
fact, it is enough for us to be able to suppose that they are.

1.9 Example: Urn

An urn contains n heliotrope and n tangerine balls. Two balls are removed from the urn
together, at random.

(a) What is the sample space?
(b) What is the probability of drawing two balls of different colours?
(c) Find the probability pn that the balls are the same colour, and evaluate lim

n→∞ pn .

Solution (a) As balls of the same colour are otherwise indistinguishable, and they are
drawn together, a natural sample space is � = {HH, H T, T T }.
(b) The outcomes in� exhibit no symmetry. Taking our cue from the previous example,

we choose to distinguish the balls by numbering them from 1 to 2n, and also suppose that
they are drawn successively. Then the sample space is the collection of ordered pairs of
the form (i, j), where 1 ≤ i, j ≤ 2n, and i �= j, because we cannot pick the same ball
twice. These 2n(2n − 1) outcomes are equally likely, by symmetry. In n2 of them, we draw
heliotrope followed by tangerine, and in n2, we draw tangerine followed by heliotrope.
Hence,

P(H T ) = n2 + n2

2n(2n − 1) =
n

2n − 1 .

(c) By (1.4.5)

pn = 1− P(H T ) = n − 1
2n − 1 →

1

2
as n →∞.

(1) Exercise FindP(HH) when the sample space is taken to be all unordered pairs of distinguishable
balls.

(2) Exercise What is the probability that (a) the first ball is tangerine? (b) the second ball is
tangerine?

(3) Exercise Half the balls are removed and placed in a box. One of those remaining in the urn is
removed. What is the probability that it is tangerine?
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(4) Exercise A fair die with n sides is rolled. If the r th face is shown, r balls are removed from
the urn and placed in a bag. What is the probability that a ball removed at random from the bag is
tangerine?

1.10 Example: Cups and Saucers

A tea set has four cups and saucers with two cups and saucers in each of two different
colours. If the cups are placed at random on the saucers, what is the probability that no
cup is on a saucer of the same colour?

Solution I Call the colours azure and blue; let A be the event that an azure cup is on
an azure saucer, and B the event that a blue cup is on a blue saucer. Because there are only
two places for blue cups not to be on blue saucers, we see that A occurs if and only if B
occurs, so A = B and

P((A ∪ B)c) = P(Ac) = 1− P(A).

Now P(A) = P(A1 ∪ A2), where A1 and A2 denote the events that the first and second
azure cups, respectively, are on azure saucers. There are 24 equally probable ways of
putting the four cups on the four saucers. In 12 of them, A1 occurs; in 12 of them, A2
occurs; and in 4 of them, A1 ∩ A2 occurs, by enumeration.
Hence, by (1.4.7),

P(A) = 12

24
+ 12

24
− 4

24
= 5

6
,

and the required probability is 16 .

Solution II Alternatively, instead of considering all the ways of placing cups on
saucers, we may consider only the distinct ways of arranging the cups by colour with the
saucers fixed. There are only six of these, namely:

aabb; abba; abab; baab; baba; bbaa;

and by symmetry they are equally likely. By inspection, in only one of these arrangements
is no cup on a saucer of the same colour, so the required probability is 16 .

Remark In this example, considering a smaller sample space makes the problem
easier. This is in contrast to our solutions to Examples 1.7 and 1.8, where we used larger
sample spaces to simplify things.

(1) Exercise What is the probability that exactly
(a) One cup is on a saucer of the same colour?
(b) Two cups are on saucers of the same colour?

(2) Exercise What is the probability that no cup is on a saucer of the same colour if the set comprises
four cups and saucers in four distinct colours?
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1.11 Example: Sixes

Three players, Achilles, Briseis, and Chryseis, take turns to roll a die in the order ABC,
ABC, A. . . . Each player drops out of the game immediately upon throwing a six.

(a) What is the sample space for this experiment?
(b) Suppose the game stops when two players have rolled a six. What is the sample space

for this experiment?
(c) What is the probability that Achilles is the second player to roll a six?
(d) Let Dn be the event that the third player to roll a six does so on the nth roll. Describe

the event E given by

E =
( ∞⋃

n=1
Dn

)c

.

Solution (a) Let U be the collection of all sequences x1, . . . , xn for all n ≥ 1, such
that

x j ∈ {1, 2, 3, 4, 5} for 1 ≤ j < n,

xn = 6.
Then each player’s rolls generate such a sequence, and the sample space consists of all

selections of the triple (u1, u2, u3), where ui ∈ U for 1 ≤ i ≤ 3.We may denote this by
U ×U ×U or even U 3, if we want.
(b) Let V be the collection of all sequences x1, x2, . . . , xn, for n ≥ 1, such that

x j ∈ {1, 2, 3, 4, 5} for 1 ≤ j ≤ n.

Then the sample space consists of two selections u1, u2 from U , corresponding to the
players who roll sixes, and one selection v from V corresponding to the player who does
not. The length of v equals the longer of u1 and u2 if this turn in the round comes before
the second player to get a six, or it is one less than the longer of u1 and u2 if this turn in
the round is later than the second player to get a six.
(c) Despite the answers to (a) and (b), we use a different sample space to answer this

question. Suppose the player who is first to roll a six continues to roll the die when the turn
comes round, these rolls being ignored by the others. This does not affect the respective
chances of the other two to be the next player (of these two) to roll a six. We therefore
let � be the sample space consisting of all sequences of length 3r + 1, for r ≥ 0, using
the integers 1, 2, 3, 4, 5, or 6. This represents 3r + 1 rolls of the die, and by the assumed
symmetry the 63r+1 possible outcomes are all equally likely for each r .
Suppose Achilles is the second player to roll a six on the 3r + 1th roll. Then his r + 1

rolls include no six except his last roll; this can occur in 5r ways. If Briseis was first to
roll a six, then her r rolls include at least one six; this may be accomplished in 6r − 5r

ways. In this case, Chryseis rolled no six in r attempts; this can be done in 5r ways.
Hence, Achilles is second to Briseis in 5r .5r .(6r − 5r ) outcomes. Likewise, he is second
to Chryseis in 5r .5r .(6r − 5r ) outcomes. Hence, the probability that he is second to roll a
six on the 3r + 1th roll is

pr = 2(6r − 5r )52r

63r+1
, for r ≥ 1.



44 1 Probability

By (1.4.3), therefore, the total probability that Achilles is second to roll a six is the sum
of these, namely

∞∑
r=1

pr = 300

1001
.

(d) The event
⋃∞

n=1 Dn is the event that the game stops at the nth roll for some n ≥ 1.
Therefore, E is the event that they never stop.

(1) Exercise For each player, find the probability that he or she is the first to roll a six.
(2) Exercise Show that P(E) = 0.
(3) Exercise Find the probability that the Achilles rolls a six before Briseis rolls a six. (Hint: use

a smaller sample space.)
(4) Exercise Show that the probability that Achilles is last to throw a six is 305

1001 . Are you surprised
that he is more likely to be last than to be second?

Remark The interesting thing about the solution to (c) is that the sample space �
includes outcomes that are not in the original experiment, whose sample space is described
in (a). The point is that the event in question has the same probability in the original
experiment and in the modified experiment, but the required probability is obtained rather
more easily in the second case because the outcomes are equally likely. This idea of
augmenting the sample space was first used by Pascal and Fermat in the seventeenth
century.
In fact, we find easier methods for evaluating this probability in Chapter 2, using new

concepts.

1.12 Example: Family Planning

A woman planning her family considers the following schemes on the assumption that
boys and girls are equally likely at each delivery:

(a) Have three children.
(b) Bear children until the first girl is born or until three are born, whichever is sooner,

and then stop.
(c) Bear children until there is one of each sex or until there are three, whichever is sooner,

and then stop.

Let Bi denote the event that i boys are born, and let C denote the event that more girls
are born than boys. Find P(B1) and P(C) in each of the cases (a) and (b).

Solution (a) If we do not consider order, there are four distinct possible families: BBB,
GGG, GGB, and BBG, but these are not equally likely.With order included, there are eight
possible families in this larger sample space:

{B B B; B BG; BG B;G B B;GG B;G BG; BGG;GGG} = �(1)

and by symmetry they are equally likely. Now, by (1.3.1), P(B1) = 3
8 and P(C) = 1

2 . The
fact that P(C) = 1

2 is also clear by symmetry.
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Now consider (b). There are four possible families: F1 = G, F2 = BG, F3 = B BG, and
F4 = B B B.
Once again, these outcomes are not equally likely, but aswe have nowdone several times

we canuse a different sample space.Oneway is to use the sample space in (1), remembering
that if we do this then some of the later births are fictitious. The advantage is that outcomes
are equally likely by symmetry.With this choice, F2 corresponds to {BGG ∪ BG B} and so
P(B1) = P(F2) = 1

4 . Likewise, F1 = {GGG ∪ GG B ∪ G BG ∪ G B B} and so P(C) = 1
2 .

(2) Exercise Find P(B1) and P(C) in case (c).
(3) Exercise Find P(B2) and P(B3) in all three cases.
(4) Exercise Let E be the event that the completed family contains equal numbers of boys and girls.

Find P(E) in all three cases.

1.13 Example: Craps

You roll two fair dice. If the sum of the numbers shown is 7 or 11, you win; if it is 2, 3, or
12, you lose. If it is any other number j , you continue to roll two dice until the sum is j
or 7, whichever is sooner. If it is 7, you lose; if it is j , you win. What is the probability p
that you win?

Solution Suppose that you roll the dice n times. That experiment is equivalent to
rolling 2n fair dice, with the sample space �2n being all possible sequences of length
2n, of the numbers 1, 2, 3, 4, 5, 6, for any n ≥ 1. By symmetry, these 62n outcomes are
equally likely, and whether you win or you lose at or before the nth roll of the pair of dice
is determined by looking at the sum of successive pairs of numbers in these outcomes.
The sample space for the roll of a pair of dice (�2) has 36 equally likely outcomes. Let n j

denote the number of outcomes in which the sum of the numbers shown is j, 2 ≤ j ≤ 12.
Now let Ak be the event that you win by rolling a pair with sum k, and consider the 11
distinct cases:

(a)

P(A2) = P(A3) = P(A12) = 0,
because you always lose with these.

(b) For A7 to occur, you must get 7 on the first roll. Because n7 = 6

P(A7) = n7
|�2| =

6

36
= 1

6
.

(c) Likewise,

P(A11) = n11
36
= 2

36
= 1

18
, since n11 = 2.

(d) For A4 to occur, you must get 4 on the first roll and on the nth roll, for some n ≥ 2,
with no 4 or 7 in the intervening n − 2 rolls. You can do this in n24 (36− n4 − n7)n−2
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ways and, therefore,

P(A4) =
∞∑

n=2

n24(36− n4 − n7)n−2

62n
by (1.4.3)

= n24
36(n4 + n7)

= 1

36
because n4 = 3.

(e) Likewise,

P(A5) = n25
36(n5 + n7)

= 2

45
because n5 = 4

= P(A9) because n9 = 4.
Finally,

P(A6) = P(A8)

= 25

396
because n6 = n8 = 5

and

P(A10) = P(A4) because n10 = n4 = 3.
Therefore, the probability that you win is

P(A7)+ P(A11)+ 2P(A4)+ 2P(A5)+ 2P(A6) = 1

6
+ 1

18
+ 1

18
+ 4

45
+ 25

198
� 0.493.

(1) Exercise What is the probability that you win on or before the second roll?
(2) Exercise What is the probability that you win on or before the third roll?
(3) Exercise What is the probability that you win if, on the first roll,

(a) The first die shows 2?
(b) The first die shows 6?

(4) Exercise If you could fix the number to be shown by one die of the two on the first roll, what
number would you choose?

1.14 Example: Murphy’s Law

A fair coin is tossed repeatedly. Let s denote any fixed sequence of heads and tails of
length r . Show that with probability one the sequence s will eventually appear in r con-
secutive tosses of the coin.
(The usual statement of Murphy’s law says that anything that can go wrong, will go

wrong).

Solution If a fair coin is tossed r times, there are 2r distinct equally likely outcomes
and one of them is s. We consider a fair die with 2r faces; each face corresponds to one
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of the 2r outcomes of tossing the coin r times and one of them is face s. Now roll the die
repeatedly.
Let Ak be the event that face s appears for the first time on the kth roll. There are 2rk

distinct outcomes of k rolls, and by symmetry they are equally likely. In (2r − 1)k−1 of
them, Ak occurs, so by (1.3.1),

P(Ak) = (2r − 1)k−1
2rk

.

Because Ak ∩ A j = φ for k �= j , we have by (1.4.3) that

P

(
m⋃
1

Ak

)
=

m∑
1

P(Ak) = 1−
(
2r − 1
2r

)m

,(1)

which is the probability that face s appears at all in m rolls.
Now consider n tosses of the coin, and let m = [ n

r ] (where [x] is the integer part of x).
The n tosses can thus be divided into m sequences of length r with a remainder n − mr .
Let Bn be the event that none of these m sequences is s, and let Cn be the event that the
sequence s does not occur anywhere in the n tosses. Then

Cn ⊆ Bn =
(

m⋃
1

Ak

)c

,

because rolling the diem times and tossing the coinmr times yield the same sample space
of equally likely outcomes. Hence, by Example 1.4.11(i) and (1.4.5) and (1),

P(Cn) ≤ P(Bn) =
(
2r − 1
2r

)m

→ 0

as n →∞. Now the event that s eventually occurs is lim
n→∞(C

c
n), so by (1.4.5) and (1.5.4),

P
(
lim

n→∞Cc
n

) = lim
n→∞P

(
Cc

n

) = 1− lim
n→∞P(Cn) = 1.

(2) Exercise If the coin is tossed n times, show that the probability that it shows heads on an odd
number of tosses (and tails on the rest) is 12 .

(3) Exercise If the coin is tossed an unbounded number of times, show that the probability that a
head is first shown on an odd numbered toss is 23 .

(4) Exercise If Malone tosses his coin m times and Watt tosses his coin n times, show that the
probability that they get the same number of heads each is equal to the probability that Beckett gets
m heads in m + n tosses of his coin.

PROBLEMS

N.B. Unless otherwise stated, coins are fair, dice are regular cubes and packs of cards are well
shuffled with four suits of 13 cards.

1 You are given a conventional pack of cards. What is the probability that the top card is an ace?
2 You count a pack of cards (face down) and find it defective (having only 49 cards!). What is the

probability that the top card is an ace?
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3 A class contains seven boys and eight girls.
(a) If two are selected at random to leave the room, what is the probability that they are of different

sexes?
(b) On two separate occasions, a child is selected at random to leave the room.What is the probability

that the two choices result in children of different sexes?
4 An urn contains 100 balls numbered from 1 to 100. Four are removed at random without being

replaced. Find the probability that the number on the last ball is smaller than the number on the first
ball.

5 Let F be an event space. Show that the total number of events in F cannot be exactly six. What
integers can be the number of events in a finite event space?

6 To start playing a game of chance with a die, it is necessary first to throw a six.
(a) What is the probability that you throw your first six at your third attempt?
(b) What is the probability that you require more than three attempts?
(c) What is the most likely number of attempts until you first throw a six?
(d) After how many throws would your probability of having thrown a six be at least 0.95?

7 Let A, B, and C be events. Write down expressions for the events where
(a) At least two of A, B, and C occur.
(b) Exactly two of A, B, and C occur.
(c) At most two of A, B, and C occur.
(d) Exactly one of A, B, and C occurs.

8 A die is loaded in such a way that the probability that a 6 is thrown is five times that of any other
number, each of them being equally probable.
(a) By what factor is the probability of a total of 24 from four throws greater than that for an

unloaded die?
(b) Show that for the loaded die, the probability of obtaining a total of six from four throws is two

and half times that of obtaining five, and compare the probability of obtaining 23 with that of
obtaining 24 from four throws.

9 A fair coin is tossed four times. What is the probability of
(a) At least three heads?
(b) Exactly three heads?
(c) A run of three or more consecutive heads?
(d) A run of exactly three consecutive heads?

10 Find the probability that in 24 throws of two dice, double six fails to appear.
11 Two dice are rolled and their scores are denoted by S1 and S2. What is the probability that the

quadratic x2 + x S1 + S2 = 0 has real roots?
12 (a) If P(A) is the probability that an event A occurs, prove that

P

(
n⋃

i=1
Ai

)
=

n∑
i=1

P(Ai )−
∑

i< j≤n

P(Ai ∩ A j )+
∑

i< j<k≤n

P(Ai ∩ A j ∩ Ak)+ · · ·

+ (−1)n+1P(A1 ∩ A2 ∩ . . . ∩ An),

where A1, A2, . . . , An are events.
(b) A tea set consists of six cups and saucers with two cups and saucers in each of three different

colours. The cups are placed randomly on the saucers. What is the probability that no cup is on
a saucer of the same colour?

13 An urn contains three tickets numbered 1, 2, and 3, and they are drawn successively without
replacement. What is the probability that there will be at least one value of r (r = 1, 2, 3) such that
on the r th drawing a ticket numbered r will be drawn?
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14 Four red balls and two blue balls are placed at random into two urns so that each urn contains three
balls. What is the probability of getting a blue ball if
(a) You select a ball at random from the first urn?
(b) You select an urn at random and then select a ball from it at random?
(c) You discard two balls from the second urn and select the last ball?

15 Four fair dice are rolled and the four numbers shown are multiplied together. What is the probability
that this product
(a) Is divisible by 5?
(b) Has last digit 5?

16 Suppose that n fair dice are rolled, and let Mn be the product of the numbers shown.
(a) Show that the probability that the last digit of Mn is 5 is a nonincreasing function of n.
(b) Show that the probability that Mn is divisible by 5 is a non-decreasing function of n.
(c) Find the limits of the probabilities in (a) and (b) and interpret this.

17 The consecutive integers 1, 2, . . . , n are inscribed on n balls in an urn. Let Dr be the event that the
number on a ball drawn at random is divisible by r .
(a) What are P(D3), P(D4), P(D3 ∪ D4), and P(D3 ∩ D4)?
(b) Find the limits of these probabilities as n →∞.
(c) What would your answers be if the n consecutive numbers began at a number a �= 1?

18 Show that if A and B are events, then

P(A ∩ B)− P(A)P(B) = P(A)P(Bc)− P(A ∩ Bc)

= P(Ac)P(B)− P(Ac ∩ B)

= P((A ∪ B)c)− P(Ac)P(Bc)

19 Show that
(a) min {1,P(A)+ P(B)} ≥ P(A ∪ B) ≥ max {P(A),P(B)} .
(b) min {P(A),P(B)} ≥ P(A ∩ B) ≥ max {0,P(A)+ P(B)− 1} .
(c) P

(
n⋂
1

Ai

)
≥

n∑
i=1

P(Ai )− (n − 1).
20 The function d(x, y) is defined on the event space by d(A, B) = P(A�B).

(a) Show that for any events A, B, and C,

d(A, B)+ d(B,C)− d(A,C) = 2(P(A ∩ Bc ∩ C)+ P(Ac ∩ B ∩ Cc)).

(b) When is d(A, B) zero?
(c) Let A1, A2, . . . be a monotone sequence of events such that Ai ⊆ A j for i ≤ j. Show that for

i ≤ j ≤ k,

d(Ai , Ak) = d(Ai , A j )+ d(A j , Ak).

21 An urn contains x ≥ 2 xanthic balls and y ≥ 1 yellow balls. Two balls are drawn at randomwithout
replacement; let p be the probability that both are xanthic.
(a) If p = 1

2 , find the smallest possible value of x in the two cases when y is odd or even.
(b) If p = 1

8 , find the smallest possible value of x .
(c) If p = r−2,where r is an integer, show that r ≥ 6, and find values of x and y that yield p = 1

36 .

22 When are the following true?
(a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
(b) A ∩ (B ∩ C) = (A ∩ B) ∩ C
(c) A ∪ (B ∪ C) = A\(B\C)
(d) (A\B)\C = A\(B\C)
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(e) A� (B �C) = (A� B)�C
(f) A\(B ∩ C) = (A\B) ∪ (A\C)
(g) A\(B ∪ C) = (A\B) ∩ (A\C).

23 Birthdays If m students born in 1985 are attending a lecture, show that the probability that at least
two of them share a birthday is

p = 1− (365)!

(365− m)!(365)m

Show that if m ≥ 23, then p > 1
2 .What difference would it make if they were born in 1988?

24 Let (An ; n > 1) be a collection of events. Show that the event that infinitely many of the An occur

is given by
⋂
n≥1

∞⋃
m=n

Am .

25 Boole’s Inequality Show that

P

(
n⋃
1

Ai

)
≤

n∑
i=1

P(Ai ).
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Conditional Probability and Independence

Now and then there is a person born who is so unlucky that he runs into
accidents which started to happen to somebody else.

Don Marquis

2.1 Conditional Probability

Suppose you have a well-shuffled conventional pack of cards. Obviously (by symmetry),
the probability P(T ) of the event T that the top card is an ace is

P(T ) = 4

52
= 1

13
.

However, suppose you notice that the bottom card is the ace of spades SA. What now
is the probability that the top card is an ace? There are 51 possibilities and three of them
are aces, so by symmetry again the required probability is 3

51 . To distinguish this from the
original probability, we denote it by P(T |SA) and call it the conditional probability of T
given that the bottom card is the ace of spades.
Similarly, had you observed that the bottom card was the king of spades SK , you would

conclude that the probability that the top card is an ace is

P(T |SK ) = 4

51
.

Here is a less trivial example.

Example: Poker [Note: In this example the symbol ( n
r ) denotes the number of ways

of choosing r cards from n cards. If you are unfamiliar with this notation, omit this example
at a first reading.]
Suppose you are playing poker. As the hand is dealt, you calculate the chance of being

dealt a royal flush R, assuming that all hands of five cards are equally likely. (A royal flush
comprises 10, J, Q, K, A in a single suit.) Just as you get the answer

P(R) = 4
(
52

5

)−1
= 1

649740
,

the dealer deals your last card face up. It is the ace of spades, SA. If you accept the card,
what now is your chance of picking up a royal flush?

51
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Intuitively, it seems unlikely still to be P(R) above, as the conditions for getting one
have changed. Now you need your first four cards to be the ten to king of spades precisely.
(Also, had your last card been the two of spades, S2, your chance of a royal flush would
definitely be zero.) As above, to distinguish this new probability, we call it the conditional
probability of R given SA and denote it by P(R|SA).
Is it larger or smaller than P(R)? At least you do have an ace, which is a start, so it might

be greater. But you cannot now get a flush in any suit but spades, so it might be smaller.
To resolve the uncertainty, you assume that any set of four cards from the remaining 51
cards is equally likely to complete your hand and calculate that

P(R|SA) =
(
51

4

)−1
= 13

5
P(R).

Your chances of a royal flush have more than doubled. �

Let us investigate these ideas in a more general setting. As usual we are given a sample
space, an event space F , and a probability function P(.). We suppose that some event
B ∈ F definitely occurs, and denote the conditional probability of any event A, given B,
by P(A|B). As we did for P(.), we observe that P(.|B) is a function defined on F , which
takes values in [0, 1]. But what function is it?
Clearly, P(A) and P(A|B) are not equal in general, because even when P(Bc) �= 0 we

always have

P(Bc|B) = 0.
Second, we note that given the occurrence of B, the event A can occur if and only if A ∩ B
occurs. This makes it natural to require that

P(A|B) ∝ P(A ∩ B).

Finally, and trivially,

P(B|B) = 1.
After a moment’s thought about these three observations, it appears that an attractive

candidate to play the role ofP(A|B) isP(A ∩ B)/P(B).Wemake these intuitive reflections
formal as follows.

Definition Let A and B be events with P(B) > 0. Given that B occurs, the con-
ditional probability that A occurs is denoted by P(A|B) and defined by

P(A|B) = P(A ∩ B)

P(B)
.(1) �

When P(B) = 0, the conditional probability P(A|B) is not defined by (1). However,
to avoid an endless stream of tiresome reservations about special cases, it is conve-
nient to adopt the convention that, even when P(B) = 0, we may still write P(A ∩ B) =
P(A|B)P(B), both sides having the value zero. Thus, whether P(B) > 0 or not, it is true
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that

P(A ∩ B) = P(A|B)P(B).
Likewise,P(A ∩ Bc) = P(A|Bc)P(Bc) and hence, for any events A and B, we have proved
the following partition rule:

(2) Theorem P(A) = P(A ∩ B)+ P(A ∩ Bc)
= P(A|B)P(B)+ P(A|Bc)P(Bc). �

The reader will come to realize the crucial importance of (1) and (2) as he or she discovers
more about probability. We begin with a trivial example.

Example: Poker Revisited Let us check that Definition 1 is consistent with our in-
formal discussion earlier in this section. By (1)

P(R|SA) = P(R ∩ SA)/P(SA) = 1(
52

5

)
/(

51

4

)
(
52

5

) = (
51

4

)−1
. �

Here is a more complicated example.

Example: Lemons An industrial conglomerate manufactures a certain type of car in
three towns called Farad, Gilbert, and Henry. Of 1000 made in Farad, 20% are defective;
of 2000 made in Gilbert, 10% are defective, and of 3000 made in Henry, 5% are defective.
You buy a car from a distant dealer. Let D be the event that it is defective, F the event that
it was made in Farad and so on. Find: (a) P(F |H c); (b) P(D|H c); (c) P(D); (d) P(F |D).
Assume that you are equally likely to have bought any one of the 6000 cars produced.

Solution

(a) P(F |H c) = P(F ∩ H c)

P(H c)
by (1),

= P(F)
P(H c)

because F ⊆ H c,

= 1000

6000

/
3000

6000
= 1

3
.

(b) P(D|H c) = P(D ∩ H c)

P(H c)
by (1)

= P(D ∩ (F ∪ G))

P(H c)
because H c = F ∪ G,

= P(D ∩ F)+ P(D ∩ G)

P(H c)
because F ∩ G = φ
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= P(D|F)P(F)+ P(D|G)P(G)
P(H c)

by (1)

=
1

5
·1
6
+ 1

10
·1
3

1

2

on using the data in the question,

= 2

15
.

(c) P(D) = P(D|H )P(H )+ P(D|H c)P(H c) by (2)

= 1

20
·1
2
+ 2

15
·1
2

on using the data and (b)

= 11

120
.

(d) P(F |D) = P(F ∩ D)

P(D)
by (1)

= P(D|F)P(F)
P(D)

by (1)

= 1

5
·1
6

/
11

120
on using the data and (c)

= 4

11
. �

We often have occasion to use the following elementary generalization of Theorem 2.

(3) Theorem We have

P(A) =
∑

i

P(A|Bi )P(Bi )

whenever A ⊆⋃
i

Bi and Bi ∩ B j = φ for i �= j ; the extended partition rule.

Proof This is immediate from (1.4.3) and (1). �

For example, with the notation of (3), we may write

P(B j |A) = P(B j ∩ A)/P(A) = P(A|B j )P(B j )

P(A)
,

and expanding the denominator using (3), we have proved the following celebrated result;
also known as Bayes’s Rule:
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Bayes’s Theorem If A ⊆
n⋃
1

Bi , and Bi ∩ B j = φ for i �= j , then

P(B j |A) = P(A|B j )P(B j )
n∑
1
P(A|Bi )P(Bi )

; P(A) > 0. �(4)

The following is a typical example of how (4) is applied in practice.

Example: False Positives You have a blood test for some rare disease that occurs by
chance in 1 in every 100 000 people. The test is fairly reliable; if you have the disease,
it will correctly say so with probability 0.95; if you do not have the disease, the test will
wrongly say you do with probability 0.005. If the test says you do have the disease, what
is the probability that this is a correct diagnosis?

Solution Let D be the event that you have the disease and T the event that the test
says you do. Then, we require P(D|T ), which is given by

P(D|T ) = P(T |D)P(D)
P(T |D)P(D)+ P(T |Dc)P(Dc)

by (4)

= (0.95)(0.00001)

(0.95)(0.00001)+ (0.99999)(0.005) � 0.002.

Despite appearing to be a pretty good test, for a disease as rare as this the test is almost
useless. �

It is important to note that conditional probability is a probability function in the sense
defined in Section 1.4. Thus, P(�|B)= 1 and, if Ai ∩ A j =φ for i �= j , we have

P

(⋃
i

Ai |B
)
=

∑
i

P(Ai |B).(5)

From these,wemaydeducevarious useful identities (aswedid inSection1.4); for example:

P(A ∩ B ∩ C) = P(A|B ∩ C)P(B|C)P(C),(6)

P

(
n⋂
1

Ai

)
= P

(
A1|

n⋂
2

Ai

)
P

(
A2|

n⋂
3

Ai

)
. . .P(An)(7)

P(A|B) = 1− P(Ac|B),(8)

P(A ∪ B|C) = P(A|C)+ P(B|C)− P(A ∩ B|C),(9)

and so on.
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(10) Example Let us prove (5), (6), (7), (8), and (9). First,

P

(⋃
i

Ai |B
)
= P

((⋃
i

Ai

)
∩ B

)/
P(B) by (1).

= P

(⋃
i

(Ai ∩ B)

)/
P(B)

=
∑

i

P(Ai ∩ B)/P(B) by (1.4.3), because the Ai are disjoint,

=
∑

i

P(Ai |B) by (1) again,

and we have proved (5). Second, by repeated use of (1),

P(A|B ∩ C)P(B|C)P(C) = P(A ∩ B ∩ C)

P(B ∩ C)
·P(B ∩ C)

P(C)
·P(C) = P(A ∩ B ∩ C),

if the denominator is not zero. If the denominator is zero, then (6) still holds by convention,
both sides taking the value zero.
The relation (7) follows by induction using (6); and (8) and (9) are trivial consequences

of (5). �

(11) Example: Repellent and Attractive Events The event A is said to be attracted to B
if P(A|B) > P(A).
If P(A|B) < P(A), then A is repelled by B and A is indifferent to B if

P(A|B) = P(A).(12)

(a) Show that if B attracts A, then A attracts B, and Bc repels A.
(b) A flimsy slip of paper is in one of n bulging box files. The event that it is in the j th

box file is B j , where P(B j ) = b j > 0. The event that a cursory search of the j th box
file fails to discover the slip is Fj , where P(Fj |B j ) = φ j < 1. Show that B j and Fj

are mutually repellent, but Fj attracts Bi , for i �= j .

Solution (a) Because B attracts A, by (1), P(A ∩ B) > P(A)P(B), whence, on divid-
ing by P(A), we have P(B|A) > P(B). Furthermore, by Theorem 2,

P(A|Bc)P(Bc) = P(A)− P(A|B)P(B) < P(A)(1− P(B)), because B attracts A,
= P(A)P(Bc).

So Bc repels A (on dividing through by P(Bc) �= 0).
(b) By Bayes’ theorem (4),

P(B j |Fj ) = P(Fj |B j )P(B j )
n∑

i=1
P(Fj |Bi )P(Bi )

= φ j b j

1− b j + φ j b j
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because, obviously, for i �= j , P(Fj |Bi ) = 1. Hence,

P(B j )− P(B j |Fj ) = b j (1− b j )(1− φ j )

1− b j + φ j b j
> 0.

Therefore, B j is repelled by Fj . Also, for i �= j ,

P(Bi |Fj )− P(Bi ) = bi

1− b j + φ j b j
− bi = bi b j (1− φ j )

1− b j + φ j b j
> 0

so Fj attracts Bi , for i �= j . �

Notice that this agrees with our intuition. We believe quite strongly that if we look in a file
for a slip and fail to find it, then it is more likely (than before the search) to be elsewhere.
(Try to think about the consequences if the oppositewere true.) This conclusion ofExample
11 was not incorporated in our axioms, but follows from them. It therefore lends a small
but valuable boost to their credibility.
Finally, we consider sequences of conditional probabilities. Because conditional prob-

ability is a probability function [see (5)], we expect it to be continuous in the sense of
Section 1.5. Thus if (as n →∞) An → A and Bn → B, then by Theorem 1.5.2 we have

lim
n→∞P(An|B) = P(A|B)

and

lim
n→∞P(A|Bn) = P(A|B).(13)

2.2 Independence

It may happen that the conditional probability P(A|B) is the same as the unconditional
probability P(A), so that

P(A) = P(A|B) = P(A ∩ B)

P(B)
.

This idea leads to the following:

(1) Definition (a) Events A and B are independent when

P(A ∩ B) = P(A)P(B).

(b) A collection of events (Ai ; i ≥ 1) is independent when

P

(⋂
i∈F

Ai

)
=

∏
i∈F

P(Ai )

for any finite set F of indices.
(c) Events A and B are conditionally independent, given C, when

P(A ∩ B|C) = P(A|C)P(B|C).
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This does not imply independence unless C = �.
(d) A collection of events (Ai ; i ≥ 1) is pairwise independent if

P(Ai ∩ A j ) = P(Ai )P(A j ) for i �= j.

This does not imply independence in general. �

It is easy to see that independence is equivalent to the idea of indifference defined in
(2.1.12), but the term “indifference” is not in general use. It is usually, but not always,
clear when two events are independent, as the next two examples illustrate.

(2) Example: Sport Prior to a game of football, you toss a coin for the kick-off. Let C
be the event that you win the toss, and let M be the event that you win the match.

(a) Show that the outcome of the match is independent of whether you win the toss if and
only if, for some p and p′, with 0 < p, p′ < 1,

P(C ∩ M) = pp′,
P(C ∩ Mc) = p(1− p′),
P(Cc ∩ M) = (1− p)p′,

and

P(Cc ∩ Mc) = (1− p)(1− p′).

(b) Let B be the event that you win both or lose both, so B = {(C ∩ M) ∪ (Cc ∩ Mc)}.
Suppose that C and M are indeed independent. Show that C and B are independent
if and only if p′ = 1

2 .

Solution (a) If C and M are independent, and P(C) = p and P(M) = p′, then by
definition P(C ∩ M) = pp′ and so on.
Conversely, for the given probabilities

P(C) = P(C ∩ M)+ P(C ∩ Mc) = pp′ + p(1− p′) = p

and similarly we have P(M) = p′. Hence,

P(C)P(M) = pp′ = P(C ∩ M).

This, together with three similar identities (exercises for you), demonstrates the indepen-
dence.
(b) Trivially, P(C ∩ B) = P(C ∩ M). Hence, C and B are independent if

pp′ = P(C ∩ M) = P(C)P(B) = p(pp′ + (1− p)(1− p′)).

That is, if (1− p)(1− 2p′) = 0. Because p �= 1, it follows that p′ = 1
2 . The converse is

trivial. �

(3) Example: Flowers A plant gets two independent genes for flower colour, one from
each parent plant. If the genes are identical, then the flowers are uniformly of that colour;
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if they are different, then the flowers are striped in those two colours. The genes for the
colours pink, crimson, and red occur in the population in the proportions p:q:r , where
p + q + r = 1. A given plant’s parents are selected at random; let A be the event that its
flowers are at least partly pink, and let B be the event that its flowers are striped.

(a) Find P(A) and P(B).
(b) Show that A and B are independent if p = 2

3 and r = q = 1
6 .

(c) Are these the only values of p, q, and r such that A and B are independent?

Solution (a) With an obvious notation (P for pink, C for crimson, and R for red), we
have

P(PP) = P(P)P(P), by parents independence,
= p2,

because P occurs with probability p. Likewise,

P(PR) = P(R)P(P) = r p = P(RP).

Hence,

P(A) = P(P P ∪ P R ∪ P ∪ PC ∪ C P)
= p2 + 2pr + 2pq by (1.4.3),
= 1− (1− p)2,

because p + q + r = 1. (Can you see how to get this last expression directly?) Similarly,
P(B) = P(PC ∪ P R ∪ RC) = 2(pq + qr + r p).

(b) The events A and B are independent, if and only if,

P(A)P(B) = P(A ∩ B) = P(PC ∪ P R) = 2(pq + pr ).

From part (a), this is equivalent to

(1− (1− p)2)(pq + qr + pr ) = p(q + r ),(4)

and this is satisfied by the given values of p, q, and r .
(c) No. Rearranging (4), we see that A and B are independent for any values of q and r

lying on the curve rq = 2rq(q + r )+ r3 + q3, in the r − q plane. You may care to amuse
yourself by showing that this is a loop from the origin. Outside the loop, A and B are
attractive; inside the loop, A and B are repellent. �

(5) Example 1.13 Revisited: Craps Let us reconsider this game using conditional prob-
ability and independence. Recall that Ak is the event that you win by rolling a pair with
sum k. Let Sk be the event that any given roll yields sum k. Now, for example, A4 occurs
only if S4 occurs at the first roll and S4 occurs before S7 in later rolls. However, all the rolls
after the first until the first occurrence of S4 or S7 are irrelevant, and rolls are independent.
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Hence,

P(A4) = P(S4)P(S4|S4 ∪ S7) = (P(S4))2

P(S4 ∪ S7)
=

(
3

36

)2
3

36
+ 6

36

= 1

36
.

Now, performing a similar calculation for A5, A6, A8, A9, and A10 yields the solution to
Example 1.13. �

(6) Example Suppose A and B are independent, and B and C are independent.

(a) Are A and C independent in general?
(b) Is B independent of A ∪ C?
(c) Is B independent of A ∩ C?

Solution (a) No. Take A ≡ C . [Then do Problem 4(a).]
(b) No. Consider Example 2(b), with p = p′ = 1

2 , and let A = M . Then, B is indepen-
dent of M and C , but

P(B ∩ (C ∪ M)) = P(C ∩ M) = 1

4

and

P(B)P(C ∪ M) = (pp′ + (1− p)(1− p′))(1− (1− p′)(1− p)) = 3

8
�= 1

4
.

(c) No. With the same notation as in (b), following Example 2(b) again, we have

P(B ∩ C ∩ M) = P(C ∩ M) = 1

4
,

and

P(B)P(C ∩ M) = (pp′ + (1− p′)(1− p))pp′ = 1

8
�= 1

4
. �

2.3 Recurrence and Difference Equations

Many problems in probability have a structure in which the repetition of some procedure
is essential. At a trivial level, one may repeatedly roll dice, catch fish, have children, and so
on;more important problems involve the same idea. In Chapter 1, it is necessary to suppose
that all the probabilities on the sample space were given or that all outcomes were equally
likely. Conditional probability provides a more natural way of defining such problems;
conditional on the procedure having reached some stage, it supplies the probabilities of
the consequent events.
By emphasizing this recurrent aspect of some experiment, conditional probability en-

ables us to tackle problems by deriving recurrence relations. These often turn out to be
simple difference equations. Many of the worked examples illustrate these ideas; the
following results are useful.
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(1) Theorem Let (ak ; k ≥ 0) be a sequence of real numbers.

(i) If the sequence (uk ; k ≥ 0) satisfies
uk+1 − akuk = 0,

then

uk = u0
k−1∏
0

a j .

(ii) If (uk ; k ≥ 0) satisfies
uk+1 − uk = cαk,

where α and c are constants, then

uk − u0 = c
αk − 1
α − 1 .

(iii) If (uk ; k ≥ 0) satisfies
uk+1 − uk = c,

for some constant c, then

uk − u0 = kc.

(iv) If for some constants a, α, c1, and c2, we have

uk+1 − auk = c1 + c2α
k, a �= α,

then

uk = u0a
k + c1(1− ak)

1− α + c2(αk − ak)

α − a
.

Proof These results are verified simply by substitution. �

(2) Example: Fly A room has four walls, a floor, and a ceiling. A fly moves between
these surfaces. If it leaves the floor or ceiling, then it is equally likely to alight on any one
of the four walls or the surface it has just left. If it leaves a wall, then it is equally likely to
alight on any of the other three walls, the floor, or the ceiling. Initially, it is on the ceiling.
Let Fk denote the event that it is on the floor after k moves. What is fk = P(Fk)?

Solution Let Ck denote the event that it is on the ceiling after k moves, and Nk , Ek ,
Wk , Sk denote the corresponding event for the four walls. Set ck = P(Ck), and so on. Then
by Theorem 2.1.3,

P(Fk) = P(Fk |Fk−1)P(Fk−1)+ P(Fk |Ck−1)P(Ck−1)+ P(Fk |Nk−1)P(Nk−1)(3)

+P(Fk |Ek−1)P(Ek−1)+ P(Fk |Wk−1)P(Wk−1)+ P(Fk |Sk−1)P(Sk−1)

= 1

5
fk−1 + 0+ 4

5
wk−1,
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where we have used the fact that, by symmetry, nk = ek = wk = sk . Likewise,

wk = 3

5
wk−1 + 1

5
fk−1 + 1

5
ck−1 = 3

5
wk−1 + 1

5
(1− 4wk−1),

on using the fact that

fk + ck + 4wk = 1,(4)

which follows from the observation that the fly has to be somewhere in the room. Hence,

wk = −1
5
wk−1 + 1

5
.(5)

Because the fly starts on the ceiling, w0 = 0, and so by Theorem 1(iv)

wk = 1

6

(
1−

(
−1
5

)k
)
.(6)

Substituting into (3) gives

fk = 1

5
fk−1 + 2

15

(
1−

(
−1
5

)k−1)
.

Hence, for some constant A,

fk = A

(
1

5

)k

+ 1

3

(
−1
5

)k

+ 1

6
.

The arbitrary constant A is determined by recalling that the fly starts on the ceiling. Thus,
f0 = 0, and

fk = −1
2

(
1

5

)k

+ 1

3

(
−1
5

)k

+ 1

6
.(7)

Alternatively, we may substitute (5) into (3) to get directly:

fk = 1

25
fk−2 + 4

25
.(8)

It is a simple matter to check that, for any constants A and B,

fk = A

(
1

5

)k

+ B

(
−1
5

)k

+ 1

6

satisfies (8). Because f0 = f1 = 0, the solution (7) is recovered immediately. Notice that
as k →∞, (6) and (7) yield fk → 1

6 and wk → 1
6 . It follows from (4) that ck → 1

6 . In the
long run, the fly is equally likely to be on any surface. �

2.4 Remarks

Independence and conditioning greatly add to your armoury of weapons for attacking
problems. If an event requires the occurrence of a number of independent events, then
calculations are simplified by using Definition 2.2.1.
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Where independence fails, it may be possible to find a family of disjoint events Bi

whose union includes the event A of interest, and for which P(A|Bi ) is easily calculated.
The required probability is then calculated using Theorem 2.1.3.
Such events Bi can also be found to yield P(A) as the solution of some recurrence

relation, as exemplified in Section 2.3.
Note that you are warned to avoid the painful student error that asserts that A and B are

independent when A ∩ B = φ. This is wrong, except possibly when one of P(A) or P(B)
is zero, which is not a case of any great interest in general.
Finally, we take this opportunity to stress that although conditional probability is ex-

tremely useful and powerful, it also greatly increases the possibilities formaking egregious
errors. The celebrated Monty Hall problem is a recent classic example, which we discuss
in Example 2.13. But cautionary examples had been in existence for many years before
Marilyn vos Savant made that one famous. Here are two classics from the nineteenth
century.

Galton’s Paradox (1894) Suppose you flip three fair coins. At least two are alike and
it is an evens chance whether the third is a head or a tail, so the chance that all three are
the same is 12 .

Solution In fact,

P(all same) = P(T T T )+ P(H H H ) = 1

8
+ 1

8
= 1

4
.

What is wrong?

Resolution As is often the case, this paradox arises from fudging the sample space.
This “third” coin is not identified initially in�, it is determined by the others. The chance
whether the “third” is a head or a tail is a conditional probability, not an unconditional
probability. Easy calculations show that

P(3rd is H |H H ) = 1
4

P(3rd is T |H H ) = 3
4

}
H H denotes the event that there
are at least two heads.

P(3rd is T |T T ) = 1
4

P(3rd is H |T T ) = 3
4

}
T T denotes the event that there
are at least two tails.

In no circumstances, therefore, is it true that it is an evens chance whether the “third” is a
head or a tail; the argument collapses. �

Bertrand’s Box Paradox (1889) There are three boxes. One contains two black coun-
ters, one contains two white counters, and one contains a black and a white counter. Pick
a box at random and remove a counter without looking at it; it is equally likely to be black
or white. The other counter is equally likely to be black or white. Therefore, the chance
that your box contains identical counters is 12 . However, this is clearly false: the correct
answer is 23 .
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Resolution This is similar to Galton’s paradox. Having picked a box and counter,
the probability that the other counter is the same is a conditional probability, not an
unconditional probability. Thus, easy calculations give (with an obvious notation)

P(both black|B) = 2

3
= P(both white|W );(1)

in neither case is it true that the other counter is equally likely to be black or white. �

2.5 Review and Checklist for Chapter 2

In practice, we may have partial knowledge about the outcome of an experiment, or
the conditions of an experiment may change. We therefore used intuitive ideas about
probability to define conditional probability and deduce the key result known as Bayes’s
rule (or Bayes’s theorem). It may also be the case that occurrence of an event has no effect
on the probability of another. This led us to define the concept of independence.
These ideas are particularly useful when experiments have (or can be reformulated to

have) a sequential structure. Use of conditional probability and independence often gives
rise to recurrence relations and difference equations in these cases.

Notation: P(A|B) The conditional probability of A given B.
RULES:
Conditioning Rule: P(A|B) = P(A ∩ B)/P(B)
Addition Rule: P(A ∪ B|C) = P(A|C)+ P(B|C), when A ∩ C and B ∩ C are disjoint.
Multiplication Rule: P(A ∩ B ∩ C) = P(A|B ∩ C)P(B|C)P(C)
Partition Rule: P(A) =∑

P(A|Bi )P(Bi ), when (Bi : i ≥ 1) are disjoint events and
A ⊆ ∪i Bi .

Bayes’s Rule (or Theorem):

P(Bi |A) = P(A|Bi )P(Bi )/P(A) = P(A|Bi )P(Bi )∑
j P(A|B j )P(B j )

Extended addition Rule:

P(∪i Ai |C) =
∑

i

P(Ai |C)

when {Ai } is a partition; which is to say Ai ∩ A j �= φ, and C ⊆ ∪i Ai .
Extended multiplication Rule:

P
( n⋂

i=1
Ai

)
= P(A1|A2 ∩ . . . ∩ An) . . .P(An−1|An)P(An)

Independence Rule: A and B are independent if and only if P(A ∩ B) = P(A)P(B); this
is equivalent to P(A|B) = P(A) and to P(B|A) = P(B).
More generally, (Ai ; 1 ≤ i ≤ n) are independent if P(

⋂
i∈I

Ai ) =
∏
i∈I

P(Ai ) for any

choice of index set I ⊆ {1, . . . , n}.
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Conditional independence Rule: A and B are conditionally independent given C when

P(A ∩ B|C) = P(A|C)P(B|C).
Note that independence does not imply conditional independence, nor is it implied by it.
Pairwise independence Rule: (Ai ; 1 ≤ i ≤ n) are pairwise independent if

P(Ai ∩ A j ) = P(Ai )P(A j ), i �= j.

Checklist of Terms for Chapter 2

2.1 conditional probability
partition rules
Bayes’s theorem (or rule)

2.2 independence
conditional independence
pairwise independence

2.3 difference equation
2.4 paradoxes

WORKED EXAMPLES AND EXERCISES

2.6 Example: Sudden Death

Two golfers (Atropos and Belladonna) play a series of holes. Atropos wins each hole with
probability p, Belladonna wins each hole with probability q , and holes are halved with
probability r . Holes are independent, and the game stops on the first occasion when a hole
is not halved. What is the probability that Atropos wins?
We give two methods of solution.

Solution I Let An be the event that Atropos wins the match at the nth hole, Hk the
event that the kth hole is halved, and Wk the event that Atropos wins the kth hole. Then,

P(An) = P(H1 ∩ H2 ∩ . . . ∩ Hn−1 ∩Wn) =
n−1∏
1

P(Hk)P(Wn) by independence(1)

= rn−1 p.

Hence, the probability that Atropos wins the match is

P

( ∞⋃
1

An

)
=

∞∑
1

P(An)(2)

by (1.4.3) because Ak ∩ A j = φ for k �= j . Now

∞∑
1

P(An) =
∞∑

n=1
rn−1 p = p

1− r
= p

p + q
.
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Solution II Let V be the event that Atropos wins the match. Then by Theorem 2.1.3,

P(V ) = P(V |W1)P(W1)+ P(V |H1)P(H1)+ P(V |W c
1 ∩ H c

1 )P(W
c
1 ∩ H c

1 ).(3)

Now, P(V |W1) = 1, and
P(V |H c

1 ∩W c
1 ) = 0.

Also, because holes are independent

P(V |H1) = P(V ).

Hence, substituting into (3),

P(V ) = p + P(V )r,

so P(V ) = p/(1− r ), in agreement with Solution I.

Remark The first solution harks back to Chapter 1, by dividing up the sample space
into disjoint events and using (1.4.3). The second solution exploits the power of conditional
probability by conditioning on the outcome of the first hole. You will use this second idea
frequently in tackling problems in probability.

(4) Exercise Show that the probability un that Atropos wins at or before the nth hole is p(1−
rn)/(1− r ).

(5) Exercise Given that Atropos wins at or before the nth hole, show that:
(a) The probability that the first hole was halved is r (1− rn−1)/(1− rn),
(b) The probability that the first hole was won is (1− r )/(1− rn).

(6) Exercise Given that Atropos wins, what is the probability that she has won before the third
hole?

(7) Exercise What is the probability that Atropos wins, given that exactly n holes have been played
when the match is won? Use this to solve the example by a third method.

2.7 Example: Polya’s Urn

An urn contains b blue balls and c cyan balls. A ball is drawn at random, its colour is
noted, and it is returned to the urn together with d further balls of the same colour. This
procedure is repeated indefinitely. What is the probability that:

(a) The second ball drawn is cyan?
(b) The first ball drawn is cyan given that the second ball drawn is cyan?

Solution Let Cn denote the event that the nth drawn ball is cyan. Then

(a) P(C2) = P(C2|C1)P(C1)+ P
(
C2|Cc

1

)
P
(
Cc
1

)
.

Now given C1, the urn contains c + d cyan balls on the second drawing, so

P(C2|C1) = c + d

b + c + d
.
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Likewise, given Cc
1 the urn contains c cyan balls on the second drawing, so

P
(
C2|Cc

1

) = c

b + c + d
.

Hence,

(b)

P(C2) = c + d

b + c + d
· c

b + c
+ c

b + c + d
· b

b + c
= c

b + c
= P(C1).

P(C1|C2) = P(C1 ∩ C2)P(C2) = P(C2|C1)P(C1)/P(C2) = c + d

b + c + d
.

using the results of (a).

(1) Exercise Show that P(Cn) = P(C1) for all n ≥ 1.
(2) Exercise Find the probability that the first drawn ball is cyan given that the nth drawn ball is

cyan.
(3) Exercise Find the probability that the first drawn ball is cyan given that the following n drawn

balls are all cyan. What is the limit of this probability as n →∞?
(4) Exercise Show that for any j, k,P(Ck |C j ) = P(C j |Ck).
(5) Exercise Show that inm + n drawings, the probability thatm cyan balls are followed by n blue

balls is the same as the probability that n blue balls are followed by m cyan balls. Generalize this
result.

2.8 Example: Complacency

In a factory, if the most recent accident occurred exactly k days before today, then the
probability that an accident occurs today is pk ; there is no accident with probability 1− pk .
During the n successive days immediately after an accident, what is the probability that

(a) There are no accidents?
(b) There is exactly one accident?

Solution (a) Let An be the event that the n days following an accident are free of
accidents, n ≥ 1. We are given that

P(An|An−1) = 1− pn, n ≥ 2(1)

and P(A1) = 1− p1. The crucial observation is that

P(An) = P(An|An−1)P(An−1) = (1− pn)P(An−1).(2)

This is almost completely obvious, but we labour the point by giving two detailed verifi-
cations.
I Notice that An ⊆ An−1. Hence,

P(An) = P(An ∩ An−1) = P(An|An−1)P(An−1) by (2.1.1).

II Alternatively, by Theorem 2.1.2,

P(An) = P(An|An−1)P(An−1)+ P
(

An|Ac
n−1

)
P
(

Ac
n−1

) = P(An|An−1)P(An−1)

because P
(

An|Ac
n−1

)
= 0.
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Returning to (1), we iterate this relation to get

P(An) =
n∏
1

(1− p j ) = πn (say).

(b) Let Bk be the event that the first accident in the n day period occurs on the kth day.
Then,

P(Bk) = P
(

Ac
k ∩ Ak−1

) = P
(

Ac
k |Ak−1

)
P(Ak−1) by (2.1.1)

= pk

k−1∏
1

(1− p j ) = pkπk−1

Now, given an accident on the kth day, the event that there are no accidents in the
succeeding n − k days has the same probability as An−k . Hence, the probability of exactly
one accident is

n∑
k=1

P(Bk)P(An−k) =
n∑

k=1
πk−1 pkπn−k = sn (say).

(3) Exercise Show that if pn is nondecreasing in n (and pn > 0), then an accident is certain to occur
sometime.

(4) Exercise Evaluate πn and sn when pn = p.
(5) Exercise What is the probability that in the n days following an accident

(a) There is at least one accident?
(b) There are exactly two accidents?
(c) Evaluate these probabilities when pn = p.

(6) Exercise Show that if ci is a collection of numbers satisfying 0 ≤ ci ≤ 1, i ≥ 1, then

c1 +
∞∑

i=2
ci

i−1∏
j=1
(1− c j )+

∞∏
i=1
(1− ci ) = 1.

(7) Exercise What condition on (pn ; n ≥ 1) would allow a nonzero chance of no second accident?

2.9 Example: Dogfight

Algy, Biggles, and the Commodore are fighting an air battle. In the first round, each fires
one shot in alphabetical order, and each may fire at any unhit opponent. Anyone hit drops
out of the battle immediately. Survivors play successive rounds with the same rules as the
first round until one winner remains.
On any shot aimed at an opponent, Algy hits with probability α, the Commodore hits

with probability γ , and Biggles never misses. Show that if shots are independent and

γ > α > 1− γ

1− γ ,
then Algy should fire his first shot into the ground.

Solution Suppose that Algy were to fire at Biggles and hit him. Algy would then be
the Commodore’s target, and the battle would continue with shots alternating between
these two until a hit is scored. Let CA be the event that the Commodore wins this two-man
battle, and consider the following three events:

A1 ≡ the Commodore scores a hit with his first shot.
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A2 ≡ the Commodore misses and Algy scores a hit with his first returned shot.
A3 ≡ the Commodore and Algy both miss their first shots.
If A3 occurs, then the next round begins under the same conditions; hence,

P(CA|A3) = P(CA).

Also,P(CA|A1) = 1, andP(CA|A2) = 0. Because Ai ∩ A j = φ for i �= j and∪31Ai = �,
we may use Theorem 2.1.3 to give

P(CA) = γ + 0+ (1− γ )(1− α)P(CA),

yielding

P(CA) = γ

1− (1− γ )(1− α) .

However, if Algy misses, then Biggles will certainly fire at the Commodore because
α < γ , and hit him. Then Algy can win only if his second round shot at Biggles hits;
otherwise, Biggles surely hits him with his second round shot. Thus, in this case, Algy
wins with probability α.
Hence, missing Biggles gives Algy a better chance if

1− P(CA) = α(1− γ )
1− (1− γ )(1− α) > α

that is if α > 1− γ /(1− γ ).
(1) Exercise If Algy does fire his first shot at Biggles, what is the probability that he wins the battle?
(2) Exercise Algy is not a competent probabilist, and decides whether to shoot at Biggles by tossing

a coin (heads he does, tails he doesn’t). Given that the battle ends with the fourth shot, what is the
probability that Algy aimed to miss?

(3) Exercise Suppose that Biggles is not infallible; in fact, the probability that any shot of his hits
is β. If α = 0.5, β = 0.875, and γ = 0.75, where should Algy aim his first shot?

2.10 Example: Smears

In a population of women, a proportion p have abnormal cells on the cervix. The Pap test
entails taking a sample of cells from the surface of the cervix and examining the sample
to detect any abnormality.

(i) In a case where abnormal cells are present, the sample will fail to include any with
probability µ.

(ii) In a sample including abnormal cells, examination fails to observe them with proba-
bility ν.

(iii) In a sample free of abnormal cells, normal cells are wrongly classified as abnormal
with probability π .

All sampling and identification errors are independent.
If a randomly selected woman has such a test:

(a) What is the probability that the result is wrong?
(b) If an abnormality is reported, what is the probability that no abnormal cells are present?
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Solution (a) Let E denote the event that the result is in error, A denote the event that
abnormal cells are present, and S denote the event that the sample fails to include abnormal
cells when they are present. Using Theorem 2.1.2, we have

P(E) = P(E |A)P(A)+ P(E |Ac)P(Ac) = P(E |A)p + P(E |Ac)(1− p).

By (iii), P(E |Ac) = π . Also, by (2.1.5),

P(E |A) = P(E ∩ S|A)+ P(E ∩ Sc|A).
By (iii) and (i),

P(E ∩ S|A) = (1− π )µ
and by (ii) and (i),

P(E ∩ Sc|A) = ν(1− π ).
Hence,

P(E) = p((1− π )µ+ ν(1− µ))+ (1− p)π.

(b) Let D denote the event that an abnormality is reported. By (2.1.1),

P(Ac|D) = P(Ac ∩ D)

P(D)
.

Now, by Theorem 2.1.2,

P(D) = P(D|A)P(A)+ P(D|Ac)P(Ac)
= P(D ∩ S|A)P(A)+ P(D ∩ Sc|A)P(A)+ π (1− p) by (2.1.5)
= πµp + (1− ν)(1− µ)p + π (1− p)

and

P(Ac ∩ D) = π (1− p).

Hence,

P(Ac|D) = π (1− p)

πµp + π (1− p)+ (1− ν)(1− µ)p .

Notice that this is an example of Bayes’ Theorem (2.1.4).

(1) Exercise Evaluate P(E) and P(Ac|D) when
(a) p = 10% and µ = ν = π = 10−1, and when
(b) p = 50% and µ = 10−1 and ν = π = 10−2.

(2) Exercise What is the probability that the result is wrong if no abnormality is reported? Evaluate
this in the above two cases, and compare P(Ac|D) and P(A|Dc).

(3) Exercise Whatever the result of the test, it is recorded wrongly in the letter to the patient with
probability ρ independently of other errors. Let L be the event that the letter is wrong, and let M
be the event that the letter reports abnormalities to the patient. Find P(L),P(Ac|M), and P(A|Mc).

2.11 Example: Gambler’s Ruin

You enter a casino with $k, and on each spin of a roulette wheel you bet $1 at evens on the
event R that the result is red. The wheel is not fair, so P(R) = p < 1

2 . If you lose all $k,
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you leave; and if you ever possess $K ≥ $k, you choose to leave immediately. What is
the probability that you leave with nothing? (Assume spins of the wheel are independent.
Note that this is an idealized casino.)

Solution Let pk be the probability that you leave with nothing. If the first spin results
in red, you gain $1 and are in the same position as if you had just entered with $k + 1.
Thus, conditional on R, your chance of leaving with nothing is pk+1. Similarly, if the first
spin results in black (or zero), you have $k − 1 and your chance of leaving with nothing
is pk−1. Hence,

pk = ppk+1 + (1− p)pk−1, 0 < k < K .(1)

If k = 0, then you certainly leave with nothing; if k = K , you leave before betting. Hence,
p0 = 1 and pK = 0.
Writing (1) as

pk+1 − pk = 1− p

p
(pk − pk−1) for p > 0,

gives (on using p0 = 1)

pk+1 − pk =
(
1− p

p

)k

(p1 − 1), by Theorem 2.3.1(a).

Hence,

pk = 1+ (p1 − 1)

(
1− p

p

)k

− 1
1− p

p − 1
, by Theorem 2.3.1(b).

Because pK = 0, setting k = K in this gives

0 = 1+ (p1 − 1)

(
1− p

p

)K

− 1
1− p

p − 1
.

and now eliminating p1 gives finally

pk =

(
1− p

p

)K

−
(
1− p

p

)k

(
1− p

p

)K

− 1
.(2)

(3) Exercise Show that as K →∞ in (2), pk → 1.
(4) Exercise Find pk when p = 1

2 .
(5) Exercise Show that with probability one you do not remain in the casino forever.
(6) Exercise Given that you leave with nothing, what is the probability that you never possessed

more than your initial $k?
(7) Exercise Let n(k, K , r ) be the number of sequences of red and black that result in your leav-

ing the casino with $K on the rth spin of the wheel. Show that the probability of this event is
n(k, K , r )p(r+K−k)/2(1− p)(r−K+k)/2.
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(8) Exercise Let K = 2k. Show that the probability that you leave the casino on the r th spin given
that you leave with nothing is the same as the probability that you leave the casino on the r th spin
given that you leave with $K .

(9) Exercise Show that doubling the stakes increases your chance of leaving with $K . What does
this tell you about most gamblers?

2.12 Example: Accidents and Insurance

In any given year, the probability that a given male driver has a mishap entailing a claim
from his insurance company isµ, independently of other years. The equivalent probability
in female drivers is λ.
Assume there are equal numbers of male and female drivers insured with the Acme

Assurance Association, which selects one of them at random.

(a) What is the probability that the selected driver makes a claim this year?
(b) What is the probability that the selected drivermakes a claim in two consecutive years?
(c) If the insurance company picks a claimant at random, what is the probability that this

claimant makes another claim in the following year?

Solution (a) Let A1 and A2 be the events that a randomly chosen driver makes a claim
in each of the first and second years. Then conditioning on the sex of the driver (M or F)
yields

P(A1) = P(A1|M)P(M)+ P(A1|F)P(F) = 1

2
(µ+ λ)

because P(F) = P(M) = 1
2 .

(b) Likewise,

P(A1 ∩ A2) = P(A1 ∩ A2|M)P(M)+ P(A1 ∩ A2|F)P(F) = 1

2
(µ2 + λ2).

(c) By definition,

P(A2|A1) = P(A2 ∩ A1)/P(A1) = µ2 + λ2
µ+ λ

(1) Exercise Note that A1 and A2 are conditionally independent given the sex of the driver. Are
they ever independent?

(2) Exercise Show that P(A2|A1) ≥ P(A2). When does equality hold?
(3) Exercise

(a) Find the probability that a driver makes a claim in a third year given that the driver has claimed
in each of the two preceding years.

(b) Find the probability that a driver claims in year n, given that this driver has claimed in all of
the preceding n years.

(c) Find the limit in (b) as n →∞.
(4) Exercise Find the probability that a claimant is

(a) Male
(b) Female.

(5) Exercise Find the probability that a driver claiming in n successive years is male.
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(6) Exercise Now rework the example and exercises without assuming that equal numbers of male
and female drivers are insured with the AAA.

Remark The fact that a claimant is more likely to have a second accident, even
though accidents were assumed independent for a given driver, is an example of what is
sometimes called a sampling paradox (though it is not a paradox). It is the reason why
insurance companies offer no-claims discounts (or at least, one of the reasons). It is the
case in practice that µ > λ.

2.13 Example: Protocols

Part A: Boys and Girls

Consider the following question: “Tom has exactly one sibling. What is the probability
that it is a girl?”

(a) Do you think this question has a well-defined answer?
(b) If so, write down your answer, and then consider the following arguments:

(i) There are three family possibilities; two girls, two boys, or one of each. Two girls
is impossible, which leaves equal chances that the sibling is a boy or a girl. The
answer is 12 .

(ii) Families with a child called Tom arise in four equally likely ways:
T B, BT, T G,GT . So Tom has a brother as often as he has a sister. The an-
swer is 12 .

(iii) There are four cases: B B, BG,G B,GG. The last is impossible, and in two of
the remaining three cases the sibling is a girl. The answer is 23 .

(iv) Assuming that the sex of siblings is independent, the other sibling is equally likely
to be a girl or a boy. The answer is 12 .

Are any of these correct? Is yours correct? (You may assume that any given birth gives
rise to one girl or one boy with equal probability.)

Solution (a) The question is ill-posed; there is no correct answer because the sample
space is not defined. This is the same as saying that the underlying experiment (selecting
Tom) is not described.
(b) We may consider some well-posed questions.

I A woman has two children that are independently equally likely to be a boy or a
girl. One of them at least (Tom) is male. Now the sample space has four equally likely
outcomes:

� = {BG,G B, B B,GG};(1)

the event of interest is A = {BG,G B}, and we are given that B occurs, where B =
{BG,G B, B B}. Hence,

P(A|B) = P(A ∩ B)

P(B)
= P(A)

P(B)
= 2

3
.

II A woman has two children that are independently equally likely to be a boy or a girl.
Her first son is called Tom with probability p1 < 1. If she has two sons, and the oldest is
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not Tom, the second son is called Tom with probability p2. The sample space is

� = {B B, BT, T B, T G, BG,GT,G B,GG}(2)

where, for example, P(BT ) = 1
4 (1− p1)p2. Then the required probability is, using The-

orem 2.1.4,

P(GT )+ P(T G)

P(T B)+ P(BT )+ P(T G)+ P(GT )
= p1 + p2
2p1 + 2p2 − p1 p2

.

Notice that this is equal to 1
2 if either p1 = 0 or p2 = 0, but not both. It is also 1

2 if p1 = 1
and we define p2 to be zero. In any case,

1

2
≤ p1 + p2
2p1 + 2p2 − p1 p2

≤ 2

3
.

Notice that we have assumed that families and names are independent; that is, that women
are not more (or less) likely to have boys because they want to call them Tom (or not), and
that having a girl does not change the chance that a boy is called Tom.
III A boy is selected at random from a number of boys who have one sibling. This
sample space has four equally likely outcomes

� = {B∗B, B B∗, B∗G,G B∗}
where the star denotes the boy (Tom)whowas picked at random. (The experiment amounts
to picking one of the B-symbols in (1) with equal chance of picking any.) Hence, the event
of interest is A = {B∗G,G B∗} and the required probability is 12 .
IV A chance acquaintance is introduced as Tom who has just one sibling. What is the
chance that it is a sister?
The sample space is the set of your chance acquaintances. This is too vague to allow
further progress.

Remark The arguments of (b) (i), (ii), (iii), and (iv) appeared in letters toThe Guardian
in June 1989. An answer can only be defined when the exact procedure (also known as
a protocol) for selecting Tom is decided. If, for example, you meet Tom at a club for
identical twins, the problem is different again.
Notice also that parts of this example are getting rather distant from the type of exper-

iment used to justify our axioms. You may well see no particular reason to suppose that
our theory of probability is relevant in, say, Case IV, or even in Case II.

(3) Exercise In the framework of Case II, consider the following two procedures:
(a) Select one of her two children at random
(b) Select one of her sons (if any) at random.
In each case, find the probability that the child is the elder given that his name is Tom.

(4) Exercise In the framework of Case II, can it be the case that T G, T B, BT , and GT are equally
likely outcomes?

(5) Exercise Suppose a woman has three children and each is independently equally likely to be
male or female. Show that the event “they are either all girls or all boys” is independent of the event
“at least two children are boys.”
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Part B: Goats and Cars: The Monty Hall Problem

Suppose yourself to be participating in the following bizarre contest. You have a choice of
three doors. Behind one door is a costly automobile, behind the other two doors are cheap
goats. You choose the first door, whereupon the master of ceremonies opens the third door
to reveal a goat; he then offers you the opportunity to change your choice of door. Can
you calculate the probability that the car lies behind the second door? (You are given the
object behind the door you open.)

Solution No, you cannot. To see this, let Ci be the event that the car lies behind the
i th door, and let G be the event that a goat is revealed to you behind the third door. You
require P(C2|G), which we can write as

P(C2 ∩ G)/P(G) = P(G|C2)P(C2)
P(G|C1)P(C1)+ P(G|C2)P(C2) =

P(G|C2)
P(G|C1)+ P(G|C2) ,(6)

on the reasonable assumption that the car is equally likely to be behind any door, so that
P(C2) = P(C1). Now observe that all three terms in the denominator and numerator of (6)
depend on the decisions of the master of ceremonies. His rules for making his decision
once again form a protocol. If you do not know his protocol for the contest, you cannot
calculate P(C2|G).

Remark This problem was presented in Parademagazine (1990, 1991, distributed in
the USA) and generated an extensive correspondence in that and several other periodicals.
Almost all participants assumed (wrongly) that the problem as stated has one solution,
and chiefly disputed as to whether the answer should be 12 or

2
3 .

(7) Exercise Show that if you have paid the master of ceremonies enough to ensure that you win,
then P(C2|G) = 1.

(8) Exercise Show that if the master of ceremonies has decided that (i) whatever you choose, he
will show you a goat; and (ii) if he has a choice of two goats, he will pick one at random, then
P(C2|G) = 2

3 .
(9) Exercise Show that if the master of ceremonies has decided that (i) whatever you choose, he

will open a different door; and (ii) he will pick it at random, then P(C2|G) = 1
2 .

(10) Exercise Show that if the master of ceremonies has decided that (i) if a goat is behind the first
door, he will open it for you; and (ii) if a car lies behind the first door, he will open another door,
then P(C2|G) = 0.

Remark There are many famous problems equivalent to these two, to all of which the
correct answer is, there is no unique answer (e.g., the ‘Prisoners’ paradox’, ‘Red Ace’).
There seems to be no way of preventing the futile, acrimonious, and incorrect discussions
accompanying their regular appearance in the popular press. The so-called “Doomsday
Argument” provides a slightly different but equally fallacious example.

2.14 Example: Eddington’s Controversy

Four men each tell the truth independently with probability 1
3 . D makes a statement that

C reports to B, and B then reports C’s statement to A. If A asserts that B denies that C
claims that D is a liar, what is the probability that D spoke the truth?
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Solution Let SA be the event that A makes the given statement. Further, let A denote
the event that A tells the truth, Ac denote the event that A lies, and so on. Then, obviously,

D ∩ C ∩ B ∩ A ⊆ SA,

for if they all tell the truth then A makes the given statement. Also, by the independence,

P(D ∩ C ∩ B ∩ A) = 1

81
.

Likewise, by following through the chain of assertions, we see that D ∩ Cc ∩ Bc ∩ A, D ∩
Cc ∩ B ∩ Ac and D ∩ C ∩ Bc ∩ Ac are included in SA, each having probability 4

81 .
When D lies,

Dc ∩ Cc ∩ Bc ∩ Ac ⊆ SA

for A also makes the given statement if they are all liars. Here,

P(Dc ∩ Cc ∩ Bc ∩ Ac) = 16

81
,

and likewise Dc ∩ Cc ∩ B ∩ A, Dc ∩ C ∩ Bc ∩ A and Dc ∩ C ∩ B ∩ Ac are included in
SA, each having probability 4

81 . These mutually exclusive outcomes exhaust the possibil-
ities, so by conditional probability

P(D|SA) = P(D ∩ SA)

P(D ∩ SA)+ P(Dc ∩ SA)
=

13

81
13

81
+ 28

81

= 13

41
.

(1) Exercise What is the probability that C did claim that D is a liar, given SA?
(2) Exercise What is the probability that both C and D lied, given SA?
(3) Exercise Prove the result of the example more laboriously by using conditional probability,

rather than by listing outcomes.
(4) Exercise Eddington himself gave the answer to this problem as 2571 . This is the controversy! Can

you reconstruct the argument that led him to this answer?

Remark This example is similar to Example 2.13, in that it is entertaining but of no
real practical value. Our theory of probability does not pretend to include this type of
problem, and nothing can be said about the credibility of real reports by these methods.
Despite this, the first attempt to do so was made in the seventeenth century, and such
attempts have been repeated sporadically ever since.

PROBLEMS

1 The probability that an archer hits the target when it is windy is 0.4; when it is not windy, her
probability of hitting the target is 0.7. On any shot, the probability of a gust of wind is 0.3. Find the
probability that:
(a) On a given shot, there is a gust of wind and she hits the target.
(b) She hits the target with her first shot.
(c) She hits the target exactly once in two shots.
(d) There was no gust of wind on an occasion when she missed.
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2 Let A, B be two events with P(B) > 0. Show that
(a) If B ⊂ A, then P(A|B) = 1,
(b) If A ⊂ B, then P(A|B) = P(A)/P(B).

3 Three biased coins C1,C2,C3 lie on a table. Their respective probabilities of falling heads when
tossed are 13 ,

2
3 , and 1. A coin is picked at random, tossed, and observed to fall heads. Calculate the

probability that it is Ck for each k = 1, 2, 3.
Given that a coin has been tossed once and observed to fall heads, calculate the probability that

a second throw of the same coin will also produce heads.
The experiment is begun again with the same three coins. This time the coin selected is tossed

twice and observed to fall heads both times. Calculate the probability that it isCk for each k = 1, 2, 3.
Given that a coin has been tossed twice and observed to fall heads both times, calculate the

probability that a third throw of the same coin will also produce heads.
4 (a) An event E is independent of itself. Show that it has probability either 0 or 1.

(b) Events A and B are disjoint. Can you say whether they are dependent or independent?
(c) Prove that if events A and B are independent then so are the events Ac and B, and the events

Ac and Bc.
5 Candidates are allowed at most three attempts at a given test. Given j − 1 previous failures, the

probability that a candidate fails at his j th attempt is p j . If p1 = 0.6, p2 = 0.4, and p3 = 0.75,
find the probability that a candidate:
(a) Passes at the second attempt:
(b) Passes at the third attempt:
(c) Passes given that he failed at the first attempt;
(d) Passes at the second attempt given that he passes.

6 Dick throws a die once. If the upper face shows j , he then throws it a further j − 1 times and adds
all j scores shown. If this sum is 3, what is the probability that he only threw the die
(a) Once altogether?
(b) Twice altogether?

7 Aman has five coins in his pocket. Two are double-headed, one is double-tailed, and two are normal.
They can be distinguished only by looking at them.
(a) The man shuts his eyes, chooses a coin at random, and tosses it. What is the probability that

the lower face of the coin is a head?
(b) He opens his eyes and sees that the upper face is a head. What is the probability that the lower

face is a head?
(c) He shuts his eyes again, picks up the coin, and tosses it again. What is the probability that the

lower face is a head?
(d) He opens his eyes and sees that the upper face is a head. What is the probability that the lower

face is a head?
8 An urn contains four dice, one red, one green, and two blue.

(a) One is selected at random; what is the probability that it is blue?
(b) The first is not replaced, and a second die is removed. What is the chance that it is: (i) blue? or

(ii) red?
(c) The two dice are thrown. What is the probability that they show the same numbers and are the

same colour?
(d) Now the two remaining in the urn are tossed. What is the probability that they show the same

number and are the same colour, given that the first two did not show the same number and
colour?

9 A 12-sided die A has 9 green faces and 3 white faces, whereas another 12-sided die B has 3 green
faces and 9 white faces. A fair coin is tossed once. If it falls heads, a series of throws is made with
die A alone; if it falls tails then only the die B is used.
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(a) Show that the probability that green turns up at the first throw is 12 .
(b) If green turns up at the first throw, what is the probability that die A is being used?
(c) Given that green turns up at the first two throws, what is the probability that green turns up at

the third throw?
10 Suppose that any child is male with probability p or female with probability 1− p, independently

of other children. In a family with four children, let A be the event that there is at most one girl, and
B the event that there are children of both sexes. Show that there is a value of p, with 0 < p < 1

2 ,
such that A and B are independent.

11 Suppose that parents are equally likely to have (in total) one, two, or three offspring. A girl is
selected at random; what is the probability that the family includes no older girl? (Assume that
children are independent and equally likely to be male or female.)

12 Two roads join Ayton to Beaton, and two further roads join Beaton to the City. Ayton is directly
connected to the City by a railway. All four roads and the railway are each independently blocked
by snow with probability p. I am at Ayton.
(a) Find the probability that I can drive to the City.
(b) Find the probability that I can travel to the City.
(c) Given that I can travel to the City, what is the probability that the railway is blocked?

13 An urn contains b blue and r red balls, which may be withdrawn at random according to one of
the following three schemes.
(a) The balls are removed at random one at a time until all those remaining are of the same colour.
(b) The balls are removed until a ball differs in colour from its predecessor. This first different ball is

replaced in the urn; this process is then continued until the remaining balls are all the same colour.
(c) The balls are removed one by one and inspected. The first is discarded. Each succeeding

ball that is the same colour as its predecessor is replaced, the others are discarded, until the
remaining balls are all the same colour.

In each case, find the probability that the remaining balls are all red.
14 Let A1, A2, . . . , An be independent events. Show that the probability that none of the events

A1, . . . , An occur is less than exp (−
∑n

1 P(Ai )).
15 Let A and B be independent events. Show that

max{P((A ∪ B)c),P(A ∩ B),P(A� B)} ≥ 4

9
.

16 A coin is tossed repeatedly; on each toss, a head is shown with probability p or a tail with
probability 1− p. All tosses are mutually independent. Let E denote the event that the first run of
r successive heads occurs earlier than the first run of s successive tails. Let A denote the outcome
of the first toss. Show that

P(E |A = head) = pr−1 + (1− pr−1)P(E |A = tail).
Find a similar expression for P(E |A = tail) and hence find P(E).

17 After marking the papers of a certain student, the examiners are unable to decide whether he really
understands the subject or is just bluffing. They reckon that the probability that he is a bluffer is
p, 0 < p < 1, and the probability that he understands is q = (1− p). They therefore give him a
viva voce consisting of n independent questions, each ofwhich has a probability u of being answered
by someone who understands the subject. Unfortunately, there is also a probability b, 0 < b < 1,
that the answer can be guessed by someone who does not understand. Show that the probability
that the student understands given that he manages to answer k questions correctly is given by r ,
where

r = quk(1− u)n−k

quk(1− u)n−k + pbk(1− b)n−k
.
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Show that if the student gets every single question right and u > b, then as n increases the proba-
bility that the student really understands tends to 1. Howmany questionsmust the student get right to
convince the examiners that it is more likely that he understands the subject than that he is bluffing?

18 A team of three students Amy, Bella, and Carol answer questions in a quiz. A question is answered
by Amy, Bella, or Carol with probability 1

2 ,
1
3 , or

1
6 , respectively. The probability of Amy, Bella,

or Carol answering a question correctly is 45 ,
3
5 , or

3
5 , respectively. What is the probability that the

team answers a question correctly? Find the probability that Carol answered the question given
that the team answered incorrectly.
The team starts the contest with one point and gains (loses) one point for each correct (incorrect)

answer. The contest endswhen the team’s score reaches zero points or 10 points. Find the probability
that the team will win the contest by scoring 10 points, and show that this is approximately 4

7 .
19 A and B play a sequence of games. in each of which A has a probability p of winning and B has

a probability q (= 1− p) of winning. The sequence is won by the first player to achieve a lead of
two games. By considering what may happen in the first two games, or otherwise, show that the
probability that A wins the sequence is p2/(1− 2pq).
If the rules are changed so that the sequence is won by the player who first wins two consecutive

games, show that the probability that A wins the sequence becomes p2(1+ q)/(1− pq).
Which set of rules gives that weaker player the better chance of winning the sequence?

20 You toss a coin. If it shows a tail, you roll one die and your score is the number it shows. If the coin
shows a head, you toss five more coins and your score is the total number of heads shown (including
the first coin). If you tell me only that your score is two, what is the probability that you rolled a die?

21 Three fair dice labelled A, B, and C are rolled on to a sheet of paper. If a pair show the same
number a straight line is drawn joining them. Show that the event that the line AB is drawn is
independent of the event that BC is drawn. What is the probability that a complete triangle is
drawn? (The dice are not colinear.)

22 You roll a fair die n times. What is the probability that
(a) You have rolled an odd number of sixes?
(b) You have not rolled a six on two successive rolls?
(c) You rolled a one before you rolled a six, given that you have rolled at least one of each?

23 Irena throws at a target. After each throw she moves further away so that the probability of a hit
is two-thirds of the probability of a hit on the previous throw. The probability of a hit on the first
throw is 1

4 . Find the probability of a hit on the nth throw. Deduce that the probability of never
hitting the target is greater than 1

4 .
24 A fair coin is tossed three times. What is the probability that it lands “heads” at least once?

In a coin-tossing game, a player tosses five fair coins. If he is content with the result, he stops.
If not, he picks up one or more of the coins and tosses them a second time. If he is still dissatisfied,
he may for one last time pick up and throw again one or more of the coins. Show that if the player’s
aim is to finish with five heads showing, and if he uses the best strategy, then the probability that
he will succeed is ( 78 )

5.
A second player plays the same game but aims to finish with either all heads or all tails showing.

What is the probability of his succeeding?
25 Alf and Bert play a game that each wins with probability 1

2 . The winner then plays Charlie whose
probability of winning is always θ . The three continue in turn, the winner of each game always
playing the next game against the third player, until the tournament is won by the first player to win
two successive games, Let pA, pB, pC be the probabilities that Alf, Bert, and Charlie, respectively,
win the tournament. Show that pC = 2θ2/(2− θ + θ2). Find pA and pB , and find the value of θ
for which pA, pB, pC are all equal. (Games are independent.)
If Alf wins the tournament, what is the probability that he also won the first game?

26 Box A contains three red balls and two white balls; box B contains two red balls and two white
balls. A fair die is thrown. If the upper face of the die shows 1 or 2, a ball is drawn at random from



80 2 Conditional Probability and Independence

box A and put in box B and then a ball is drawn at random from box B. If the upper face of the
die shows 3, 4, 5 or 6, a ball is drawn at random from box B and put in box A, and then a ball is
drawn at random from box A.
What are the probabilities

(a) That the second ball drawn is white?
(b) That both balls drawn are red?
(c) That the upper face of the red die showed 3, given that one ball drawn is white and the other red?

27 A fair six-sided die, with faces numbered from 1 to 6, is thrown repeatedly on to a flat surface until
it first lands with the 6 face uppermost. Find the probability that this requires:
(a) n throws.
(b) An even number of throws.
(c) Show that the probability that the 5 face appears at least once before the first 6 is 12 , and find

the probability that all the faces 1 to 5 appear before the first 6.
28 Suppose that n water lily leaves are placed so that the base of each leaf lies on a circle. A frog is

initially on leaf L1; she hops clockwise to the adjacent leaf L2 with probability p, or anticlockwise
to leaf Ln with probability q . Succeeding hops are independent, and go to the nearest leaf clockwise
with probability p or the nearest leaf anticlockwise with probability q .
Find the probability that:

(a) The frog returns to L1 before visiting all n leaves.
(b) The first hop on to L1 has the same orientation as the first hop off L1.
(c) What is the probability that the first hop on to L1 is clockwise?

29 Anselm and Bill toss a fair coin repeatedly. Initially, Anselm has m marks, where 1 ≤ m ≤ n − 1.
If the coin shows a head, then Anselm gains a mark from Bill; otherwise, he forfeits a mark to
Bill. Whenever Anselm has n marks, he must immediately give one to Bill.
Let pk

m be the probability that Anselm has n marks on k occasions before the first moment
at which he has no marks. Write down a difference equation for pk

m , with appropriate boundary
conditions, and deduce that for k ≥ 1,

pk
m =

m

n2

(
1− 1

n

)k−1
.

Explain how you could have shown this without solving the equation for pk
m . Show that Anselm

is certain to lose all his marks eventually.
30 A and B each have $60. They play a sequence of independent games at each of which A wins

$x from B with probability p, or loses $x to B with probability q , where p + q = 1. The
stake x is determined by rolling a fair die once, and setting x as the number shown by the die;
1 ≤ x ≤ 6.
(a) What is the probability that A wins his opponent’s fortune before losing his own?
(b) If A could choose the stake to be an integer x such that 1 ≤ x ≤ 6, and p < q , what value

should he choose for x?
31 A document is equally likely to be in any of three boxfiles. A search of the i th box will discover

the document (if it is indeed there) with probability pi .
What is the probability that the document is in the first box:

(a) Given that I have searched the first box once and not found it?
(b) Given that I have searched the first box twice and not found it?
(c) Given that I have searched all three boxes once and not found it?
Assume searches are independent.

32 A network forming the edges of a cube is constructed using 12 wires, each 1 metre long. An ant is
placed on one corner and walks around the network, leaving a trail of scent as it does so. It never
turns around in the middle of an edge, and when it reaches a corner:
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(i) If it has previously walked along both the other edges, it returns along the edge on which it
has just come.

(ii) If it has previously walked along just one of the other edges, it continues along the edge along
which it has not previously walked.

(iii) Otherwise, it chooses one of the other edges arbitrarily.
Show that the probability that the ant passes through the corner opposite where it started after

walking along just three edges is 12 , but that it is possible that it never reaches the opposite corner.
In the latter case, determine the probability of this occurring. What is the greatest distance that the
ant has to walk before an outside observer (who knows the rules) will know whether the ant will
ever reach the corner opposite where it started?
Show that the rules may be modified to guarantee that the ant (whose only sense is smell) will

be able to reach the corner opposite the corner where it started by walking not more than a certain
maximum distance that should be determined. The ant can count.

33 Pooling You have (n!)2 jars of fluid, one of which is contaminated. Any jar is equally likely
to be the contaminated one, and you need to identify it. Luckily, you have an infallible test.
(a) If you test the jars one at a time, find the probability that you require t tests to identify the

contaminated jar.
(b) Alternatively, you may arrange the jars in j groups of size k, where jk = (n!)2. A sample from

each of the jars in a group is pooled in one jar, and this pooled sample is tested. On finding the
contaminated pooled sample, each jar of this group is tested separately. Find the probability
that you require t tests to find the contaminated jar.

(c) What is the best choice for j and k?
34 Simpson’s Paradox Two drugs are being tested. Of 200 patients given drug A, 60 are cured;

and of 1100 given drug B, 170 are cured. If we assume a homogeneous group of patients, find the
probabilities of successful treatment with A or B. Now closer investigation reveals that the 200
patients given drug A were in fact 100 men, of whom 50 were cured, and 100 women of whom
10 were cured. Further, of the 1100 given drug B, 100 were men of whom 60 were cured, and
1000 were women of whom 110 were cured. Calculate the probability of cure for men and women
receiving each drug; note that B now seems better than A. (Results of this kind indicate how much
care is needed in the design of experiments. Note that the paradox was described by Yule in 1903,
and is also called the Yule-Simpson paradox.)

35 In Problem 34, given that a randomly chosen patient is cured, find:
(a) The probability that the patient is male.
(b) The probability that the patient is female.

36 Prisoners’ Paradox Three prisoners are informed by their warder that one of them is to be
released and the other two shipped to Devil’s Island, but the warder cannot inform any prisoner
of that prisoner’s fate. Prisoner A thus knows his chance of release to be 1

3 . He asks the warder to
name some one of the other two who is destined for Devil’s Island, and the warder names B. Can
A now calculate the conditional probability of his release?

37 Let A and B be events. Show that P(A ∩ B|A ∪ B) ≤ P(A ∩ B|A). When does equality hold?
38 Explain the following “paradox” posed by Lewis Carroll. We are provided with a supply of balls

that are independently equally likely to be black or white.

Proposition If an urn contains two such balls, then one is black and the other white.

Proof Initially, P(B B) = P(BW ) = P(W B) = P(W W ) = 1
4 . Add a black ball, so that now

P(B B B) = P(B BW ) = P(BW B) = P(BW W ) = 1

4
.
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Now pick a ball at random. By (2.1.3),

P(black ball drawn) = 1.1
4
+ 2

3
.
1

4
+ 2

3
.
1

4
+ 1

3
.
1

4
= 2

3
.

But if I pick a ball at random from three, with probability 2
3 of drawing a black ball, then two are

black and one is white. Hence, before adding the black ball the urn contained one white ball and
one black ball. �

39 Let M1, M2, . . . , Mn be a sequence of men such that M j reports to M j+1 on a statement made by
M j−1. Let Rn be the event that Mn reports that Mn−1 reports that . . . that M2 reports that M1 is a
liar. If each reporter lies independently with probability p, find pn , the probability that M1 told the
truth given Rn . Show that as n →∞, pn → 1− p.

40 Suppose that for events S, A, and B,

P(S|A) ≥ P(S)(*)

P(A|S ∩ B) ≥ P(A|S)
P(A|Sc) ≥ P(A|Sc ∩ B).

(a) Show that, except in trivial cases, P(S|A ∩ B) ≥ P(S|B).
(b) Show that P(S|A) ≥ P(A).
(c) Show that if (∗) is replaced by P(S|B) ≥ P(S), then P(S|A ∩ B) ≥ P(S|A).

41 You have to play Alekhine, Botvinnik, and Capablanca once each. You win each game with respec-
tive probabilities pa, pb, and pc, where pa > pb > pc. You win the tournament if you win two
consecutive games, otherwise you lose, but you can choose in which order to play the three games.
Show that to maximize your chance of winning you should play Alekhine second.

42 Show that the events A and B are mutually attractive if and only if P(B|A) > P(B|Ac).
43 Weather Days can be sunny or cloudy. The weather tomorrow is the same as the weather

today with probability p, or it is different with probability q , where p + q = 1. If it is sunny today,
show that the probability sn that it will be sunny n days from today satisfies

sn = (p − q)sn−1 + q; n ≥ 1,
where s0 = 1. Deduce that

sn = 1

2
(1+ (p − q)n); n ≥ 1.

44 Flats, Sharps, and Craps Dice can be crooked (or weighted) in various ways. One way is to
shorten the distance between one pair of opposite faces, thus making them more likely; these are
called flats (also known as broads or doctors).
Another way is to taper all four sides of the die, creating a truncated pyramid, or to insert a weight

in the base. The top face becomes more likely and the base less likely; these are called sharps.
You have three pairs of dice:
(i) A fair pair for which p1 = p2 = p3 = p4 = p5 = p6 = 1

6 .
(ii) A pair of 1–6 flats for which p1 = p6 = 1

4 and p2 = p3 = p4 = p5 = 1
8 .

(iii) A pair of 5–2 sharps for which p5 = 1
4 , p2 = 1

12 , and p1 = p3 = p4 = p6 = 1
6 .

With which pair would you prefer to play craps? (See Example 1.12 for the rules.)
45 The Monty Hall Problem: Example 2.13B Suppose that the presenter’s protocol requires

him to show you a goat when he opens another door. With a choice of two goats (called Bill and
Nan, say), he shows you Bill with probability b. Show that the conditional probability that the
third door conceals the car, given that you are shown Bill, is 1

1+b .
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Counting

What I say is, patience, and shuffle the cards.
Cervantes

This chapter deals with a special subject and may be omitted on a first reading. Its contents
are important and useful, but are not a prerequisite for most of the following chapters.

3.1 First Principles

We have seen that many interesting problems in probability can be solved by counting
the number of outcomes in an event. Such counting often turns out to also be useful in
more general contexts. This chapter sets out some simple methods of dealing with the
commonest counting problems.
The basic principles are pleasingly easy and are perfectly illustrated in the following

examples.

(1) Principle If I havem garden forks and n fish forks, then I havem + n forks altogether.

(2) Principle If I have m different knives and n different forks, then there are mn distinct
ways of taking a knife and fork.

These principles can be rephrased in general terms involving objects, operations, or sym-
bols and their properties, but the idea is already obvious. The important points are that in
(1), the two sets in question are disjoint; that is a fork cannot be both a garden fork and a
fish fork. In (2), my choice of knife in no way alters my freedom to choose any fork (and
vice versa).
Real problems involve, for example, catching different varieties of fish, drawing various

balls from a number of urns, and dealing hands at numerous types of card games. In the
standard terminology for such problems, we say that a number n (say) of objects or things
are to be divided or distributed into r classes or groups.
The number of ways in which this distribution can take place depends on whether

(i) The objects can be distinguished or not.
(ii) The classes can be distinguished or not.
(iii) The order of objects in a class is relevant or not.

83
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(iv) The order of classes is relevant or not.
(v) The objects can be used more than once or not at all.
(vi) Empty classes are allowed or not.

We generally consider only the cases having applications in probability problems. Other
aspects are explored in books devoted to combinatorial theory.

(3) Example (a) Six dice are rolled. What is the probability that they all show different
faces?
(b) What is the probability that five dice show different faces when rolled?

Solution (a) Let A be the event that they all show different faces. Then, because of
the assumed symmetry of the dice,

P(A) = |A||�| .
Now the upper face of each diemay be freely chosen in six different ways, so by Principle 2

|�| = 66 = 46656.
However, for outcomes in A, the upper faces are required to be different. Thus, when the
upper face of one die is freely chosen in six ways, the upper face of the next can be freely
chosen in five ways (different from the first choice). The next may be freely chosen in four
ways, and so on. Hence, by Principle 2, |A| = 6! and

P(A) = 6!

66
= 5

324
.

(b) Let Â be the event that the five dice show different faces. By the same argument as
above, |�| = 65.
For outcomes in Â we may first make a free choice of which different five faces are to

be shown; this is the same as choosing one face not to be shown, which we can do in six
ways. Then the first face is freely chosen in five ways, the second in four ways, and so on.
Hence, | Â| = 6! and

P( Â) = 6!

65
= 5

54
. �

3.2 Permutations: Ordered Selection

Suppose that several objects are placed randomly in a row; playing cards or lottery numbers
provide trite examples (but important if you hold a ticket). The number of ways in which
this arrangement may occur depends on how many objects there are, whether they are
all distinct, whether they may be repeated, and so on. Such arrangements are called
permutations.

(1) Theorem Given n distinct symbols, the number of distinct permutations (without
repetition) of length r ≤ n is

n(n − 1) . . . (n − r + 1) = n!

(n − r )!
.
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(2) Theorem Given n distinct symbols which may be repeated any number of times, the
number of permutations of length r is nr .

Proof Theorems (1) and (2) are easily proved by induction. You do it. �

(3) Theorem Given n =∑r
i=1 ni symbols of r distinct types, where ni are of type i

and are otherwise indistinguishable, the number of permutations (without repetition)
of all n symbols is

Mn(n1, . . . , nr ) = n!
r∏

i=1
ni !

.

Proof Suppose that the symbols of each type are numbered so that they are all distin-
guishable. Then in each originally unnumbered permutation, the symbols of type 1 can
be permuted in n1! ways, the symbols of type 2 in n2! ways, and so on. Thus, the total
number of permutations is Mn(n1, . . . , nr )n1!n2! . . . nr !.However, we already know from
(1) that the number of permutations of n objects is n!. Hence,

Mn(n1, . . . , nr )n1! . . . nr ! = n!,

which proves (3). �

The number Mn is known as a multinomial coefficient. A particularly important case that
arises frequently is when r = 2. This is a binomial coefficient, and it has its own special
notation:

Mn(k, n − k) =
(n

k

)
in most books.(4)

= nCk in some older books.

= n!

k!(n − k)!
.

(5) Example You are playing bridge. When you pick up your hand, you notice that the
suits are already grouped; that is, the clubs are all adjacent to each other, the hearts likewise,
and so on. Given that your hand contains four spades, four hearts, three diamonds, and
two clubs, what is the probability P(G) of this event G?

Solution There are 13! permutations of your hand, which we assume are equally
likely by symmetry. Now there are 4! permutations in which the spades are adjacent in
any given position, 4! where the hearts are adjacent, and so on. Furthermore, there are 4!
permutations of the order in which the respective suits may be placed in their adjacent
blocks. Hence, the number of permutations in which G occurs is 4!4!4!3!2! and

P(G) = (4!)33!2!

13!
= 4!

M13(4, 4, 3, 2)
.(6)
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Alternatively, youmay observe from (3) that there are M13(4, 4, 3, 2) permutations of your
hand where cards of the same suit are regarded as indistinguishable. For each order of
suits, only one of these is in G. Because there are 4! permutations of the suit order, we
immediately recover (6) again. �

Finally, we remark that the definition of the symbol (nr ) is sometimes extended to cases
other than that when n and r are integers with 0 ≤ r ≤ n.

(7) Definition For real x and nonnegative integer r ,( x

r

)
= x(x − 1) . . . (x − r + 1)

r !
�

This definition can occasionally provide more compact expressions, for example, we have(−x

r

)
= (−)r

(
x + r − 1

r

)
.

3.3 Combinations: Unordered Selection

In a bridge hand or an election, the order in which you get your cards or the politician
his votes is irrelevant. In problems of this type we do not arrange, we choose; a choice of
objects or symbols is also called a combination.

(1) Theorem The number of ways of choosing a set of r symbols from a set of n
distinct symbols without repetition is

n!

r !(n − r )!
=

(n

r

)
.

Proof This is just a special case of Theorem 3.2.3. �

(2) Theorem The number of ways of dividing n distinct objects into r distinct groups of
sizes n1, n2, . . . , nr , where

∑r
i=1 ni = n, is n!/

∏r
i=1 ni !.

Proof This is also a simple corollary of Theorem 3.2.3. �

(3) Theorem Out of n =∑r
1 ni symbols (where the i th distinct set contains ni indistin-

guishable symbols), we can select
∏r

i=1(ni + 1)− 1 combinations.

Proof Note that we can select any number of symbols from zero to ni , from each of the r
sets, but we cannot take zero from all of them. �

(4) Theorem Given a set of n distinct symbols that may be repeated any number of times,
the number of ways of choosing a set of size r is ( n+r−1

r ).
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Proof A proof of Theorem (4) may be found in Example 3.12 or Theorem 3.7.5. �

(5) Example: Ark The wyvern is an endangered species in the wild. You want to form a
captive breeding colony, and you estimate that a viable colony should initially contain r
males and r females. You therefore trap a sequence of animals, each of which is indepen-
dently male with probability p or female with probability q = 1− p, where p �= q (the
females are more wary). Find the probability pn that it is necessary to capture n animals
to create your viable colony of r males and r females.

Solution Let An be the event that you first possess r of each sex with the nth capture,
and let M be the event that the nth animal is male. Then, of the previous n − 1 captured
animals, r − 1 are male and n − r are female. For any fixed order of these sexes, the
probability of being captured in that order is pr qn−r . The number of ways of ordering
r males and n − r females, with a male last, is just the same as the number of ways of
choosing r − 1 of the first n − 1 captures to be male. By (1), this is ( n−1

r−1 ). Hence, for
n ≥ 2r,

P(An ∩ M) =
(

n − 1
r − 1

)
pr qn−r .

Likewise, when the last animal is female,

P(An ∩ Mc) =
(

n − 1
r − 1

)
qr pn−r ,

and so

pn =
(

n − 1
r − 1

)
qr pr (pn−2r + qn−2r ), n ≥ 2r. �

3.4 Inclusion–Exclusion

If a group of N men contains N (b1) who are bald, N (b2) who are bearded, and N (b1, b2)
who are bald and bearded, how many altogether are bald, bearded, or both? The answer
is

N1 = N (b1)+ N (b2)− N (b1, b2),(1)

because anyone who is both is counted once in all three terms on the right-hand side, and
so contributes just one to the total N1 in (1).
More generally, if a group of N objects may each have up to r distinct properties

b1, . . . , br , then the number possessing at least one is

N1 =
∑

bi

N (bi )−
∑

bi<b j

N (bi , b j )+ · · · + (−)r−1N (b1, . . . , br ).(2)

This is proved either by induction or by noting that any object having exactly k of the
properties is counted ( k

t ) times in the t th term, and it is the case that

k∑
t=1
(−)t+1

(
k

t

)
= 1.
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[See Problem 3.28(a).] Hence, this object contributes just one to the total N1, as required.
Notice that N0, the number of objects possessing none of the r properties, is just

N0 = N − N1.(3)

(4) Example:Derangements A permutation of the first n integers is called a derangement
if no integer is in its natural position.Thus, (3, 2, 1) is not a derangement of (1, 2, 3), but (2, 3,
1) is a derangement. Suppose one of the n! permutations of (1, . . . , n) is picked at random.
Find pn, the probability that it is a derangement, and show that as n →∞, pn → e−1.

Solution Letbk be the property that the integer k is in its natural position (the kth place).
Then, the number of derangements is n!− N1,where N1 is given by (2). Now, N (bk) is the
number of permutations of (1, . . . , n) with k fixed, namely, (n − 1)!. Likewise, N (bi , b j )
is the number of permutations of (1, 2, . . . , n) with i and j fixed, namely, (n − 2)!, and
so on. Hence,

N1 =
n∑

j=1
(n − 1)!−

∑
1≤i< j≤n

(n − 2)!+ · · · + (−)n−1

= n(n − 1)!−
(n

2

)
(n − 2)!+ · · · + (−)n−1.

Now, because all permutations were supposed equally likely, the required probability is

pn = 1

n!
(n!− N1) = 1− 1

1!
+ 1

2!
− 1

3!
+ · · · + (−)n 1

n!
→ e−1

as n →∞. �

3.5 Recurrence Relations

The answer a to a counting problem usually depends on some given parameters; such
as the original number n of objects, the number r which are red (say), or the number
s selected. We can make this explicit by writing, for example, a = a(n, r, s). It is often
possible to find relationships between two or more of a(n, r, s), and then the problem is
reduced to solving a recurrence relation. Some of these can indeed be solved.

(1) Theorem If (an; n ≥ 0) satisfies

an = c(n)an−1, n ≥ 1,
then

an =
n∏

k=1
c(k)a0.

Proof Trivial, by induction. �

(2) Theorem If (an; n ≥ 0) satisfies

an+2 + 2ban+1 + can = 0, n ≥ 0,
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and x = α and x = β are two distinct solutions of x2 + 2bx + c = 0, then

an = 1

α − β ((a1 − βa0)α
n − (a1 − αa0)β

n).

Proof Straightforward by induction. �

Higher-order linear difference equations can be solved similarly; we omit the details. The
recurrence can be in more than one variable, as the following example shows.

(3) Example Let a(n, k) be the number of ways of choosing k objects from n objects.
Show that

a(n, k) =
(n

k

)
.

Solution Suppose we add an additional (n + 1)th object, and choose k of these n + 1.
This may be done in a(n + 1, k) ways. But also we may consider whether the additional
object was among those chosen. The number of choices when it is not is a(n, k). If it is,
then it is necessary to choose k − 1 further objects from the remaining n, which we may
do in a(n, k − 1) ways. Then, a(n, k) satisfies the difference equation

a(n + 1, k) = a(n, k)+ a(n, k − 1), 0 ≤ k ≤ n,(4)

with solution by inspection a(n, k) = ( n
k ).

�

The array generated by a(n, k); 0 ≤ k ≤ n, as n increases, is called Pascal’s triangle; it
has many curious and interesting properties, which we do not explore here. Part of it is
displayed in Figure 3.1.

Figure 3.1 Pascal’s triangle written as an array of binomial coefficients and as the array of their
values. Observe that by (4), each term is obtained by adding its two neighbours in the row above

[except for ( 00 ) which is defined to be 1].
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3.6 Generating Functions

Even quite straightforward counting problems can lead to laborious and lengthy calcula-
tions. These are often greatly simplified by using generating functions (introduced by de
Moivre and Euler in the early eighteenth century). Later examples will show the utility
of generating functions; in this section, we give a fairly bald list of basic definitions and
properties, for ease of reference.

(1) Definition Given a collection of numbers (ai ; i ≥ 0), the function

ga(x) =
∞∑

i=0
ai x

i

is called the generating function of (ai ). (It is, of course, necessary that
∑

ai xi converges
somewhere if ga is defined as a function of x. If we regard ga as an element of a ring of
polynomials, such convergence is not necessary.) �

(2) Definition Given (ai ; i ≥ 0), the function

ha(x) =
∞∑

i=0

ai xi

i!

is the exponential generating function of (ai ). �

(3) Definition Given a collection of functions ( fn(y); n ≥ 0); the function

g(x, y) =
∞∑

n=0
xn fn(y)

is a bivariate generating function. �

The following crucial result is a corollary of Taylor’s Theorem. We omit the proof.

(4) Theorem (Uniqueness) If for some x0 and x1 we have

ga(x) = gb(x) <∞ for x0 < x < x1,

then ai = bi for all i .

Generating functions help to tackle difference equations; the following result is typical.

(5) Theorem If (an; n ≥ 0) satisfies a recurrence relation

an+2 + 2ban+1 + can = dn; n ≥ 0,
then

ga(x) = x2gd (x)+ a0 + a1x + 2ba0x

1+ 2bx + cx2
,

with a corresponding result for higher-order equations.
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Proof To prove (5), multiply each side of the recurrence by xn+2 and sum over n. �

The next four theorems are proved by rearranging the summation on the right-hand side
in each case. You should do at least one as an exercise.

(6) Theorem (Convolution) If (an) can be written as a convolution of the sequences (bn)
and (cn), so

an =
n∑

i=0
ci bn−i , n ≥ 0,

then

ga(x) = gc(x)gb(x).

(7) Theorem (Tails) If

bn =
∞∑

i=1
an+i , n ≥ 0,

then

gb(x) = ga(1)− ga(x)

1− x
.

(8) Theorem If

cn =
n∑

i=0
ai ,

then

gc(x) = ga(x)

1− x
.

(9) Theorem (Exponential Function) Let the function e(x) be defined by

e(x) =
∞∑

k=0

xk

k!
,

then

e(x + y) = e(x)e(y) = ex+y = ex ey .

Finally, we have the celebrated

(10) Binomial Theorems For integral n,

(1+ x)n =
n∑

k=0

(n

k

)
xk, n ≥ 0(11)

and

(1− x)−n =
∞∑

k=0

(
n + k − 1

k

)
xk n ≥ 0, |x | < 1.(12)
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(13) Example Let us prove the binomial theorems.

Proof of (11) Considering the product (1+ x)n = (1+ x)(1+ x) . . . (1+ x),we see that
a term xk is obtained by taking x from any choice of k of the brackets and taking 1 from
the rest. Because there are ( n

k ) ways of choosing k brackets, the term xk occurs ( n
k ) times

in the expansion. Because this is true for any k, the result follows.
Alternatively, you can prove (11) by induction on n, using the easily verified identity(n

k

)
=

(
n − 1
k − 1

)
+
(

n − 1
k

)
.

Proof of (12) Multiplication verifies that 1− xm+1 = (1− x)(1+ x + · · · + xm).Hence,
for |x | < 1, we let m →∞ to find that (12) is true for n = 1,

1

1− x
=

∞∑
0

xk .

Nowwecanprove (12) for arbitraryn in a number ofways; onepossibility is by induction
onn. Alternatively,we observe that a term xk is obtained in the product (1+ x + x2 + · · ·)n
if we choose a set of k xs from the n brackets, where we may take any number of xs from
each bracket. But by Theorem 3.3.4, this may be done in just ( n+k−1

k ) ways. The negative
binomial theorem (12) follows. �

Here is a classic example.

(14) Example: The Coupon Collector’s Problem Each packet of an injurious product is
equally likely to contain any one of n different types of coupon. If you buy r packets, what
is the probability p(n, r ) that you obtain at least one of each type of coupon?

Solution This famous problem can be approached in many different ways, as we see
later, but the exponential generating function offers a particularly elegant answer.
First, recall from Theorem 3.2.3 that the probability of getting r =∑n

1 ti coupons of n
distinct types, where ti are of type i, is

n−r Mr (t1, . . . , tn) = r !

nr t1! . . . tn!
.

Then, p(n, r ) is the sum of all such expressions in which ti ≥ 1 for all i (so we have at
least one coupon of each type).
But now expanding (

∑∞
t=1(s/n)t/t!)n by the multinomial theorem shows that the coef-

ficient of sr in this expansion is just p(n, r )/r !. Hence,(
exp

(
s

n

)
− 1

)n

=
∞∑

r=n

srp(n, r )/r !,

and we have obtained the exponential generating function of the p(n, r ). �

Suppose that you are a more demanding collector who requires two complete sets of
coupons, let p2(n, r ) be the probability that r packets yield two complete sets of n coupons.
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Then exactly similar arguments show that

(
exp

( s

n

)
− 1− s

n

)n
=

∞∑
r=2n

sr

r !
p2(n, r ),

and so on for more sets.
In conclusion, it is worth remarking that multivariate generating functions are often

useful, although they will not appear much at this early stage. We give one example.

(15) Multinomial Theorem Recall the multinomial coefficients defined in Theorem
3.2.3,

Mn(n1, . . . , nr ) = n!
r∏

i=1
ni !
;

r∑
i=1

ni = n.

We have

(x1 + x2 + · · · + xr )
n =

∑
Mn(n1, . . . , nr )x

n1
1 xn2

2 . . . xnr
r ,

where the sum is over all (n1, . . . , nr ) such that
∑

ni = n.

Proof This is immediate from the definition of Mn as the number of ways of permuting
n symbols of which ni are of type i . In this case xi is of type i , of course. �

Corollary Setting x1 = x2 = · · · = xr = 1 gives
∑

Mn(n1, . . . , nr ) = rn.

3.7 Techniques

When evaluating any probability by counting, it is first essential to be clearwhat the sample
space is, and exactly which outcomes are in the event of interest. Neglect of this obvious
but essential step has led many a student into lengthy but nugatory calculations.
Second, it is even more important than usual to be flexible and imaginative in your

approach. As the following examples show, a simple reinterpretation or reformulation can
turn a hard problem into a trivial one. The main mechanical methods are:

(i) Using the theorems giving the numbers of ordered and unordered selections, recalling
in particular that the number of ordered selections of r objects is the number of
unordered selections multiplied by r !

(ii) Use of the inclusion–exclusion principle.
(iii) Setting up recurrence relations.
(iv) Use of generating functions.

Third, we remark that the implicit assumption of this chapter can be turned on its head.
That is, we have developed counting techniques to solve probability problems, but the
solution of probability problems can just as well be used to prove combinatorial identities.
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(1) Example Prove the following remarkable identity:
n∑

k=0

(
n + k

k

)
2−(n+k) = 1.(2)

Hint: Consider an ant walking on a square lattice.

Solution An ant walks on the square lattice of points with nonnegative integer coor-
dinates (i, j), i ≥ 0, j ≥ 0. It starts at (0, 0). If it is at (x, y), it proceeds next either to
(x + 1, y) or to (x, y + 1)with equal probability 12 . Therefore, at some transition (certainly
less than 2n + 1 transitions), it leaves the square

(0 ≤ x ≤ n, 0 ≤ y ≤ n).

It does so either with an x-step from (n, y) to (n + 1, y),where 0 ≤ y ≤ n or with a y-step
from (x, n) to (x, n + 1), where 0 ≤ x ≤ n. Let these 2n + 2 events be Sy(0 ≤ y ≤ n) and
Sx (0 ≤ x ≤ n), respectively. Then by symmetry

n∑
x=0

P(Sx ) =
n∑

y=0
P(Sy) = 1

2
.(3)

However, Sy occurs if the ant has taken exactly y vertical steps before its (n + 1)th hori-
zontal step. There are ( n+y+1

y ) choices for the y vertical steps and each route to (n + 1, y)

has probability 2−(n+y+1). Hence,

P(Sy) =
(

n + y + 1
y

)
2−(n+y+1).(4)

Substituting (4) into (3) yields (2). �

Finally, we remind the reader of our remark in 1.6 that many counting problems are
traditionally formulated as “urn models.” They are used in this context for two reasons;
the first is utility. Using urns (instead of some realistic model) allows the student to see
the probabilistic features without prejudice from false intuition. The second reason is
traditional; urns have been used since at least the seventeenth century for lotteries and
voting. (Indeed the French expression “aller aux urnes” means “to vote”.) It was therefore
natural for probabilists to use them in constructing theoretical models of chance events.
A typical example arises when we look at the distribution of n accidents among days of
the week, and seek the probability of at least one accident every day or the probability of
accident-free days. The problem is equivalent to placing n balls in 7 urns, and seeking the
number of ways in which the outcome of interest occurs.
The following result is central here.

(5) Theorem Let (x1, . . . , xn) be a collection of integers, such that x1 + · · · + xn = r.
The number of distinct ways of choosing them is:

(a)

(
n + r − 1

n − 1
)

if xi ≥ 0 for all i.

(b)

(
r − 1
n − 1

)
if xi > 0 for all i.
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Note that (a) is equivalent to the number of ways of placing r indistinguishable balls in
n numbered urns, and (b) adds the additional requirement that there must be at least one
ball in each urn. Also, (a) is equivalent to Theorem 3.3.4.

Proof Using the urn model formulation, we simply imagine the r balls placed in a line.
Then allocate them to urns by placing r − 1 dividers in the n − 1 gaps between the balls.
Each such choice supplies a distinct set (x1, . . . , xn) with xi > 0, and there are (

r−1
n−1 )

such choices, by (3.3.1). This proves (b). For (a), we add n balls to the group, allocate
them in ( n+r−1

n−1 ) ways by (b), and then remove one ball from each urn. All such alloca-
tions form a one–one correspondence with an allocation with xi ≥ 0 and

∑n
1 xi = r. This

proves (a). �

3.8 Review and Checklist for Chapter 3

Many chance experiments have equally likely outcomes so that probabilities may be
evaluated by counting outcomes in events of interest. Counting can be useful in other
contexts also. In this chapter, we introduce a number of techniques for counting, foremost
among which is the use of generating functions.
We also introduced inclusion and exclusion, among other methods for counting the

outcomes in some event of interest, and many examples to show how these techniques are
applied to probability problems. In particular, we have that:

� The number of possible sequences of length r using elements from a set of size n is nr

(with repetition permitted).
� The number of permutations of length r using elements from a set of size n ≥ r is

n(n − 1) . . . (n − r + 1) (with repetition not permitted).
� The number of choices (combinations) of r elements from a set of size n ≥ r is(

n

r

)
= n(n − 1) . . . (n − r + 1)

r (r − 1) . . . 2.1 .

� The number of subsets of a set of size n is 2n .
� The number of permutations of n symbols, of r types, with ni of the i th type,
(n1 + · · · + nr = n), is

Mn(n1, . . . , nr ) = n!
r∏

i=1
ni !

.

� Given a collection of numbers (ai ; i ≥ 0) their generating function is g(x) =∑∞
i=0 ai xi ,

and their exponential generating function is h(x) =∑∞
i=0

ai xi

i! .
� The binomial theorems assert that for positive integer n,

(1+ x)n =
n∑

k=0

(
n

k

)
xk,



96 3 Counting

and

(1− x)−n =
∞∑

k=0

(
n + k − 1

k

)
xk .

� The multinomial theorem asserts that if
∑r

i=1 ni = n, where all quantities are positive
integers,

(x1 + x2 + · · · + xr )
n =

∑ n!
r∏

i=1
ni !

xni
1 · · · xnr

r .

� The number of derangements of a set of size n is

n!

(
1− 1

1!
+ 1

2!
− 1

3!
+ · · · + (−1)n 1

n!

)
.

Finally, we take this opportunity to state two useful approximations to n!:

� Stirling’s formula n! ∼ √2πnnne−n , which is to say that as n increases√
2πnnne−n/n!→ 1.

� Robbins improved formula* says that

exp

(
− 1

12n

)
<
√
2πnnne−n/n! < exp

( −1
12n + 1

)
.

Checklist of Terms for Chapter 3

3.2 permutation
multinomial coefficient
binomial coefficient

3.3 combinations
3.4 inclusion–exclusion

derangement
3.5 recurrence relation

Pascal’s triangle
3.6 generating function

exponential generating function
convolution
binomial theorems
coupon collecting
multinomial theorem

*Named for H.E. Robbins (1915–2001), famous for the book What Is Mathematics?, co-authored with R. Courant.
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WORKED EXAMPLES AND EXERCISES

3.9 Example: Railway Trains

Supposeyouwork in amarshallingyard.Givenn similarwagons and r similar locomotives,
how many distinct ways are there of making up r trains if empty trains are allowed, and
all the wagons are used, and either:

(a) The wagons and locomotives bear distinct numbers?
or

(b) The wagons are anonymous, but the locomotives are numbered?
or

(c) Wagons and locomotives are anonymous?

What are the corresponding numbers if each train must contain at least m wagons?

Solution (a) First consider how many ways the trains may be sent out of the yard.
This is just the number of permutations of n + r objects with the one constraint that the
first object has to be a locomotive! The number is r (n + r − 1)!. As regards just making
up trains, we do not require an ordering of the locomotives, so we divide by r ! to get the
answer

r (n + r − 1)!
r !

= (n + r − 1)!
(r − 1)!

(b) If the wagons are not numbered, then we cannot distinguish the n! permutations of
wagons, so the answer is

(n + r − 1)!
n!(r − 1)! =

(
n + r − 1

r − 1
)
,

which could alternatively have been obtained by observing that we can make up the
trains by choosing r places to intersperse the locomotives with the wagons, given that one
locomotive must be at the front.
(c) If neither locomotives nor wagons bear numbers, then the number of ways of making

up r trains is the number of distinct partitions of n into at most r nonnegative integers,
denoted by pr (n).
For example, the number 5 has altogether seven integral partitions

5= 4+ 1= 3+ 2= 3+ 1+ 1= 2+ 2+ 1= 2+ 1+ 1+ 1= 1+ 1+ 1+ 1+ 1
so p∞(5) = 7; of these, four are of three or fewer integers, so p3(5) = 4. There are no
simple expressions for pr (n), but we use the following result, which we state without
proof.

Theorem The number of partitions of n with at most k parts is the same as the number
of partitions of n in which no part is greater than k.
Now, if we define the generating function

gr (x) =
∞∑

n=1
pr (n)x

n,
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we can see that

1+ gr (x) = 1

1− x

1

1− x2
· · · 1

1− xr

by first expanding the right-hand side (by the negative binomial theorem 3.6.12), and then
observing that the term xn arises just as often as n can be written as the sum of positive
integers, no one of which is greater than r .
(b′) If each train must contain at least m wagons then we require mr ≥ n. In this case,

first suppose the wagons do not have numbers. We attachm to each train in essentially one
way, leaving n − mr to be distributed in any way. Using (b), we get the answer ( n−rm+r−1

r−1 )
ways.
(a′) If the wagons have numbers then any of the n! permutations is distinct, giving

n!( n−rm+r−1
r−1 ) ways.

(c′) If neither the locomotives nor wagons have numbers and each train must contain m
wagons at least, then we require the number of partitions of m into at most r integers, all
of which are not less than m. This is the same as the number of partitions of n − mr into
at most r integers, that is, pr (n − mr ), which is the coefficient of xn−mr in gr (x).

Remark The results about partitions of n are not used elsewhere. They are included as
an example of the power of generating functions, which are used extensively throughout
probability and related subjects.

(1) Exercise How many ways of making up the r trains are there if you do not have to use all the
wagons?

(2) Exercise In how many ways can five oranges be distributed among seven boys? How many
ways are there on the more realistic assumption that boys are indistinguishable?

(3) Exercise The hard disk on your PC stores 10 Tb. In how many ways can you divide it up so that
no section has less than 3 Tb? (Use only integral multiples of 1 Tb.)

3.10 Example: Genoese Lottery

Suppose that n cards in an urn each bear one of n consecutive integers; all the cards have
a different number. Five cards are randomly selected from the urn without replacement.
What is the probability that their numbers can be arranged as a run of three consecutive
numbers and a nonadjacent run of two consecutive numbers? (For example, 34578 or
23789.)

Solution There are ( n
5 ) ways of choosing a set of five numbers, and these are assumed

to be equally likely. We must count the number of sets providing the two required runs. If
the run of three is first and it starts at k, then the run of two may start at n − k − 4 places
(1 ≤ k ≤ n − 5). Hence, the runs may occur in this order in

n−5∑
k=1

n − k − 4 =
n−5∑
j=1

j = 1

2
(n − 5)(n − 4)

ways.
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The run of two is first in another 12 (n − 5)(n − 4) cases, so the required probability is
(n − 5)(n − 4)/( n

5 ).

Remark This lottery is called Genoese because it was introduced by a member of the
senate of Genoa named Benedetto Gentile in 1623. It was used to raise money in 1757 by
the treasury of Louis XV of France on the advice of Casanova, who had a licence to sell
tickets at 6% commission. The treasury also consulted d’Alembert; this was shortly after
he had asserted that the chance of HH or TT in two spins of a fair coin is 23 .
When Frederick II of Prussia used this lottery to raise money for his treasury, he asked

Euler to calculate the odds again.

(6) Exercise As above, n cards bear n consecutive integers. Find the probability that:
(a) If three cards are drawn, their numbers can form a run of length three.
(b) If three cards are drawn, their numbers include a run of length exactly two.
(c) If five cards are drawn, their numbers include two runs of length exactly two.

3.11 Example: Ringing Birds

Awood contains n birds, none of which is ringed. Each day one bird is caught, ringed (if it
does not already have a ring), and released. Each bird is equally likely to be caught on each
day. This procedure is repeated on r successive days, r ≥ n. Show that the probability of
ringing all the birds is p(r, n) where

p(r, n) =
n∑

j=0
(−) j

(
n

j

)(
1− j

n

)r

Solution I The total number of outcomes (birds being distinguishable), is nr .
Let N (r, n) be the number of outcomes in which every bird is caught at least once.

Because birds are distinct, some bird may be called the first bird. Let Nk(r, n) be the
number of outcomes in which the first bird is caught exactly k times, and all the birds are
caught at least once. There are ( r

k ) ways of choosing the k days on which the first bird is
caught, and N (r − k, n − 1) ways in which the remaining n − 1 birds may be caught on
the other r − k occasions.
Hence, by Principle 3.1.2,

Nk(r, n) =
(

r

k

)
N (r − k, n − 1),(1)

and, by Principle 3.1.1,

N (r, n) =
r∑

k=1
Nk(r, n).(2)

Of course,

N (r, 1) = 1.(3)
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Substituting (1) into (2) yields a rather complicated recurrence relation. It can be solved
by using the exponential generating function:

Gn(s) =
∞∑

r=1

sr

r !
N (r, n); n > 1.(4)

By (3), we have

G1(s) = es − 1.(5)

Now, multiply (2) by sr/r ! and sum over r [using (1)], to give

Gn(s) =
∞∑

r=1

r∑
k=1

sr−ksk

(r − k)!k!
N (r − k, n − 1)

=
∞∑

k=1

sk

k!
Gn−1(s) by the convolution theorem 3.6.6,

= (es − 1)Gn−1(s)
= (es − 1)n on iterating and using (5),

= ens
n∑

j=0
(−e−s) j

(
n

j

)
by the binomial theorem

=
∞∑

r=0

n∑
j=0

(n − j)r

r !
(−1) j

(
n

j

)
sr on expanding e(n− j)s .

Hence,

N (r, n) =
n∑

j=0
(−1) j

(
n

j

)
(n − j)r ,

using (4) and Theorem 3.6.4. Dividing by nr yields the required result.

Solution II We may alternatively use the principle of inclusion and exclusion. In the
terminology of Section 3.4, “objects” are outcomes and an “object with the kth property”
is an outcome in which k birds remain unringed. Now, the number of ways of selecting k
birds to remain unringed is

(n
k

)
, and the number of outcomes with k given birds unringed

is (n − k)r . Hence, by (3.4.1) and (3.4.3),

N (r, n) = nr −
(

n

1

)
(n − 1)r + · · · + (−1)n−1

(
n

n − 1
)
(n − (n − 1))r ,

which yields the required result.

(6) Exercise Do the example again using (1.4.8).
(7) Exercise What is the probability that no bird is caught more than twice?
(8) Exercise What is the probability that every bird is caught at least twice?
(9) Exercise As r →∞, show that the probability of ringing all the birds converges to one.
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3.12 Example: Lottery

In each draw of a lottery, an integer is picked independently at random from the first n
integers 1, 2, . . . , n. What is the probability that in a sample of r successive draws the
numbers are drawn in a nondecreasing sequence?

Solution I There are nr possible sequences in all. We may take any nondecreasing
sample sequence of r numbers, together with the first n integers, and arrange these n + r
integers as a nondecreasing sequence.Now, place a bar between adjacent different numbers
in this sequence, and place a star between adjacent equal numbers. The number to the right
of each star is a member of the original sample sequence; there are r stars and n + r − 1
places to choose to put them. Furthermore, each such choice corresponds to just one
possible sample sequence. By Theorem 3.3.1, there are therefore ( n+r−1

r ) nondecreasing
sample sequences, so the required probability is ( n+r−1

r )n−r .

Solution II Take any sample sequence s = {s1, s2, . . . , sr } and add j − 1 to s j to
get a unique new sequence t = {s1, s2 + 1, s3 + 2, . . . , sr + r − 1}. The sequence t is a
selection of r numbers without replacement from {1, 2, 3, . . . , n + r − 1}, and subtract-
ing j − 1 from t j yields a unique sequence s, which is selected with replacement from
{1, 2, . . . , n}.
Because there are ( n+r−1

r ) ways of choosing the sequence t , this is also the number of
ways of choosing s.

Remark Observe that this solution includes a proof of Theorem 3.3.4.

(1) Exercise What is the probability that the r numbers are drawn in a strictly increasing sequence?
(2) Exercise Show that the probability that no two drawn numbers are consecutive (i.e., differ by

unity) is r !( n−r+1
r )n−r .

(3) Exercise Integers are picked at random from {1, 2, . . . , n} until every integer k, 1 ≤ k ≤ n, has
been drawn at least once. What is the probability that m draws are required to achieve this?

3.13 Example: The Ménages Problem

Suppose that n married couples are seated randomly around a circular table so that men
and women alternate.

(a) Find the number of such seatings in which, for a given set of k couples, the husband
and wife are sitting in adjacent seats (some other couples may be adjacent also).

(b) Hence, deduce the probability that no couple is seated next to each other.

Solution There are two ways of choosing in which seats the women will sit, and n!
ways in which they can be arranged in them. The men can be seated in the remaining
seats (alternating with the women) in n! ways. Thus, by Principle 3.1.2, there are 2(n!)2

possible seating arrangements, which are equally likely by hypothesis.
(a) To count the number of arrangements inwhich a given set of k couples are adjacent, it

is first necessary to count the number of ways of choosing k pairs of adjacent seats for them
to occupy. First, consider 2n − k chairs in a row. Now, choose k of these [which we may
do in ( 2n−k

k ) ways], and place an extra chair by each of the k chosen chairs. This provides
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a choice of k distinct nonoverlapping pairs of adjacent chairs in a row of 2n. Conversely,
for any choice of k disjoint pairs of adjacent chairs from 2n, we may discard a chair from
each pair to give a choice of k from 2n − k chairs. This one–one correspondence shows
that the number of ways of choosing k disjoint pairs of chairs from 2n is just ( 2n−k

k ).
Now, number the seats round the circular table from 1 to 2n. By Principle 3.1.1, the

number of choices of k disjoint pairs of adjacent seats is the sum of the choices in which
(1, 2n) is such a pair [which number ( 2n−2−(k−1)

k−1 ) by the above result], and the choices in
which (1, 2n) is not a pair [which number( 2n−k

k )].
Hence, the disjoint pairs of seats can be chosen in

Mk =
(
2n − k − 1

k − 1
)
+
(
2n − k

k

)
=

(
2n

2n − k

)(
2n − k

k

)
ways.
The k couples to occupy these seats can be chosen in ( n

k ) ways, the women’s seats
chosen in two ways, the k chosen couples arranged in k! ways, and the remaining men and
women arranged in ((n − k)!)2 ways. Hence, using Principle 3.1.2, the number of seatings
for which the k couples are in adjacent seats is

Sk = 2n

2n − k
.

(
2n − k

k

)
.2k!((n − k)!)2 = 4n(2n − k − 1)!

(2n − 2k)!
((n − k)!)2.(1)

(b) Recalling the principle of inclusion and exclusion, we may interpret “an object with
the kth property” as “a seating with the kth couple adjacent.” Hence, by using (3.4.3) and
(3.4.2), the probability that no couple is adjacent is

n∑
k=0
(−)k

(n

k

) Sk

2(n!)2
=

n∑
0

(−)k 2n

2n − k

(
2n − k

k

)
(n − k)!

n!
.(2)

(3) Exercise Why does it not matter whether we assume the table has a principal seat (head) or not?
(4) Exercise Suppose that n pairs of twins are seated randomly at a round table. What is the

probability that no pair of twins sit next to each other? What is the limit of this probability as
n →∞?

(5) Exercise What is the limit of (2) as n →∞?

Remark The problem was first discussed by E. Lucas in 1891 (ménage is French
for household). This method of solution is due to K. Bogart and P. Doyle, American
Mathematical Monthly, 1986.

3.14 Example: Identity

Show that
r∑

j=0

(
j + k − 1

k − 1
)
=

(
r + k

k

)
.

Solution I Suppose we place r balls randomly in m urns. This is essentially the
same as arranging r balls and m − 1 stars in a row, where the balls between successive
stars are placed in successive urns. The positions for the stars may be chosen in (m+r−1

r−1 )
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ways. Now, in how many of these arrangements do we find b balls in the first urn? The
answer is, in just as many ways as the other r − b balls can be put in the otherm − 1 urns,
that is in (m+r−b−2

m−2 ) ways. Hence, by Principle 3.1.1,

r∑
b=0

(
m + r − b − 2

m − 2
)
=

(
m + r − 1

m − 1
)
.

Setting m − 1 = k, r − b = j gives the required result (1).

Solution II Multiply each side of (1) by xr and sum from r = 0. By Theorem 3.6.8,
we have

1

1− x

∞∑
r=0

xr

(
r + k − 1

k − 1
)
=

∞∑
r=0

(
r + k

k

)
xr ,

and by (3.6.10), both sides equal (1− x)−(k+1). The identity (1) follows by Theorem 3.6.4.

Solution III Obviously,

1

(1− x)k
= 1

(1− x)k−1
1

1− x
.

Equating the coefficient of xr on each side of this identity yields (1).

Remark Up to a point, these three methods are really the same, but Solution III does
illustrate how useful generating functions can be if you happen to hit on an appropriate
identity when you need it.

(2) Exercise Show that for any number x and integer j, ( x
j−1 )+ ( x

j ) = ( x+1
j ), and hence prove (1)

by a fourth method.
(3) Exercise Show that

∑n
j=0(−1) j ( x

j ) = (−1)n( x−1
n ).

(4) Exercise Show that
∑n

j=0(
x− j

r ) = ( x+1
r+1 )− ( x−n

r+1 ).

3.15 Example: Runs

A fair coin is tossed repeatedly. A run of heads is all the heads shown between one tail and
the next; if the first toss is a head, there is an opening run up to the first tail; and likewise,
there may be a closing run after the last tail. A zero run is no run.

(a) If the coin is tossed n times, show that the most likely number of runs (of heads,
including the opening and closing runs) is [ n

4 ] + 1 when n is large.
(b) Also, prove the identity

m∑
i=0

(
i + k − 1

k − 1
)(

m + k − i

k

)
=

(
2k + m

m

)
.

Solution (a) There are 2n possible outcomes.We can choose any outcome with k head
runs in the following way. Visualize the n coins in a row. They provide n + 1 intervening
spaces (including that before the first and that after the last coin). Now, place 2k stars
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in the spaces, and let the coins between the (2r + 1)th and (2r + 2)th stars be heads
(r = 0, 1, . . . , k − 1); the other coins are tails. There are ( n+1

2k ) ways to do this, so

fk = P(k head runs) = 2−n

(
n + 1
2k

)
.

Now considering fk/ fk+1, we find

fk

fk+1
≷ 1 according as k ≷ n2 + n − 2

4n
.

Therefore, the most likely number of runs is the integer next after nn+n−2
4n , which is

[
n
4

]+ 1
for large n.
(b) Suppose that the n tosses result in a heads and b tails. First, we divide the a heads

into k nonempty groups that form the runs. Imagining the heads in a row, there are a − 1
places to put k − 1 dividing lines, so the number of ways of getting the k runs of heads
is ( a−1

k−1 ). The head runs alternate with runs of tails, so the b tails are divided into k + 1
groups of which the first and last may be empty (providing an opening and/or closing run).
If we add an auxiliary tail to each, the same argument as used for head runs shows that
the number of ways of arranging the tails is(

b + 2− 1
k + 1− 1

)
=

(
b + 1

k

)
.

Hence, the number of ways of getting k head runs in n tosses showing a heads is

rk =
(

a − 1
k − 1

)(
b + 1

k

)
.

The total number of ways of getting k head runs is therefore

n−k+1∑
a=k

rk =
n−2k+1∑

i=0

(
i + k − 1

k − 1
)(

n − i − k + 1
k

)

=
m∑

i=0

(
i + k − 1

k − 1
)(

m + k − i

k

)
; m = n − 2k + 1,

=
(

n + 1
2k

)
by (a)

=
(
2k + m

m

)
as required.

Note: In the exercises, n tosses yield a heads and n − a tails.

(1) Exercise What is the probability that the first run is a head run of length k?
(2) Exercise What is the probability that the last run is a head run of length k?
(3) Exercise What is the probability that the second run is a head run of length k?
(4) Exercise What is the probability that the first run is of length k?
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3.16 Example: Fish

A lake contains b bream and c chub. Any fish of each species is equally likely to take a
hook.

(a) If you catch n fish and don’t throw any back, what is the probability that you have
caught x bream?

(b) You then return all the fish to the lake (alive) and start fishing again. You now catch
m fish. What is the probability that exactly k bream are caught twice?

Solution (a) The question clearly intends us to assume that all possible selections of
n fish are equally likely to occur. Then, the number of ways of selecting n fish without
repetition is ( b+c

n ). The number of ways of catching x bream (and hence also n − x chub)
is ( b

x )(
c

n−x ), so the required probability is

px =

(
b

x

)(
c

n − x

)
(

b + c

n

) , max{0, n − c} ≤ x ≤ min{b, n}.(1)

(b) We assume that fish do not learn from experience, so that all ( b+c
m ) selections of m

fish are still equally likely. If x bream were in the first catch, where k ≤ x ≤ b, then the
number of ways of selecting m fish, of which k are bream being caught for the second
time, is ( x

k )(
b+c−x

m−k ). Therefore, the required conditional probability of catching k bream
twice, given a first catch of x bream, is

pk|x =
( x

k

)(b + c − x

m − k

)/(
b + c

m

)

by the same argument as in (a). Hence, by Theorem 2.1.3, the required unconditional
probability is

pk =
∑

x

pk|x px =
b∑

x=k

(
b

x

)(
c

n − x

)( x

k

)(b + c − x

m − k

)
(

b + c

n

) (
b + c

m

)

(2) Exercise What is the probability of catching x bream if you catch n fish and
(a) You throw bream back but not chub?
(b) You throw both species back?

Part (a) considers sampling with partial replacement, and part (b) considers sampling with
replacement. Discuss the difference in your answers.

(3) Exercise Show that
∑min{b,n}

k=0 ( b
k )(

c
n−k ) = ( b+c

n ). [You may want to recall that (1+ x)b

(1+ x)c = (1+ x)b+c.]
(4) Exercise Suppose that as b and c approach∞, b/(b + c)→ p and c/(b + c)→ 1− p. Find

the limit of the probabilities in (1) and (2) as b and c →∞. Discuss.
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3.17 Example: Colouring

Let K (b, c) be the number of different ways in which b indistinguishable balls may be
coloured with c different colours. Show that K (b, c) = K (b − 1, c)+ K (b, c − 1) and
deduce that

∞∑
b=0

xb K (b, c) = (1− x)−c.

Use this to show K (b, c) = ( b+c−1
c−1 ).

Solution Pick any colour and call it grurple. The number of colourings is the number
of ways of colouring the balls which do not colour any grurple, plus the number of ways
of colouring which do use grurple. Hence,

K (b, c) = K (b − 1, c)+ K (b, c − 1).(1)

Also, K (1, c) = c, and K (0, c) = 1 because there are c colours for one ball and only one
way of colouring no balls. Now let

gc(x) =
∞∑

b=0
xb K (b, c).

Multiply (1) by xb and sum from b = 0 to get

gc(x) = xgc(x)+ gc−1(x).(2)

Now using Theorem 3.5.1, we solve (2) to find gc(x) = (1− x)−c. Furthermore, we may
write

(1− x)−c = (1+ x + x2 + · · ·)(1+ x + x2 + · · ·) · · · (1+ x + x2 + · · ·)

Where the right side is the product of c brackets. We get K (b, c) by picking a term from
each bracket, and we can say that picking xk from the i th bracket is like picking k objects
of type i . The coefficient K (b, c) of xb is thus obtained by choosing b objects from c
different types of objects with repetition. By Theorem 3.3.4, we have

K (b, c) =
(

c + b − 1
b

)
.(3)

(4) Exercise Let C(n, k) be the number of ways of choosing a set of k objects from n distinct
objects. Show that

∑n
k=0 C(n, k)xk = (1+ x)n .

(5) Exercise Howmany nonnegative integer valued solutions for x1, x2, and x3 does x1 + x2 + x3 =
20 have? [For example, x1 = 0, x2 = 4, x3 = 16.]

(6) Exercise How many positive integer valued solutions does x1 + x2 + x3 = 20 have for x1, x2,
and x3? [For example, x1 = 5, x2 = 6, x3 = 9.]

(7) Exercise Show that K (b, c) = ( b+c−1
c−1 ) by a method different from that in the above solution.
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3.18 Example: Matching (Rencontres)

Suppose n different letters are typed with their corresponding envelopes. If the letters are
placed at random in the envelopes, show that the probability that exactly r letters match
their envelopes is

p(n, r ) = 1

r !

n−r∑
k=0

(−1)k
k!

.(1)

[This problem first surfaced in France during the eighteenth century as a question about
coincidences when turning over cards from packs (a kind of French snap).]
Using (3.4.4) gives (1) easily; we display a different method for the sake of variety.

Solution We can suppose that the order of the envelopes is fixed. Let the number of
permutations of the letters in which r out of the n letters match their envelopes be a(n, r ).
Then,

p(n, r ) = a(n, r )

n!
.

Suppose we have another letter sealed in its correct envelope. Consider the number A of
arrangements that there are of this letter and n letters of which r match their envelopes.
We can get this number A in two ways. Either:

(i) We place the sealed letter in any one of n + 1 positions among the n letters to get
(n + 1)a(n, r ) arrangements:
or:

(ii) We permute n + 1 unsealed letters of which r + 1 match and then choose one of the
r + 1 matching letters to seal, giving (r + 1)a(n + 1, r + 1) arrangements.
The two numbers must both be equal to A, so (r + 1)a(n + 1, r + 1) =

(n + 1)a(n, r ) and hence, dividing by (n + 1)! we obtain
(r + 1)p(n + 1, r + 1) = p(n, r )(2)

with p(n, n) = 1/n!.
This is a rather interesting recurrence relation, which is solved by standard methods.

First iterating (2), we have

p(n, r ) = 1

r !
p(n − r, 0).(3)

Now define the probability generating function

gn(x) =
n∑

r=0
xr p(n, r ); n ≥ 1.

Multiplying (2) by xr and summing over r gives

gn(x) = xn

n!
+

n∑
r=1

p(r, 0)
xn−r

(n − r )!
.



108 3 Counting

The sum on the right is a convolution as in Theorem 3.6.6. so multiplying by yn and
summing over n, by Theorem 3.6.6

∞∑
1

yngn(x) = exy − 1+ exy
∞∑
1

yn p(n, 0).

Setting x = 1 and using Theorem 3.6.10 gives
y

1− y
= ey − 1+ ey

∞∑
1

yn p(n, 0)

so that
∞∑
1

yn p(n, 0) = e−y

1− y
− 1 =

∞∑
1

yn
n∑

k=0

(−1)k
k!

.(4)

Hence, by (4) and (3), we get (1).

(5) Exercise Find the probability that exactly r + s matches occur given that at least r matches
occur. Show that for large n, it is approximately

1

(r + s)!

/( ∞∑
r

1

k!

)
.

(6) Exercise Show that the probability that the first letter matches its envelope, given that there are
exactly r such matches, is r

n .
(7) Exercise If a cheque is written for each addressee and these are also placed at random in the

envelopes, find:
(a) The probability that exactly r envelopes contain the correct letter and cheque.
(b) The probability that no envelope contains the correct letter and cheque.
(c) The probability that every letter contains the wrong letter and the wrong cheque.

(8) Exercise Find the limit of each probability in 7(a), 7(b), and 7(c) as n →∞.
(9) Exercise Use 3.4.4 to prove (1) directly.

PROBLEMS

1 You have two pairs of red socks, three pairs of mauve socks, and four pairs with a rather attractive
rainbow motif. If you pick two socks at random, what is the probability that they match?

2 A keen student has a algebra books. b books on boundary layers, and c calculus books. If he places
them on one shelf at random, what is the probability that:
(a) Books on the same subject are not separated?
(b) Books on the same subject are in the usual alphabetical order, but not necessarily adjacent?
(c) Books on the same subject are adjacent and in alphabetical order?

3 A pack of cards is well shuffled and one hand of 13 cards is dealt to each of four players. Find the
probability that:
(a) Each player has an ace.
(b) At least one player has a complete suit.
(c) My hand is void in at least one suit.
(d) Some player has all the aces.
What is the most likely distribution among suits in the dealer’s hand?
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4 Poker You are dealt five cards in your hand at poker. What is the probability that you hold:
(a) One pair? (b) Two pairs?
(c) A straight? (d) A flush?
(e) A full house?

5 Birthdays Assume people are independently equally likely to be born on any day of the year.
Given a randomly selected group of r people, of whom it is known that none were born on February
29th, show that the probability that at least two of them have their birthdays either on consecutive
days or on the same day is pr where

pr = 1− (365− r − 1)!
(365− 2r )! 365

−r+1, (2r < 365).

Deduce that if r = 13, then the probability of at least two such contiguous birthdays is approximately
1
2 , while if r = 23 then the probability of at least two such contiguous birthdays is approximately
9
10 .

6 You pick an integer at random between zero and 105 inclusive. What is the probability that its digits
are all different?

7 One hundred light bulbs are numbered consecutively from 1 to 100, and are off. They are wired to
100 switches in such a way that the nth switch changes the state (off to on, or on to off) of all the
bulbs numbered kn; k ≥ 1. If the switches are all thrown successively, how many light bulbs are
on? What is the answer if you start with M light bulbs and M switches?

8 (a) Show that the product of any r consecutive integers is divisible by r !.
(b) Show that (k!)! is divisible by (k!)(k−1)!.

9 Poker Dice Each die bears the symbols A, K, Q, J, 10, 9. If you roll five such dice, what is the
probability that your set of five symbols includes:
(a) Four aces? (b) Four of a kind? (c) A, K, Q?

10 Eight rooks are placed randomly on a chess board (with at most one on each square). What is the
probability that:
(a) They are all in a straight line?
(b) No two are in the same row or column?

11 An urn contains 4n balls, n of which are coloured black, n pink, n blue, and n brown. Now, r balls
are drawn from the urn without replacement, r ≥ 4. What is the probability that:
(a) At least one of the balls is black?
(b) Exactly two balls are black?
(c) There is at least one ball of each colour?

12 Find the number of distinguishable ways of colouring the faces of a solid regular tetrahedron with:
(a) At most three colours (red, blue, and green);
(b) Exactly four colours (red, blue, green, and yellow);
(c) At most four colours (red, blue, green, and yellow).

13 An orienteer runs on the rectangular grid through the grid points (m, n),m, n = 0, 1, 2, . . . of
a Cartesian plane. On reaching (m, n), the orienteer must next proceed either to (m + 1, n) or
(m, n + 1).
(a) Show the number of different paths from (0, 0) to (n, n) equals the number from (1, 0) to

(n + 1, n) and that this equals ( 2n
n ), where (

k
r ) = k!

r !(k−r )! .
(b) Show that the number of different paths from (1, 0) to (n + 1, n) passing through at least one of

the grid points (r, r ) with 1 ≤ r ≤ n is equal to the total number of different paths from (0, 1)
to (n + 1, n) and that this equals ( 2n

n−1 ).
(c) Suppose that at each grid point the orienteer is equally likely to choose to go to either of the

two possible next grid points. Let Ak be the event that the first of the grid points (r, r ), r ≥ 1,
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to be visited is (k, k). Show that

P(Ak) = 4−k

2k − 1
(
2k − 1

k

)
.

14 A bag contains b black balls andw white balls. If balls are drawn from the bag without replacement,
what is the probability Pk that exactly k black balls are drawn before the first white ball?
By considering

∑b
k=0 Pk , or otherwise, prove the identity

b∑
k=0

(
b

k

)/(
b + w − 1

k

)
= b + w

w

for positive integers b, w.
15 (a) Show that N ‘£’ symbols and m‘.’ symbols may be set out in a line with a‘.’ at the right-hand

end in ( N+m−1
m−1 ) ways, provided m ≥ 1.

(b) A rich man decides to divide his fortune, which consists of N one-pound coins, among his m
friends. Happily N > m ≥ 1.
(i) In how many ways can the coins be so divided?
(ii) In how many ways can the coins be so divided if every friend must receive at least one?

(c) Deduce, or prove otherwise, that whenever N > m ≥ 1,
m∑

k=1

(
m

k

)(
N − 1
k − 1

)
=

(
N + m − 1

m − 1
)
.

16 Let N balls be placed independently at random in n boxes, where n ≥ N > 1, each ball having an
equal chance 1/n of going into each box. Obtain an expression for the probability P that no box
will contain more than one ball. Prove that N (N − 1) < K n, where K = −2 log P , and hence that
N < 1

2 +
√
(K n + 1

4 ).
Now suppose that P ≥ e−1. Show that N − 1 < 4n/5 and hence that K n < N (N + 1).
Prove finally that N is the integer nearest to

√
(K n + 1

4 ) when P ≥ e−1.
[You may assume that log(1− x) < −x for 0 < x < 1, that log(1− x) > −x − 3

2 x2 for 0 <

x < 4
5 , and that

∑N−1
r=1 r2 = N (N − 1)(2N − 1)/6.]

17 Consider sequences of n integers a1, a2, . . . , an such that 0 ≤ ai < k for each i , where k is a positive
integer.
(a) How many such sequences are there?
(b) How many sequences have all ai distinct?
(c) How many sequences have the property that a1 ≤ a2 ≤ . . . ≤ an?

18 Let an(n = 2, 3, . . .) denote the number of distinct ways the expression x1x2 . . . xn can be bracketed
so that only two quantities are multiplied together at any one time. [For example, when n = 2 there
is only one way, (x1x2), and when n = 3 there are two ways, (x1(x2x3)) and ((x1x2)x3).]
Prove that an+1 = an + a2an−1 + a3an−2 + · · · + an−2a3 + an−1a2 + an .

Defining A(x) = x + a2x2 + a3x3 + · · · prove that (A(x))2 = A(x)− x .
Deduce that A(x) = 1

2 (1− (1− 4x)
1
2 ), and show that

an = 1.3 . . . (2n − 3)
n!

2n−1.

19 Coupons Each packet of some harmful and offensive product contains one of a series of r
different types of object. Every packet is equally likely to contain one of the r types. If you buy
n ≥ r packets, show that the probability that you are then the owner of a set of all r types is

r∑
k=0
(−)k

( r

k

)(
1− k

r

)n

.
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20 Tennis Suppose that 2n players enter for two consecutive tennis tournaments. If the draws for
each tournament are random, what is the probability that no two players meet in the first round of
both tournaments? If n is large, show that this probability is about e−

1
2 .

21 Lotteries Again Suppose that n balls numbered from 1 to n are drawn randomly from an urn.
Show that the probability that no two consecutive numbers are actually carried by consecutive balls
drawn is

1− 1

1!

(
1− 1

n

)
+ 1

2!

(
1− 2

n

)
− 1

3!

(
1− 3

n

)
+ · · · + (−)n−1

n!
.

[Hint: show that the number of arrangements of 1, 2, . . . , n such that at least j pairs of consecutive
integers occur is (n − j)!.]

22 Runs A fair coin is tossed n times yielding a heads and n − a tails. Show that the probability
that there are k head runs and k tail runs (see Example 3.14 for definitions) is 2( a−1

k−1 )(
n−a−1

k−1 )
a!(n−a)!

n! .
Deduce that

a∧(n−a)∑
k=1

(
a − 1
k − 1

)(
n − a − 1

k − 1
)/(

n − 2
a − 1

)
= 1

(where x ∧ y denotes the smaller of x and y).
23 Camelot For obvious reasons Arthur would rather not sit next to Mordred or Lancelot at the

Round Table. (There are n seats, and n knights including these three.)
(a) If the n knights sit at random, what is the probability that Arthur sits next to neither? Does it

make any difference whether Arthur sits at random or not?
(b) If the n knights sit at random on two occasions, what is the probability that no one has the same

left-hand neighbour on the two occasions?
24 By considering (x + x2 + · · · + xn)r , show that n indistinguishable objects may be divided into r

distinct groups with at least one object in each group in ( n−1
r−1 ) ways.

25 There are 2n balls in an urn; the balls are numbered 1, 2, . . . , 2n. They are withdrawn at random
without replacement. What is the probability that
(a) For no integer j , the 2 j th ball drawn bears the number 2 j?
(b) For no integer j , the ball bearing the number j + 1 is removed next after the ball bearing the

number j?
Find the limit as n →∞ of the probabilities in (a) and (b).

26 A chandelier has seven light bulbs arranged around the circumference of a circle. By the end of a
given year, each will have burnt out with probability 1

2 . Assuming that they do so independently,
what is the probability that four or more bulbs will have burnt out?
If three bulbs burn out, what is the probability that no two are adjacent?
I decide that I will replace all the dead bulbs at the end of the year only if at least two are adjacent.

Find the probability that this will happen. If it does, what is the probability that I will need more
than two bulbs?

27 A biased coin is tossed 2n times. Show that the probability that the number of heads is the same as
the number of tails is ( 2n

n )(pq)n . Find the limit of this as n →∞.
28 Show that:

(a)
∑n

0(−)k( n
k ) = 0; (c)

∑n/2
k=0(

n
2k ) = 2n−1 If n is even;

(b)
∑n

0(
n
k ) = 2n ; (d)

∑n/2
k=0(

n
k ) = 2n−1 If n is even.

29 Observe that
(i) (1+ x)m(1+ x)n = (1+ x)m+n

(ii) (1− x)m(1− x)−n−2 = (1− x)m−n−2.
Now show that
(a)

∑k
j=0(

m
j )(

n
k− j ) = (m+n

k ) and (b)
∑m

k=1(−)m−k(m
k )(

n+k
n+1 ) = ( n

m−1 ).
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30 Show that for j ≤ n/2, n−n
∑ j

k=0(
n
k ) ≤ j− j (n − j)−(n− j).

31 Show that for fixed n, ( n
k ) is largest when k is the integer nearest to n

2 .
32 Show that (n

r

)( n + k

r + 2k

)(
n + 2k

r + k

)
=

(
n

r + k

)(
n + k

r

)(
n + 2k

r + 2k

)
,

and interpret this in Pascal’s triangle.
33 Show that

∑n
k=0(

a−k
b ) = ( a+1

b+1 )− ( a−n
b+1 ), and deduce that

∑n
k=0(

k+a−1
a−1 ) = ( n+a

a ).
34 An urn contains b blue balls and a aquamarine balls. The balls are removed successively at random

from the urn without replacement. If b > a, show that the probability that at all stages until the urn
is empty there are more blue than aquamarine balls in the urn is (b − a)/(a + b).
Why is this result called the ballot theorem?

(Hint: Use conditional probability and induction.)
35 The points A0, A1, . . . , An lie, in that order, on a circle. Let a1 = 1, a2 = 1 and for n > 2, let an

denote the number of dissections of the polygon A0A1 . . . An into triangles by a set of noncrossing
diagonals, Ai A j .
(a) Check that a3 = 2 and a4 = 5.
(b) Show that in each dissection there is a unique i(1 ≤ i ≤ n − 1) such that cuts are made along

both A0Ai and An Ai .
(c) Show that an = a1an−1 + a2an−2 + · · · + an−2a2 + an−1a1.
(d) If f (x) =∑∞

1 an xn , show (by considering the coefficient of each power of x) that ( f (x))2 −
f (x)+ x = 0, and show that f (x) = 1

2 − 1
2

√
(1− 4x).

36 Let A, B,C, D be the vertices of a tetrahedron. A beetle is initially at A; it chooses any of the edges
leaving A and walks along it to the next vertex. It continues in this way; at any vertex, it is equally
likely to choose to go to any other vertex next. What is the probability that it is at A when it has
traversed n edges?

37 Suppose that n sets of triplets form a line at random. What is the probability that no three triplets
from one set are adjacent?

38 Suppose a group of N objects may each have up to r distinct properties b1, . . . , br . With the notation
of (3.4.2), show that the number possessing exactly m of these properties is

Mm =
r−m∑
k=0
(−)k

(
m + k

k

)
N (b1, . . . , bm+k).

39 The Ménages Problem Revisited Use the result of Problem 38 to show that the probability
that exactly m couples are seated in adjacent seats is

pm = 2

m!

n−m∑
k=0
(−)k k(n − m − k)!(2n − m − k − 1)!

k!n!(2n − 2m − 2k)!
.

40 Suppose that N objects are placed in a row. The operation Sk is defined as follows: “Pick one of the
first k objects at randomand swap itwith the object in the kth place.”Nowperform SN , SN−1, . . . , S1.
Show that the final arrangement is equally likely to be any one of the N ! permutations of the objects.

41 Suppose that n contestants are to be placed in order of merit, and ties are possible. Let r (n) be the
number of possible distinct such orderings of the n contestants. (Thus, r (0) = 0, r (1) = 1, r (2) =
3, r (3) = 13, and so on.) Show that r (n) has exponential generating function

Er (x) =
∞∑

n=0

xn

n!
r (n) = 1

2− ex
.

[Hint: Remember the multinomial theorem, and consider the coefficient of xn in (ex − 1)k .]
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42 Derangements (3.4.4 Revisited) Write x̄ = x1 + x2 + · · · xn . Explain why the number of de-
rangements of the first n integers is the coefficient of x1x2x3 . . . xn in

(x2 + x3 + · · · + xn)(x1 + x3 + · · · + xn) · · · (x1 + x2 + · · · + xn−1)
= (x̄ − x1)(x̄ − x2) . . . (x̄ − xn)

= (x̄)n − (x̄)n−1
∑

xi + · · · + (−)n x1x2 . . . xn,

and hence deduce the expression for Pn given in (3.4.4).
43 (a) Choose n points independently at random on the perimeter of a circle. Show that the probability

of there being a semicircular part of that perimeter which includes none of the n points is n21−n .
(b) Choose n points independently at random on the surface of a sphere. Show that the probability

of there being a hemisphere which includes none of the n points is (n2 − n + 2)2−n .
44 A large number of students in a lecture room are asked to state on which day of the year they were

born. The first student who shares a birthday with someone already questioned wins a prize. Show
that, if you were in that audience, your best chance of winning is to be the twentieth person asked.

45 The n passengers for an n-seat plane have been told their seat numbers. The first to board chooses a
seat at random. The rest, boarding successively, sit correctly unless their allocated seat is occupied,
in which case they sit at random. Let pn be the probability that the last to board finds her seat free.
Find pn , and show that pn → 1

2 , as n →∞.



4
Random Variables: Distribution

and Expectation

I am giddy, expectation whirls me round.
William Shakespeare, Troilus and Cressida

4.1 Random Variables

In many experiments, outcomes are defined in terms of numbers (e.g., the number of heads
in n tosses of a coin) or may be associated with numbers, if we so choose. In either case,
we want to assign probabilities directly to these numbers, as well as to the underlying
events. This requires the introduction of some new functions.

(1) Definition Given a sample space� (with F and P(.)), a discrete random variable
X is a function such that for each outcome ω in �, X (ω) is one of a countable set
D of real numbers. Formally, X (.) is a function with domain � and range D, and so
for each ω ∈ �, X (ω) = x ∈ D, where D is a countable (denumerable) subset of the
real numbers. �

(2) Example: Pairs in Poker How many distinct pairs are there in your poker hand of
five cards? Your hand is one outcome ω in the sample space � of all possible hands; if
you are playing with a full deck, then |�| = ( 525 ). The number of pairs X depends on the
outcome ω, and obviously X (ω) ∈ {0, 1, 2}, because you can have no more than two
pairs. Notice that this holds regardless of how the hand is selected or whether the pack is
shuffled. However, this information will be required later to assign probabilities. �

We always use upper case letters (such as X , Y , T , R, and so on) to denote random
variables and lower case letters (x , y, z, etc.) to denote their possible numerical values.
You should do the same. Because the possible values of X are countable, we can denote
them by {xi ; i ∈ I }, where the index set I is a subset of the integers. Very commonly, all
the possible values of X are integers, in which case we may denote them simply by x , r ,
k, j , or any other conventional symbol for integers.

114
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(3) Definition (a) If X takes only the values 0 or 1, it is called an indicator or sometimes
a Bernoulli trial.

(b) If X takes one of only a finite number of values, then it is called simple. �

(4) Example Suppose n coins are tossed. Let X j be the number of heads shown by the
j th coin. Then, X j is obviously zero or one, so we may write X j (H ) = 1 and X j (T ) = 0.
Let Y be the total number of heads shown by the n coins. Clearly, for each

outcome, ω ∈ �, Y (ω) ∈ {0, 1, 2, . . . , n}. Thus, X j is an indicator and Y is
simple. �

It is intuitively clear also that Y =∑n
1 X j .

We discuss the meaning of this and its implications in Chapter 5.
Finally, note that the sample space � need not be countable, even though X (ω) takes

one of a countable set of values.

(5) Example: Darts You throw one dart at a conventional dartboard. A natural sample
space � is the set of all possible points of impact. This is of course uncountable because
it includes every point of the dartboard, much of the wall, and even parts of the floor or
ceiling if you are not especially adroit.
However, your score X (ω) is one of a finite set of integers lying between 0 and 60,

inclusive. �

4.2 Distributions

Next, we need a function, defined on the possible values x of X , to tell us how likely they
are. For each such x , there is an event Ax ⊆ �, such that

ω ∈ Ax ⇔ X (ω) = x .(1)

Hence, just as the probability that any event A in � occurs is given by the probability
function P(A) ∈ [0, 1], the probability that X (ω) takes any value x is given by a function
P(Ax ) ∈ [0, 1]. (We assume that Ax is in F .)
For example, if a coin is tossed and X is the number of heads shown, then X ∈ {0, 1}

and A1 = H ; A0 = T . Hence, P(X = 1) = P(A1) = P(H ) = 1
2 , if the coin is fair.

This function has its own special name and notation. Given �, F , and P(.):

(2) Definition A discrete random variable X has a probability mass function fX (x)
given by

fX (x) = P(Ax ).

This is also denoted by P(X = x), which can be thought of as an obvious shorthand
for P({ω: X (ω) = x}). It is often called the distribution. �
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For example, let X be the number of pairs in a poker hand, as discussed in Example 4.1.2.
If the hand is randomly selected, then

fX (2) = P({ω: X (ω) = 2}) = |{ω: X (ω) = 2}|
/(

52

5

)

=
(
13

2

)(
4

2

)(
4

2

)(
44

1

)/(
52

5

)
� 0.048.

Likewise,

fX (1) =
(
13

1

)(
4

2

)(
12

3

)(
4

1

)3/(
52

5

)
� 0.42 ,

and hence,

fX (0) = 1− fX (1)− fX (2) � 0.53.
Returning toExample 4.1.4 gives an example of great theoretical andhistorical importance.

(3) Example 4.1.4 Revisited: Binomial Distribution The random variable Y takes the
value r , if exactly r heads appear in the n tosses. The probability of this event is ( n

r )p
r qn−r ,

where p = P(H ) = 1− q. Hence, Y has probability mass function

fY (r ) =
(n

r

)
pr qn−r , 0 ≤ r ≤ n. �

The suffix in fX (x) or fY (y) is included to stress the role of X or Y . Where this is
unnecessary or no confusion can arise, we omit it. In the interests of brevity, f (x) is often
called simply the mass function of X , or even more briefly the p.m.f.
The p.m.f., f (x) = fX (x), has the following properties: first,

f (x) ≥ 0 for x ∈ {xi : i ∈ Z}(4)
f (x) = 0 elsewhere.

That is to say, it is positive for a countable number of values of x and zero elsewhere.
Second, if X (ω) is finite with probability one, then it is called a proper random variable

and we have ∑
i

f (xi ) =
∑

i

P(Axi ) = P(�) = 1.(5)

Third, we have the Key Rule

P(X ∈ A) =
∑
x∈A

f (x).(6)

If
∑

i f (xi ) < 1, then X is said to be defective or improper. It is occasionally useful to
allow X to take values in the extended real line, so that fX (∞) has a meaning. In general,
it does not.
We remark that any function satisfying (4) and (5) can be regarded as a mass function, in

that, given such an f (.), it is quite simple to construct a sample space, probability function,
and random variable X , such that f (x) = P(X = x).
Here are two famous mass functions.
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(7) Example: Poisson Distribution Let X be a random variable with mass function

fX (x) = λx e−λ

x!
, x ∈ {0, 1, 2, . . .}, λ > 0.

Then,
∞∑

x=0
f (x) = e−λ

∞∑
x=0

λx

x!
= 1 by Theorem 3.6.9.

Hence, X is proper. This mass function is called the Poisson distribution and X is said to
be Poisson (or a Poisson random variable), with parameter λ. �

(8) Example: Negative Binomial Distribution By the negative binomial theorem, for
any number q such that 0 < q < 1, we have

(1− q)−n =
∞∑

r=0

(
n + r − 1

r

)
qr .

Hence, the function f (r ) defined by

f (r ) =
(

n + r − 1
r

)
qr (1− q)n, r ≥ 0,

is a probability mass function. Commonly, we let 1− q = p. �

The following function is also useful; see Figure 4.1 for a simple example

Definition A discrete random variable X has a cumulative distribution function
FX (x), where

FX (x) =
∑

i :xi≤x

f (xi ).(9) �

Figure 4.1 The distribution function FX (x) of the random variable X , which is the indicator of
the event A. Thus, the jump at zero is P(X = 0) = P(Ac) = 1− P(A) and the jump at x = 1 is

P(X = 1) = P(A).
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This is also denoted by

P(X ≤ x) = P({ω: X (ω) ≤ x});
it may be referred to simply as the distribution function (or rarely as the c.d.f.), and the
suffix X may be omitted. The following properties of F(x) are trivial consequences of the
definition (9):

F(x) ≤ F(y) for x ≤ y.(10)
1− F(x) = P(X > x).(11)

P(a < X ≤ b) = F(b)− F(a) for a < b.(12)

Some further useful properties are not quite so trivial, in that they depend on Theorem
1.5.2. Thus, if we define the event Bn = {X ≤ x − 1/n}, we find that

P(X < x) = P

( ∞⋃
n=1

Bn

)
= P( lim

n→∞ Bn) = lim
n→∞P(Bn) by Theorem 1.5.2,

= lim
n→∞ F

(
x − 1

n

)
= lim

y↑x
F(y).

If the random variable X is not defective then, again from (9) (and Theorem 1.5.2),
limx→∞ F(x) = 1, and limx→−∞ F(x) = 0.
The c.d.f. is obtained from the p.m.f. by (9). Conversely, the p.m.f. is obtained from the

c.d.f. by

f (x) = F(x)− lim
y↑x

F(y) where y < x .

When X takes only integer values, this relationship has the following simpler more attrac-
tive form: for integer x

f (x) = F(x)− F(x − 1).(13)

(14) Example: Lottery An urn contains n tickets bearing numbers from 1 to n inclu-
sive. Of these, r are withdrawn at random. Let X be the largest number removed if the
tickets are replaced in the urn after each drawing, and let Y be the largest number removed
if the drawn tickets are not replaced. Find fX (x), FX (x), fY (x), and FY (x). Show that
FY (k) < FX (k), for 0 < k < n.

Solution The number of ways of choosing r numbers less than or equal to x , with
repetition allowed, is xr . Because there are nr outcomes,

FX (x) =
( x

n

)r
, for 1 ≤ x ≤ n,

when x is an integer. For any real x , FX (x) = ([x]/n)r , (where [x] denotes the largest
integer which is not greater than x). Hence, for integer x and 1 ≤ x ≤ n, by (13),

fX (x) =
( x

n

)r
−
(

x − 1
n

)r

;

and elsewhere fX (x) is zero.
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Without replacement, the number of ways of choosing r different numbers less than or
equal to x is ( x

r ). Hence, for integer x , and 1 ≤ x ≤ n,

FY (x) =
( x

r

)/(n

r

)
.

Hence, again by (13),

fY (x) =
(( x

r

)
−
(

x − 1
r

))/(n

r

)
=

(
x − 1
r − 1

)/(n

r

)
,

which is of course obvious directly. Furthermore,

FY (k) = k!(n − r )!

(k − r )!n!
<

(
k

n

)r

for 1 < k < n

= FX (k).
�

Because real valued functions of random variables are random variables, they also have
probability mass functions.

(15) Theorem If X and Y are random variables such that Y = g(X ), then Y has p.m.f.
given by ∑

x :g(x)=y

fX (x).

Proof

fY (y) = P(g(X ) = y) =
∑

x :g(x)=y

P(X = x) =
∑

x :g(x)=y

fX (x). �

(16) Example Let X have mass function f (x). Find the mass functions of the following
functions of X .

(a) −X
(b) X+ = max {0, X}
(c) X− = max {0,−X}
(d) |X | = X+ + X−

(e) sgn X =
{

X
|X | , X �= 0,
0, X = 0.

Solution Using Theorem 15 repeatedly, we have:

(a) f−X (x) = fX (−x).

(b) fX+(x) =



fX (x); x > 0.∑
x≤0

fX (x); x = 0.

(c) fX−(x) =



fX (−x); x > 0∑
x≥0

fX (x); x = 0.
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(d) f|X |(x) =
{

fX (x)+ fX (−x); x �= 0
fX (0); x = 0.

(e) fsgnX (x) =




∑
x>0

fX (x); x = 1
fX (0); x = 0∑

x<0
fX (x); x = −1. �

Finally, we note that any numberm such that limx↑m F(x) ≤ 1
2 ≤ F(m) is called amedian

of F (or a median of X , if X has distribution F)

4.3 Expectation

(1) Definition Let X be a random variable with probability mass function f (x) such
that

∑
x |x | f (x) <∞. The expected value of X is then denoted by E(X ) and defined

by

E(X ) =
∑

x

x f (x).

This is also known as the expectation, or mean, or average or first moment of X. �

Note that E(X ) is the average of the possible values of X weighted by their probabilities.
It can thus be seen as a guide to the location of X , and is indeed often called a location
parameter. The importance of E(X ) will become progressively more apparent.

(2) Example Suppose that X is an indicator random variable, so that X (ω) ∈ {0, 1}.
Define the event A = {ω: X (ω) = 1}. Then X is the indicator of the event A; we have
fX (1) = P(A) and E(X ) = 0. fX (0)+ 1. fX (1) = P(A). �

(3) Example Let X have mass function

fX (x) = 4

x(x + 1)(x + 2) , x = 1, 2, . . .

and let Y have mass function

fY (x) = 1

x(x + 1) , x = 1, 2, . . .

Show that X does have an expected value and that Y does not have an expected value.

Solution For any m <∞,
m∑

x=1
|x | fX (x)=

m∑
x=1

4

(x + 1)(x + 2) = 4
m∑

x=1

(
1

x + 1 −
1

x + 2
)
= 2− 4(m + 2)−1,
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by successive cancellations in the sum. Hence, the sum converges as m →∞, and so
because X > 0, E(X ) = 2. However, for the random variable Y ,

∑
x

|x | fY (x) =
∞∑

x=1

1

x + 1 ,

which is not finite. �

Notice that the condition
∑ |x | f (x) <∞ amounts to E(X+)+ E(X−) <∞ (use Ex-

ample 4.2.16 to see this). A little extension of Definition 1 is sometimes useful. Thus, if
E(X−) <∞ butE(X+) diverges, then wemay defineE(X ) = +∞. With this extension in
Example 3, E(Y ) = ∞. Likewise, if E(X+) <∞ but E(X−) diverges, then E(X ) = −∞.
If both E(X+) and E(X−) diverge, then E(X ) is undefined.
In general, real valued functions of random variables are random variables having a

mass function given by Theorem 4.2.15. They may therefore have an expected value. In
accordance with Example 3, if Y = g(X ), then by definition

E(g(X )) =
∑

i

yi fY (yi ).

We used this with Example 4.2.16(b) in observing that

E(X+) =
∑
x>0

x fX (x).

This was easy because it was easy to find the mass function of X+ in terms of that of X .
It is not such an immediately attractive prospect to calculate (for example) E(cos(θX )) by
first finding the mass function of cos (θX ). The following theorem is therefore extremely
useful.

(4) Theorem Let X be a random variable with mass function f (x), and let g(.) be a
real valued function defined on R. Then,

E(g(X )) =
∑

x

g(x) f (x)

whenever
∑

x |g(x)| f (x) <∞.

Proof Let (g j ) denote the possible values of g(X ), and for each j define the set
A j = {x : g(x) = g j }. Then P(g(X ) = g j ) = P(X ∈ A j ), and therefore, provided all the
following summations converge absolutely, we have

E(g(X )) =
∑

j

g jP(g(X ) = g j ) =
∑

j

g j

∑
x∈A j

f (x)

=
∑

j

∑
x∈A j

g(x) f (x), because g(x) = g j for x ∈ A j ,

=
∑

x

g(x) f (x), because A j ∩ Ak = φ for j �= k. �
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(5) Example Let X be Poisson with parameter λ. Find E(cos(θX )).

Solution First, recall de Moivre’s Theorem that eiθ = cos θ + i sin θ , where i is an
imaginary square root of −1. Now, by Theorem 4,

E(cos(θX )) =
∞∑

k=0
cos (kθ )e−λλk

/
k!

= Re
( ∞∑

k=0
eikθe−λλk

/
k!

)
, where Re (z) is the real part of z,

= Re (exp (λeiθ − λ))
= eλ(cos θ−1) cos (λ sin θ ), using de Moivre’s Theorem again. �

Now, we can use Theorem 4 to establish some important properties of E(.).

(6) Theorem Let X be a random variable with finite mean E(X), and let a and b be
constants. Then:

(i) E(a X + b) = aE(X )+ b;
(ii) If P(X = b) = 1, then E(X ) = b;
(iii) If P(a < X ≤ b) = 1, then a < E(X ) ≤ b;
(iv) If g(X ) and h(X ) have finite mean, then

E(g(X )+ h(X )) = E(g(X ))+ E(h(X )).

Proof (i) First, we establish the necessary absolute convergence:∑
x

|ax + b| f (x) ≤
∑

x

(|a||x | + |b|) f (x) = |a|
∑

x

|x | f (x)+ |b| <∞,

as required. Hence, by Theorem 4.

E(a X + b) =
∑

x

(ax + b) f (x) = a
∑

x

x f (x)+ b = aE(X )+ b.

(ii) Here, X has mass function f (b) = 1, so by definition E(X ) = b f (b) = b.
(iii) In this case, f (x) = 0 for x /∈ (a, b], so

E(X ) =
∑

x

x f (x)



≤∑

b f (x) = b;

>
x∑
x

a f (x) = a.

(iv) Because |g(x)+ h(x)| ≤ |g(x)| + |h(x)|, absolute convergence is quickly estab-
lished. Hence, by Theorem 4,

E(g(X )+ h(X )) =
∑

x

(g(x)+ h(x)) f (x) =
∑

x

g(x) f (x)+
∑

x

h(x) f (x)

= E(g(X ))+ E(h(X )). �

The following simple corollary is of some importance.
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(7) Theorem If E(X) exists, then (E(X ))2 ≤ (E(|X |))2 ≤ E(X2).

Proof First, note that (|X | − E(|X |))2 ≥ 0. Hence, by Theorem 6(iii),
0 ≤ E((|X | − E(|X |))2 = E(|X |2)− (E(|X |))2, by Theorem 6(iv) and 6(ii)
= E(X2)− (E(|X |))2,

which proves the second inequality. Also, |X | − X ≥ 0, so by 6(iv) and 6(iii)
E(X ) ≤ E(|X |),

which proves the first inequality. �

(8) Example: UniformDistribution Recall that an urn contains n tickets numbered from
1 to n. You take one ticket at random; it bears the number X . Find E(X ) and E(X2), and
verify that Theorem 7 holds explicitly.

Solution The mass function of X is P(X = k) = 1/n. (Because it distributes proba-
bility evenly over the values of X , it is called the uniform distribution.) Hence,

E(X ) =
n∑

x=1

x

n
= 1

n

n∑
x=1

1

2
(x(x + 1)− x(x − 1))

= 1

2
(n + 1) by successive cancellation.

Likewise, using Theorems 4 and 6(iv),

E(X2)+ E(X ) =
n∑

x=1

x2 + x

n
= 1

n

n∑
x=1

1

3
(x(x + 1)(x + 2)− (x − 1)x(x + 1))

= 1

3
(n + 1)(n + 2) by successive cancellation.

Hence,

E(X2) = 1

6
(n + 1)(2n + 1) ≥ 1

4
(n + 1)2 = (E(X ))2. �

In practice, we are often interested in the expectations of two particularly important col-
lections of functions of X ; namely, (Xk ; k ≥ 1) and ([X − E(X )]k ; k ≥ 1).

(9) Definition Let X have mass function f (x) such that
∑

x |x |k f (x) <∞. Then,

(a) The kth moment of X is µk = E(Xk).
(b) The kth central moment of X is σk = E((X − E(X ))k).
(c) The kth factorial moment of X is µ(k) = E(X (X − 1) . . . (X − k + 1)).
In particular, σ2 is called the variance of X and is denoted by σ 2, σ 2X , or
var (X ). Thus,

var (X ) = E((X − E(X ))2). �



124 4 Random Variables

Example: Indicators Let X be the indicator of the event A (recall Example 4.3.2). Be-
cause Xk(ω) = X (ω) for all k and ω, we have

µk = E(Xk) = P(A).

Also, var (X ) = P(A)P(Ac), and

µ(k) =
{
P(A); k = 1
0; k > 1.

�

(10) Example Show that if E(X2) <∞, and a and b are constants then

var (aX + b) = a2 var (X ).

Solution Using Theorem 6(i) and the definition of variance,

var (a X + b) = E((a(X − E(X ))+ b − b)2) = E(a2(X − E(X ))2) = a2 var (X ).
�

Sometimes the tail of a distribution, P(X > x), has a simpler form than the mass function
f (x). In these and other circumstances, the following theorems are useful.

(11) Theorem If X ≥ 0 and X takes integer values, then E(X ) =
∞∑

x=1
P(X ≥ x).

Proof By definition,

E(X ) =
∞∑

x=1
x f (x) =

∞∑
x=1

f (x)
x∑

r=1
1.

Because all terms are nonnegative, we may interchange the order of summation to obtain

∞∑
x=1

∞∑
r=x

f (r ) =
∞∑

x=1
P(X ≥ x). �

This tail-sum theorem has various generalizations; we state one.

(12) Theorem If X ≥ 0 and k ≥ 2, then

µ(k) = E(X (X − 1) . . . (X − k + 1)) = k
∞∑

x=k

(x − 1) . . . (x − k + 1)P(X ≥ x).

Proof This is proved in the sameway as Theorem 11, by changing the order of summation
on the right-hand side. �

(13) Example: Waiting–The Geometric Distribution A biased coin shows a head with
probability p or a tail with probability q = 1− p. How many times do you expect to toss
the coin until it first shows a head? Find the various second moments of this waiting time.
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Solution Let the required number of tosses until the first head be T . Then because they
are independent, P(T = x) = qx−1 p; x ≥ 1. (T is said to have the geometric distribution.)
Hence,

E(T ) =
∞∑

x=1
xqx−1 p = p

(1− q)2
, by (3.6.12) with n = 2,

= 1

p
.

Alternatively, we can use Theorem 11 as follows. Using the independence of tosses again
gives P(T > x) = qx , so

E(T ) =
∞∑

x=0
P(T > x) =

∞∑
x=0

qx = 1

p
.

For the second factorial moment, by Theorem 12

µ(2) = 2
∞∑

x=2
(x − 1)qx−1 = 2q

p2
, by (3.6.12) again.

Hence, the second moment is

E(T 2) = E(T (T − 1))+ E(T ) = 2q

p2
+ 1

p
= 1+ q

p2
.

Finally, the second central moment is

σ2 = E((T − E(T ))2) = E(T 2)− (E(T ))2 = 1+ q

p2
− 1

p2
= q

p2
.

�

(14) Example Let X have mass function

fX (x) = a

x2
; x = 1, 2, 3, . . .

and Y have mass function

fY (y) = b

y2
; y = ±1,±2, . . .

(a) Find a and b.
(b) What can you say about E(X ) and E(Y )?

Solution (a) Because fX (x) is a mass function

1 =
∑

x

fX (x) = a
∞∑

x=1

1

x2
= a

π2

6
.

Hence, a = 6π−2. Likewise, b = 3π−2.
(b) We have

E(X ) = a
∞∑

x=1
x fX (x) = a

∞∑
x=1

1

x
= ∞.

Because E(Y+) and E(Y−) both diverge, E(Y ) does not exist. �
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(15) Example: Coupons Each packet of an injurious product is equally likely to contain
any one of n different types of coupon, independently of every other packet. What is the
expected number of packets you must buy to obtain at least one of each type of coupon?

Solution Let Ar
n be the event that the first r coupons you obtain do not include a full

set of n coupons. Let Cr
k be the event that you have not obtained one of the kth coupon in

the first r . Then,

Ar
n =

n⋃
k=1

Cr
k .

We may calculate:

P(Cr
1) =

(
n − 1

n

)r

,

P(Cr
i ∩ Cr

j ) =
(

n − 2
n

)r

; i �= j,

and, in general, for any set Sj of j distinct coupons

P

(⋂
i∈Sj

Cr
i

)
=

(
n − j

n

)r

.

Hence, by (1.4.8),

P(Ar
n) = P

(
n⋃

k=1
Cr

k

)
=

n∑
j=1
(−1) j+1

(
n

j

)(
1− j

n

)r

,

because for each j there are ( n
j ) sets Sj .

Now, let R be the number of packets required to complete a set of n distinct coupons.
Because Ar

n occurs if and only if R > r , we have P(R > r ) = P(Ar
n). Hence, by Theorem

11,

E(R) =
∞∑

r=0
P(R > r ) =

∞∑
r=0

n∑
j=1
(−1) j+1

(
n

j

)(
1− j

n

)r

=
n∑

j=1
(−1) j+1

(
n

j

)
n

j
= nun, say.

Now,

un+1 − un =
n+1∑
j=1
(−1) j+1

(
n + 1

j

)
1

j
−

n∑
j=1
(−1) j+1

(
n

j

)
1

j
(16)

= (−1)n+2
n + 1 +

n∑
j=1

(−1) j+1

j

((
n + 1

j

)
−
(

n

j

))

= (−1)n+2
n + 1 +

n∑
j=1

(−1) j+1

n + 1
(

n + 1
j

)

= 1

n + 1 ,
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because

n+1∑
j=0
(−1) j+1

(
n + 1

j

)
= (1− 1)n+1 = 0.

Hence, iterating (16),

un =
n∑

j=1

1

n − j + 1 ,

so that

E(R) =
n∑

j=1

n

n − j + 1 .

In Chapter 5, we discover a much easier method of obtaining this result. �

4.4 Conditional Distributions

Let� be some sample space, X some random variable defined on�, and P(.) a probability
function defined on�. Now suppose that we are given that some event B ⊆ � occurs, with
P(B) > 0. Just as we argued in Chapter 2 that this gives rise to a conditional probability
function, so we now conclude that this gives rise to a conditional distribution of X given
B.
In fact, using (4.2.1), we write

P(X (ω) = x |B) = P(Ax |B) = P(Ax ∩ B)/P(B) ≥ 0,(1)

where as usual Ax = {ω: X (ω) = x}. Furthermore, because⋃x Ax = � and Ax ∩ Ay = φ,
whenever x �= y we have∑

x

P(Ax |B) =
∑

x

P(Ax ∩ B)/P(B) = P(� ∩ B)/P(B) = 1.(2)

Hence, the function f (x |B) defined by
f (x |B) = P(Ax |B) = P(X = x |B)(3)

is a probability mass function, in that f (x |B) ≥ 0 and∑x f (x |B) = 1. It is the con-
ditional mass function of X given B.

(4) Example Let X be uniformly distributed on {1, 2, . . . , n}, and let B be the event that
a ≤ X ≤ b, where 1 ≤ a < b ≤ n. Find the mass function of X given B.

Solution Obviously,

P(B) =
b∑

i=a

1

n
= (b − a + 1)/n
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and

P({X = k} ∩ B) =


1

n
; a ≤ k ≤ b

0; otherwise.

Hence,

f (x |B) =



1

b − a + 1; a ≤ x ≤ b

0; otherwise

Thus, given that X lies in B, it is uniformly distributed over B. �

Because f (x |B) is a probability mass function, it may have an expectation. In line
withDefinition 4.3.1,we require that

∑
x |x | f (x |B) <∞. If this condition is satisfied,

then the conditional expectation of X given B is denoted by E(X |B) and defined by
E(X |B) =

∑
x

x f (x |B).(5)

Expectation and conditional expectation are related by the following exceptionally impor-
tant result.

(6) Theorem Let X be a random variable with mean E(X), and let B be an event
such that P(B)P(Bc) > 0. Then,

E(X ) = E(X |B)P(B)+ E(X |Bc)P(Bc).

Proof By conditional probability,

f (x) = P(X = x) = P({X = x} ∩ B)+ P({X = x} ∩ Bc)
= f (x |B)P(B)+ f (x |Bc)P(Bc).

Hence,

E(X ) =
∑

x

x f (x) = P(B)
∑

x

x f (x |B)+ P(Bc)
∑

x

x f (x |Bc),

as required. �

More generally, it is shown in exactly the same way that if (Bi ; i ≥ 1) is a collection of
events such that

(i)
⋃

i

Bi = �,

(ii) Bi ∩ B j = φ; i �= j, and
(iii) P(Bi ) > 0,
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then

E(X ) =
∑

i

E(X |Bi )P(Bi )(7)

whenever the summation is absolutely convergent.
Finally, we make the small but useful observation that if A ⊆ B, then

E(X |A ∩ B) = E(X |A).(8)

(9) Example A coin is tossed repeatedly. As usual, for each toss, P(H ) = p = 1− q =
1− P(H c). The outcome is a sequence of runs of heads alternating with runs of tails; the
first run can be of either heads or tails. Let the length of the nth run be Rn . For all k and
j , show that E(R2k+1) ≥ E(R2 j ) and var (R2k+1) ≥ var (R2 j ), with equality in each case
if and only if p = q = 1

2 .

Solution Let X be the number of heads shown before the first appearance of a tail.
We know that

P(X = k) = pkq, k ≥ 0.(10)

Let us consider the mass function of X conditional on the first toss. Given that the first
toss is H , let X ′ be the further number of tosses before the first tail. By independence,

P(X ′ = k) = pkq = P(X = k).

Hence, conditional on H , we have X = 1+ X ′, and conditional on H c, we have X = 0.
Therefore, by Theorem 6,

E(X ) = pE(X |H )+ qE(X |H c) = p(1+ E(X ′))+ 0 = p + pE(X )(11)
becauseE(X ) = E(X ′).

Thus, E(X ) = p/q, which of course we could have obtained directly from (10); we chose
to do it this way to display the new technique. Likewise, if Y is the number of tails before
the first head, E(Y ) = q/p.
Now R2k+1 is a run of heads if and only if the first toss is a head. Hence, again using

independence,

E(R2k+1) = E(R2k+1|H )p + E(R2k+1|H c)q = E(1+ X ′)p + E(1+ Y ′)q

=
(
1+ p

q

)
p +

(
1+ q

p

)
q = p

q
+ q

p
.

Likewise, R2k is a run of heads if and only if the first toss yields a tail, so

E(R2k) =
(
1+ p

q

)
q +

(
1+ q

p

)
p = 2 ≤ p

q
+ q

p
,

with equality if and only if p = 1
2 = q. [Because (p − q)2 > 0, for p �= q .] Now, var

(R2k) = E(R22k)− 4. Arguing as above, and using conditional probability again, yields

E(R22k) = qE((1+ X ′)2)+ pE((1+ Y ′)2) = q

(
1+ p

q2

)
+ p

(
1+ q

p2

)
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and so

var (R2k) = 1+ (p − q)2 − 2pq

pq
.(12)

Likewise,

E(R22k+1) = q

(
1+ q

p2

)
+ p

(
1+ p

q2

)
and so

var (R2k+1) = q

p2
+ p

q2
− 2.(13)

Now

var (R2k+1)− var (R2k) = p4 + q4 + 2p2q2 − pq

p2q2
= (p3 − q3)(p − q)

p2q2
≥ 0

with equality if and only if p = q = 1
2 .

�

4.5 Sequences of Distributions

If an experiment is repeated indefinitely, it may give rise to a sequence (Fn(x); n ≥ 1) of
distributions.

(1) Definition Let f (x) be a probability mass function that is nonzero for x ∈ D, and zero
for x ∈ R\D = C. Let F(x) be the corresponding distribution function

F(x) =
∑
xi≤x

f (xi ).

A sequence of distribution functions Fn(x) is said to converge to F(x) if, as n →∞,

Fn(x)→ F(x) for x ∈ C. �

One special case is important to us; if D is included in the integers, then Fn(x) converges
to F(x) if, for all x , fn(x)→ f (x) as n →∞.

(2) Example: Matching revisited In Example 3.18, we showed that the probability of
exactly r matches in n random assignments of letters is

p(n, r ) = 1

r !

n−r∑
k=0

(−)k
k!

→ e−1

r !

as n →∞. This shows that as n →∞ the number of matches has a Poisson distribution
(with parameter 1) in the limit. �

(3) Example: Ménages Revisited In Problem 3.38, we found the probability that ex-
actly m couples were adjacent when seated randomly at a circular table (alternating the
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sexes) is

pm = 2

m!

n−m∑
k=0

(−)k(n − m − k)!(2n − m − k − 1)!
k!(2n − 2m − 2k)!n!

→ 2m

m!

∞∑
k=0
(−)k 2

k

k!
= 2me−2

m!

as n →∞. Thus, the number of adjacent couples is Poisson with parameter 2 in the limit
as n →∞. �

Finally, we note that the appearance of the Poisson distribution in Examples 2 and 3 is
significant. This distribution commonly arises in limits of this type, and that is one of the
reasons for its major importance.

4.6 Inequalities

Calculating the exact probability that X lies in some set of interest is not always easy.
However, simple bounds on these probabilities will often be sufficient for the task in hand.
We start with a basic inequality.

(1) Theorem: Basic Inequality If h(x) is a nonnegative function, then, for a > 0

P(h(X ) ≥ a) ≤ E(h(X ))/a).

Proof Define the following function of X :

I (h ≥ a) =
{
1 whenever h(X ) ≥ a
0 otherwise

Observe that I is an indicator, and so by Example 4.3.2, E(I ) = P(h(X ) ≥ a). Now, by
its construction I satisfies h(X )− aI ≥ 0, and so by Theorem 4.3.6 [parts (iii) and (iv)],

E(h(X )) ≥ aE(I ) = aP(h(X ) ≥ a). �

The following useful inequalities can all be proved using Theorem 1 or by essentially the
same method. You should do some as exercises. For any a > 0, we have:

Markov’s Inequality

P(|X | ≥ a) ≤ E(|X |)/a.(2)

Chebyshov’s Inequality†

P(|X | ≥ a) ≤ E(X2)/a2.(3)

† Some writers use the transliteration “Chebyshev”. They then have to remember that the second “e” is pronounced
as “o”.
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One-Sided Chebyshov’s Inequality

P(X − E(X ) ≥ a) ≤ var (X )

a2 + var (X ) .(4)

Generalized Markov Inequality If h(x) is increasing for x > 0, even, and nonneg-
ative then

P(|X | ≥ a) ≤ E(h(X ))/h(a).(5)

If X is nonnegative, then

P(X > a) ≤ E(X )
a

.(6)

If c > 0, then

P(X > a) ≤ E((X + c)2)

(a + c)2
,(7)

and

P(X > a) ≤ E(exp (c(X − a))).(8)

Here is one important application.

(9) Example Let X be a random variable such that var (X ) = 0. Show that X is constant
with probability one.

Solution By (3), for any integer n ≥ 1,

P
(
|X − E(X )| > 1

n

)
≤ n2var (X ) = 0.(10)

Hence, defining the events Cn = {|X − E(X )| > 1/n}, we have

P(X �= E(X )) = P

( ∞⋃
n=1

Cn

)
= P( lim

n→∞Cn) = lim
n→∞P(Cn) by Theorem 1.5.2

= 0. �

An important concept that crops up in many areas of pure and applied mathematics is that
of convexity. We are interested in the following manifestation of this.

(11) Definition A function g(x) (from R to R) is called convex if, for all a, there exists λ(a)
such that

g(x) ≥ g(a)+ λ(a)(x − a), for all x .(12) �
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If g(x) is differentiable, then a suitable λ is given by λ(a) = g′(a) and (12) takes the form

g(x) ≥ g(a)+ g′(a)(x − a).(13)

This says that a convex function lies above all its tangents. If g is not differentiable, then
there may be many choices for λ; draw a picture of g(x) = |x | at x = 0 to see this. (There
are several other definitions of a convex function, all equivalent to Definition 11.) We are
interested in the following property of convex functions.

(14) Theorem: Jensen’s Inequality Let X be a random variable with finite mean and g(x)
a convex function. Then,

E(g(X )) ≥ g(E(X )).(15)

Proof Choosing a = E(X ) in (12), we have

g(X ) ≥ g(E(X ))+ λ(X − E(X )).

Taking the expected value of each side gives (15). �

For example, g(x) = |x | and g(x) = x2 are both convex, soE(|X |) ≥ |E(X )| andE(X2) ≥
(E(X ))2. This is Theorem 4.3.7. Here is a less trivial example.

(16) Example Let X be a positive random variable. Show that E(log X ) ≤ logE(X ).
Solution This follows immediately from Jensen’s inequality if we can show that
− log x is convex. Fortunately, this is easy, as follows. By definition, for x > 0,

− log x =
∫ 1

x
y−1dy =

∫ 1

a
y−1dy +

∫ a

x
y−1dy, for a > 0,

= − log a +
∫ a

x
y−1dy ≥ − log a +

∫ a

x
a−1dy = − log a − 1

a
(x − a),

and this is (12) with λ(a) = −a−1. �

Example 16 has many important applications, of which we see more later. Here is one to
begin with.

(17) Example: Arithmetic–GeometricMeans Inequality Let (xi ; 1 ≤ i ≤ n) be any col-
lection of positive numbers and (pi ; 1 ≤ i ≤ n) any collection of positive numbers such
that

∑
i pi = 1. Show that

p1x1 + p2x2 + · · · + pnxn ≥ x1
p1x2

p2 · · · xn
pn .(18)

Solution Let X be the random variable with probability mass function P(X = xi ) =
pi ; 1 ≤ i ≤ n. Then, from (16),

logE(X ) = log(p1x1 + · · · + pnxn) ≥ E(log X )
= p1 log x1 + · · · + pn log xn = log(x1 p1x2

p2 · · · xn
pn ).

The result (18) follows because log x is an increasing function. �
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(19) Example: AM/GM Inequality In the special case when pi = 1/n, 1 ≤ i ≤ n, then
(18) takes the form

1

n

n∑
1

xi ≥
(

n∏
i=1

xi

)1/n

.
�

4.7 Review and Checklist for Chapter 4

We have seen that many experiments have numerical outcomes; and when they do not,
the sample space can be usefully mapped to suitable points on the line. Such real-valued
functions defined on the sample space are called random variables. This chapter defined
some important types of random variable, and considered several important named ex-
amples. We introduced the key concepts of distribution, expectation, functions of random
variables, conditional distributions, and sequences of distributions. In Table 4.1 we display
the distribution, expectation, and variance for some important specific random variables.

SYNOP S I S OF FORMULAE : In general, every random variable has a distribution func-
tion

FX (x) = P(X ≤ x).

Discrete random variables, taking one of a countable set of possible values, have a prob-
ability mass function

fX (x) = P(X = x).

When X is integer valued, we can write

fX (x) = F(x)− F(x − 1).

Table 4.1. Discrete random variables

Distribution f (x) Mean Variance

Uniform n−1, 1 ≤ x ≤ n 1
2 (n + 1) 1

12 (n
2 − 1)

Bernoulli px (1− p)1−x , p p(1− p)

x ∈ {0, 1}
Binomial

( n
x

)
px (1− p)n−x , np np(1− p)

0 ≤ x ≤ n

Geometric (1− p)x−1 p, x ≥ 1 p−1 (1− p)p−2

Poisson e−λλx

x! , x ≥ 1 λ λ

Negative binomial
(

x−1
k−1

)
pk(1− p)x−k, kp−1 k(1− p)p−2

x ≥ k

Hypergeometric ( m
x )( w

n−x )
( m+w

n )
, nm

m+w
nmw(m+w−n)
(m+w−1)(m+w)2

0 ≤ x ≤ n
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In any case, we have the

Key Rule:

P(X ∈ A) =
∑
x∈A

fX (x).

Expectation: A discrete random variable has an expected value if
∑

x |x | fX (x) <∞. In
this case,

EX =
∑

x

x fx (x).

When X is integer valued and nonnegative,

EX =
∞∑

x=0
P(X > x) =

∞∑
x=0
(1− F(x)).

Functions: Suppose that discrete random variables X and Y are such that Y = g(X )
for some function g(.). Then,

fY (y) =
∑

x :g(x)=y

fX (x).

Also,

EY =
∑

x

g(x) fX (x)

[provided that
∑

x |g(x)| fX (x) <∞.]
It follows that in any case where each side exists:

E[ag(X )+ bh(X )] = aEg(X )+ bEh(X ).

Variance: For any random variable X , the variance σ 2 is given by

var X = E(X − EX )2 = EX2 − (EX )2 = σ 2 ≥ 0.
The number σ ≥ 0 is called the standard deviation, and in particular we have, for constants
a and b,

var (aX + b) = a2varX.

Moments: The kth moment of X is

µk = EXk, k ≥ 1;
usually we write µ1 = µ. The kth central moment of X is

σk = E(X − EX )k, k ≥ 1;
usually we write σ2 = σ 2.

Conditioning: Any event B in � may condition a random variable X , leading to a con-
ditional distribution function

FX |B(x |B) = P(X ≤ x |B)
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and a conditional mass function

fX |B(x |B) = P(X = x |B);
Key Rule:

P(X ∈ A|B) =
∑
x∈A

fX |B(x |B).

This distribution may have an expected value, called
Conditional expectation:

E(X |B) =
∑

x

x fX |B(x |B).

In particular,

EX = E(X |B)P(B)+ E(X |Bc)P(Bc)

and if (Bi ; i ≥ 1) is a partition of �
EX =

∑
i

E(X |Bi )P(Bi ).

Similarly, a random variable X may condition an event B, so that

P(B|X = x) = P(B ∩ {X = x})/P(X = x),

yielding

P(B) =
∑

x

P(B|X = x) fX (x).

Checklist of Terms for Chapter 4

4.1 discrete random variable
Bernoulli trial
indicator
simple random variable

4.2 probability distribution
probability mass function
binomial distribution
Poisson distribution
negative binomial distribution
distribution function

4.3 expectation and expected value
uniform distribution
moments
variance
tail sum
geometric distribution

4.4 conditional mass function
conditional expectation

4.5 sequences of distributions
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4.6 Markov’s inequality
Chebyshov’s inequality
Jensen’s inequality
Arithmetic-geometric means inequality

WORKED EXAMPLES AND EXERCISES

4.8 Example: Royal Oak Lottery

This eighteenth-century lottery paid winners 28 to 1; the chance of winning at any given
bet was 2−5, independently of other bets. Gamesters (as usual) complained that the odds
were unfair. It is reported by de Moivre (in Doctrine of Chances, 1756) that the Master
of the Ball maintained that any particular point of the Ball should come up once in 22
throws; he offered to bet on this (at evens) at any time, and did so when required. The
seeming contradiction between the 2−5 chance at any bet, with 22 throws for any chance
to come up, so perplexed the gamesters that they began to think they had the advantage;
so they played on and continued to lose.
Explain why there is no contradiction.

Solution Let P be a point of the Ball. Let T be the number of trials required to yield
P for the first time. At each trial, P fails to appear with probability 31/32, and T > k if
and only if the first k trials do not yield P. Hence, by independence,

P(T > k) =
(
31

32

)k

.

Now, (
31

32

)22
� 0.49 < 0.5.

Hence,

P(T ≤ 22) > 0.5.

[However, note that E(T ) =∑∞
0 P(T > k) = (1− 31

32 )
−1 = 32.]

Thus, by betting on the event T ≤ 22, the Master of the Ball was giving himself a better
than evens chance of winning. However, if we let W be the profit to the gambler of a $1
stake wagered on P turning up, we have P(W = 28) = 1

32 and P(W = −1) = 31
32 . Hence,

E(W ) = 28
32 − 31

32 = − 3
32 . A loss.

Thus, in the long run, the gambler will surely lose at a rate of nearly 10% of his stake
each play. (See Example 4.18 for a proof of this.)

Remark The Master of the Ball was exploiting the fact that the median of the distri-
bution of T is less than its mean. See Problem 4.51 for bounds on this difference.
Note that T has a geometric distribution.
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(1) Exercise Give an example of a distribution for which the median is larger than the mean.
(2) Exercise Find: (a) var (T ) and (b) µ(k)T .
(3) Exercise Which of the following strategies gives the gambler a better chance of winning if she

takes up the offer of a bet on P not occurring in 22 trials:
(a) Making such a bet immediately?
(b) Waiting for a run of 22 trials during which P has not appeared?
(c) Waiting until P has appeared in consecutive trials and then betting on its nonappearance in the

following 22?
(4) Exercise Calculate P(T > j + k|T > j). Explain the significance of your answer.

4.9 Example: Misprints

Each printed character in a book is misprinted independently with probability p, or is
correct with probability 1− p. Let n be the number of characters in the book, and let X
be the number of misprinted characters.

(a) Find P(X = r ).
(b) Show that E(X ) = np.
(c) Suppose that E(X ) is fixed, and let A be the event that X �= 0. Find E(X |A), and show

that as n →∞,E(X |A)→ E(X )/(1− exp [−E(X )]).

Solution (a) We provide two solutions.
I Because characters aremisprinted independently, the probability that r given characters
are misprinted and the remaining n − r are correct is pr (1− p)n−r . Because there are ( n

r )
distinct ways of fixing the positions of the r misprints, it follows that

P(X = r ) =
(n

r

)
pr (1− p)n−r .(1)

Remark This is the binomial distribution, which we met in Example 4.2.3. We some-
times denote it by B(n, p).
II Consider the first character, and let M be the event that it is misprinted. Then,

P(X = r ) = P(X = r |M)P(M)+ P(X = r |Mc)P(Mc).

We write P(X = r ) = p(n, r ) and observe that if M occurs, then X = r if and only if
there are r − 1 misprints in the remaining n − 1 characters. Hence,

p(n, r ) = p(n − 1, r − 1)p + p(n − 1, r )(1− p)(2)

where p(n, 0) = (1− p)n and p(n, n) = pn, n ≥ 0. Now the substitution p(n, r ) =
pr (1− p)n−r c(n, r ) gives c(n, r ) = c(n − 1, r − 1)+ c(n− 1, r ), where c(n, 0) =
c(n, n) = 1, n ≥ 0.
We already know that this difference equation has the solution c(n, r ) = ( n

r ), as required
(recall Pascal’s triangle).
(b) We consider two solutions.

I Letm(n) be the expected number of misprints in n characters. Then, by Theorem 4.4.6,
m(n)=E(X |M)P(M)+E(X |Mc)P(Mc)= (1+m(n−1))p+m(n−1)(1− p),
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where we have used

E(X |M) =
∑

r

rP(X = r |M) =
∑

r

r p(n − 1, r − 1),
because misprints are independent,

=
∑

r

p(n − 1, r − 1)+
∑

r

(r − 1)p(n − 1, r − 1) = 1+ m(n − 1).

Hence,

m(n) = m(n − 1)+ p.

Obviously, m(0) = 0, so this difference equation has solution
m(n) = np.(3)

II Using (a)

m(n) =
n∑

r=0
r
(n

r

)
pr (1− p)n−r =

n∑
r=1

np
(n − 1)!

(r − 1)!(n − r )!
pr−1(1− p)n−r

= np
n∑

r=1

(
n − 1
r − 1

)
pr−1(1− p)n−r = np by the binomial theorem.

(c) By definition,

E(X |A) =
n∑

r=1

P(X = r )

P(X > 0)
= np/(1− (1− p)n)

= np/
(
1−

(
1− np

n

)n)
= E(X )/

(
1−

(
1− E(X )

n

)n)
→ E(X )/(1− exp (−E(X ))

as n →∞.

(4) Exercise Show that var (X ) = np(1− p) by two different methods.
(5) Exercise Show that as n →∞, if E(X ) is fixed P(X = 0)→ exp(−E(X )).
(6) Exercise Let X have the binomial distribution P(X = k) = ( n

k )p
k(1− p)n−k .

(a) For fixed n and p, for what value of k is P(X = k) greatest?
(b) For fixed k and p, for what value of n is P(X = k) greatest?

(7) Exercise If X has a binomial distribution with parameters n and p, find:
(a) The probability that X is even.
(b) E(sin2( 12πX )).
(c) µ (k)

X .

4.10 Example: Dog Bites: Poisson Distribution

(a) Let X be a binomial random variable with parameters n and p, such that np = λ.
Show that for fixed k, as n →∞, with λ fixed,

P(X = k)→ 1

k!
λke−λ.
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(b) During 1979–1981, in Bristol, 1103 postmen sustained 215 dog bites. A total of
191 postmen were bitten, of whom 145 were bitten just once. Which should be the
postman’s motto: “Once bitten, twice shy” or “Once bitten, twice bitten”?

(8) Solution (a) Because X is binomial

P(X = k) =
(n

k

)
pk(1− p)n−k = n(n − 1) . . . (n − k + 1)

nk
.
λk

k!
.

(
1− λ

n

)n−k

.

Now for fixed k, as n →∞ with λ fixed,
n − k + j

n
→ 1; 1 ≤ j ≤ k,

(
1− λ

n

)k

→ 1, and

(
1− λ

n

)n

→ e−λ.

Hence, as n →∞,

P(X = k)→ λk

k!
e−λ.

(4) Remark This is the Poisson distribution, which we met in Example 4.2.7.
(b) Suppose you were a postman, and let X be the number of your bites. If dogs bite

any postman at random, then X is a binomial random variable with parameters 215 and
(1103)−1, because it may be thought of as a series of 215 trials in which a “success” is
being bitten with probability (1103)−1 at each trial, independently of the rest.
Hence,

P(X = 0) =
(
1− 1

1103

)215
and

P(X = 1) = 215

1103

(
1− 1

1103

)214
.

You may either compute these directly or recognise from (a) that the number of bites you
get is approximately Poisson, with parameter λ = 215

1103 � 0.195. So,
P(X = 0) � e−λ � 0.82
P(X = 1) � λe−λ � 0.16

P(X > 1) � 1− e−λ − λe−λ � 0.02.
However, if we pick a postman at random and let X ′ be the number of bites he sustained,
we find that

P(X ′ = 0) = 912

1103
� 0.83

P(X ′ = 1) = 145

1103
� 0.13

P(X ′ > 1) = 46

1103
� 0.04.

It seems that “once bitten, twice bitten” should be the postman’s motto.
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(5) Remark Our conclusion may be given more substance by investigating the extent to
which the observed distribution differs from the expected Poisson distribution. Such tech-
niques are known to statisticians as “goodness-of-fit tests,” and an appropriate procedure
here would use the χ2 test. This may be found in textbooks of elementary statistics; the
motto is the same.

(1) Exercise If bites are Poisson with parameter λ, what is the probability that you get more than
one bite, given that you get at least one?

(2) Exercise If bites are Poisson, what is your expected total number of bites given that you get at
least one?

(3) Exercise Let Xn have a binomial distribution with parameters n and p, such that np = λ, and
let An be the event that Xn ≥ 1. If Y is a Poisson random variable with parameter λ, show that as
n →∞,P(Xn = k|An)→ P(Y = k|Y ≥ 1).

(4) Exercise Let X have a Poisson distribution with parameter λ. Show that E(X ) = λ.
(a) For fixed λ, what value of k maximizes P(X = k)?
(b) For fixed k, what value of λ maximizes P(X = k)?

(5) Exercise If X has a Poisson distribution with parameter λ, find:
(a) E(eX ) (b) E(cos(πX )) (c) var (X ) (d) µ (k)

X .
(6) Exercise If X has a Poisson distribution with parameter λ, show that:

(a) The probability that X is even is e−λcosh λ.
(b) E(|X − λ|) = 2λλe−λ/(λ− 1)!, when λ is an integer greater than zero.

4.11 Example: Guesswork

You are trying to guess the value of a proper integer valued random variable X , with
probability mass function f (x) (which you know). If you underestimate by y, it will cost
you $by; if you overestimate by y, it will cost you $ay. Your guess is an integer; what
guess minimizes your expected loss?

Solution If you guess t , then your expected loss is

L(t) = a
∑
x≤t

(t − x) f (x)+ b
∑
x>t

(x − t) f (x).(1)

Substituting t + 1 for t in (1) gives an expression for L(t + 1), and subtracting this from
(1) gives

L(t)− L(t + 1) = a
∑
x≤t

f (x)+ b
∑
x>t

f (x) = −aF(t)+ b(1− F(t)). = D(t)(2)

(say).

Now limx→−∞ D(x) = b, limx→∞ D(x) = −a, and both −F(t) and 1− F(t) are nonin-
creasing. Therefore, there is a smallest t such that

D(t) = L(t)− L(t + 1) ≤ 0,
and this is the guess that minimizes your expected loss. Hence, denoting this guess by t̂ ,

t̂ = min
{

t : F(t) ≥ b

a + b

}
, by (2).
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(3) Exercise Suppose that if you underestimate X you incur a fixed loss £b, whereas if you
overestimate X by y it will cost you £ay. Find an expression that determines the guess that
minimizes your expected loss.
Find this best guess when

(a) P(X = x) = pqx−1; x ≥ 1, p = 1− q > 0.
(b) P(X = x) = 1/(x(x + 1)); x ≥ 1.
(c) P(X = x) = 1/(2n + 1); −n ≤ x ≤ n.

(4) Exercise What is your best guess if
(a) L(t) = E(|X − t |)?
(b) L(t) = E((X − t)2)?

(5) Exercise Icarus Airways sells m + n tickets for its n-seat aeroplane. Passengers fail to show up
with probability p independently. Empty seats cost $c, and a passenger with a ticket who cannot fly
is paid $b for being bumped. What choice of m minimizes the airline’s expected losses on booking
errors?
What level of compensation b would be sufficient to ensure that it was not worthwhile for the

airline to overbook at all (for fixed p)? For fixed b, what value of p would entail no overbooking
by the airline?

4.12 Example: Gamblers Ruined Again

Alberich and Brunnhilde have a and b gold coins, respectively. They play a series of
independent games in which the loser gives a gold piece to the winner; they stop when
one of them has no coins remaining. If Alberich wins each game with probability p, find
the expected number of games played before they stop. (Assume p �= q = 1− p.)

(3) Solution Let Xk be the number of games they will play when Alberich’s fortune is
k, and let mk = E(Xk). Clearly, m0 = ma+b = 0 because in each case one player has no
coins. If A is the event that Alberich wins the first game, then for 0 < k < a + b,

E(Xk |A) = 1+ E(Xk+1) = 1+ mk+1

because his fortune is then k + 1, and succeeding games are independent of A. Likewise,
it follows that

E(Xk |Ac) = 1+ E(Xk−1).

Hence, by Theorem 4.4.6,

mk = E(Xk |A)P(A)+ E(Xk |Ac)P(Ac) = 1+ pmk+1 + qmk−1.

Setting

mk = k

q − p
+ uk,

gives

uk = puk+1 + quk−1, for 0 < k < a + b.
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In particular u0 = 0, and ua+b = −(a + b)(q − p)−1. Proceeding as in Example 2.11,
using Theorem 2.3.1, shows that

uk = + (a + b)

p − q

1−
(

q

p

)k

1−
(

q

p

)a+b .(1)

(2) Exercise What is the expected number of games played when p = 1
2 ?

(3) Exercise Let B be the event that Brunnhilde wins the entire contest. Find a difference equation
satisfied by E(Xk |B). Solve this in the case when p = 1

2 .
(4) Exercise When the first game is over they redivide the a + b coins as follows. All the coins are

tossed, one player gets those showing a head, the other gets all those showing a tail. Now they play
a series of games as before. What is the expected number to be played until one or other player
again has all the coins? What if p = 1

2 ?
(5) Exercise Alberich is blackmailingFafner, so each timehe loses his last gold coin, he immediately

demands (and gets) one replacement coin, with which to continue gambling. What now is the
expected number of games played? What if p = 1

2 ?

4.13 Example: Postmen

A and B are postmen. They start work on day 1. The probability that A sustains a dog
bite on day n, given that he has not been bitten on any of the preceding days is pA(n). The
corresponding probability for B is pB(n). Let X A and X B , respectively, be the number of
days until each sustains his first bite.

(a) Find P(X A = n) and P(X B = n).
(b) A is wary, so pA(n) decreases as n increases. If

pA(n) = 1

n + 1; n ≥ 1,

find P(X A = n) and show that E(X A) = ∞, while P(X A <∞) = 1.
(c) B is complacent, so pB(n) increases as n increases. If, for some λ < 0,

pB(n) = 1− e−λn

find P(X B = n) and E(X B).

(2) Solution (a) Let Hk be the event that A is bitten on the kth day. Then the event that
he is bitten for the first time on the nth day is

⋂n−1
1 H c

k ∩ Hn . Hence,

P(X A = n) = P

(
n−1⋂
1

H c
k ∩ Hn

)
= P

(
Hn|

n−1⋂
1

H c
k

)
P

(
n−1⋂
1

H c
k

)

= pA(n)P

(
H c

n−1|
n−2⋂
1

H c
k

)
P

(
n−2⋂
1

H c
k

)
= pA(n)

n−1∏
1

(1− pA(k)),

on iterating.
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Likewise, P(X B = n) = pB(n)
n−1∏
1
(1− pB(k)).

(b) Employing a similar argument

P(X A > n) = P

(
n⋂

k=1
H c

k

)
=

n∏
k=1
(1− pA(k))

=
n∏

k=1

(
1− 1

k + 1
)
= 1

n + 1 → 0 as n →∞.

Hence, P(X A <∞) = 1. Also,

P(X A = n) = P(X A > n − 1)− P(X A > n) = 1

n(n + 1) ,

and finally E(X A) =
∑∞

1 1/(n + 1), which diverges. The expected time until A is first
bitten is infinite.
(c) By the same argument,

P(X B ≥ n) =
n∏

j=1
(1− pB( j)) =

n∏
j=1

e−λ j = e−(λ/2)n(n+1).

Hence, P(X B = n) = (1− e−λn)e−(λ/2)n(n−1) and

E(X B) =
∞∑
1

e−(λ/2)n(n+1) <∞.

B expects to be bitten in a finite time.

(1) Exercise In both cases (b) and (c), find the probability that the postman is first bitten on the j th
day, given that he is bitten on or before day M .

(2) Exercise If A is less wary, so that pA(n) = 2/(n + 2), show that E(X A) is now finite, but var
(X A) diverges.

(3) Exercise In each case (b) and (c), given that the postman has not been bitten during the first m
days, find the expected further time until he is bitten.

(4) Exercise If A is extremely wary and pA(n) = 1/(n + 1)2 show that with probability 1
2 , he is

never bitten. What is the median of the distribution of X A in this case? Find the expectation of X A,
given that X A is finite.

4.14 Example: Acme Gadgets

This company has developed a new product. The demand for it is unknown, but it is
assumed to be a random variable X , which is distributed uniformly on {0, 1, . . . , N}. The
gadgets have to be made in advance; each one sold makes a profit of $b, and each one
made and left unsold represents a net loss of $c.
How many should be made, to maximize the expected profit?
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Solution Suppose that m items are made. Then the total profit (negative profits are
interpreted as losses) is

Ym =
{

bm;

bX − c(m − X );

X ≥ m

m > X
.

The expected profit is

E(Ym) = bmP(X ≥ m)+ b
m−1∑
x=1

x

N + 1 − c
m−1∑
x=0

m − x

N + 1 ,

= m

N + 1
(

b

(
N + 1

2

)
− 1

2
c − 1

2
m(b + c)

)
.

Now,

2(N + 1)(E(Ym+1)− E(Ym)) = (2N + 1)b − c − (2m + 1)(b + c),

so that the expected profit is largest when m = m̂, where

m̂ = max
{
0,

[
Nb − c

b + c

]}
.

(1) Exercise Suppose that an unsatisfied customer represents a loss of $d . What now is the choice
of m which maximizes expected profit?

(2) Exercise Suppose that the unknown demand X is assumed to have a geometric distribution with
parameter p. Find the choice of m that maximizes the expected profit.

(3) Exercise Suppose the unknown demand X is a Poisson random variable with parameter λ. Show
that the expected profit if they make m items is

λ(b + c)− (b + c)λm+1

m!

/
m∑
0

λk

k!
− mc,

and that this is maximized by the value of m that minimizes

(b + c)λm+1

m!

/
m∑
0

λk

k!
+ mc.

4.15 Example: Roulette and the Martingale

Suppose you are playing roulette; the wheel has a zero. The chance of winning on red is
p < 1

2 and you bet at evens; if you win, you gain an amount equal to your stake.
Your first bet is $1 on red. If it wins, you quit; if it loses, your second bet is $2 on red.

If it wins you quit, and so on. Your nth bet is $2n−1 so long as you lose; as soon as you
win you quit.

(a) Show that you are certain to win $1 every time you use this system.
(b) Find the expected size of your winning bet.

Now suppose the house limit is $2L , so this must be your last bet if you have not already
won.
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(c) What is your expected gain when you stop?
(d) Would you prefer large or small house limits?

Remark This gambling system is the martingale. Avoid it unless you seek ruin!

Solution Let T be the number of spins of the wheel until the outcome is first red.
(a) Your bet on that spin is $2T−1, and because you win, you gain $2T−1. However, your

losses on the previous T − 1 spins are $∑T−1
1 2k−1 = $2T−1 − 1. Because

∞∑
k=1

P(T = k) =
∞∑

k=1
p(1− p)k−1 = 1,

this means you are certain to win $1.
(b) Because your winning bet is $2T−1, it has expected value

E(2T−1) =
∞∑

k=1
2k−1 p(1− p)k−1 = ∞, since 2(1− p) > 1.

(c) You win $1 if 1 ≤ T ≤ L + 1; otherwise, you lose $∑L
k=0 2

k . Hence, your expected
gains are $γ , where

γ = P(T ≤ L + 1)− (2L+1 − 1)P(T > L + 1) = 1− (2(1− p))L+1.

(d) Because your expected losses increase exponentially fast with L , you must hope the
casino is sufficiently generous to have low limits.

(1) Exercise What difference does it make to these results if the wheel is fair? (That is, p = 1
2 .)

(2) Exercise With house limit $2L , what is the expected size of your winning bet, given that you do
indeed win?What happens as L →∞? (Remember to consider all three cases, p > 1

2 , p = 1
2 , p <

1
2 .)

4.16 Example: Searching

(a) Let X be a positive integer valued random variable such that f (n) = P(X = n) is
nonincreasing as n increases. Suppose that (g(x); x = 1, 2, . . .) is a function, taking
positive integer values, such that for any k, g(x) = k for at most one positive integer
x = rk .
Show that E(g(X )) ≥ E(X ).

(b) You have lost a key. There are n places in which you might have mislaid it with
respective probabilities (pk ; 1 ≤ k ≤ n). If you search the kth place once, you find the
key with probability dk , if it is indeed there. (You can search any place any number of
times.) How do you arrange your searching to minimize the expected time until you
find the key? (Searches are successful independently of each other.)

Solution (a) Consider the distribution of g(X ). Because g(X ) = k for at most one
value rk of X ,

P(g(X ) ≤ n) =
∑

k

P(g(X ) = k) =
∑

k

P(X = rk) =
∑

k

f (rk)
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where the final sum contains m ≤ n nonzero terms. If these are arranged in decreasing
order as f (rk1 ) ≥ f (rk2 ) ≥ · · · ≥ f (rkm ), then

f (rk1 ) ≤ f (1)
f (rk2 ) ≤ f (2),

and so on. Hence, summing these inequalities yields

P(g(X ) ≤ n) ≤ P(X ≤ n),

and so

E(g(X )) =
∞∑
0

P(g(X ) > n) =
∞∑
0

(1− P(g(X ) ≤ n))

≥
∞∑
0

(1− P(X ≤ n)) = E(X ).

(b) The probability that you find the key on the sth search of the r th room is

mrs = (1− dr )
s−1dr pr .

To see this, note that the key has to be there (with probability pr ) and you have to fail to
find it s − 1 times before you succeed. Let pk be the kth largest of the numbers (mrs ; r ≥
1, s ≥ 1). Then pk is a probability mass function and (pk ; k ≥ 1) is nonincreasing. Take
this ordering as an order of search; that is, if mrs ≥ muv, then the sth search of the r th
place precedes the vth search of the uth place. This search is consistent [the mth search
of a given place precedes the (m + 1)st for every m], and

∑
kpk is the expected number

of searches required to find the key.
By part (a), any other order yields greater expected duration of the search time, because

the function g(x) is a permutation, and thus one–one.

(1) Exercise Show that you can arrange your searches so that the expected time to find the key is
finite.

(2) Exercise The key is upstairs with probability 2
3 or downstairs, with probability

1
3 . Any search

upstairs is successful with probability 1
4 if the key is there; any search downstairs is successful

with probability 3
4 if the key is there. How do you arrange your searches to minimize the expected

number of searches?
(3) Exercise Suppose the sth search of the r th room (conditional on s − 1 previous unsuccessful

searches of this room) discovers the key with probability drs . How do you order your searches to
minimize the expected number of searches?

4.17 Example: Duelling

Pascal and Brianchon fight a series of independent bouts. At each bout, either Pascal is
awarded a hit with probability p, or Brianchon is awarded a hit with probability q = 1− p.
The first to be awarded two consecutive hits is declared the winner and the duel stops. Let
X be the number of bouts fought. Find the distribution and expected value of X . For what
value of p is E(X ) greatest?
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Solution Let B be the event that Brianchon wins. Then,

fX (n) = P({X = n} ∩ B)+ P({X = n} ∩ Bc).

For B to occur at the nth bout, he must win the nth and (n − 1)th bouts (with prob-
ability q2), and the preceding n − 2 bouts must be awarded alternately to each contestant.
The probability of this is p(n/2)−1q (n/2)−1 if n is even, or p(n/2)−(1/2)q (n/2)−(3/2) if n is odd,
because bouts are independent.
A similar argument applies if Bc occurs, yielding

fX (n)

{
p(n/2)−1q (n/2)−1(q2 + p2) if n is even

p(n/2)−(1/2)q (n/2)−(1/2)(q + p) if n is odd.

The expected value of X is then, by definition,

E(X ) =
∞∑
j=1

p j−1q j−1(q2 + p2)2 j +
∞∑
j=1

q j p j (q + p)(2 j + 1).

Summing this series is elementary and boring. To get a solution in closed form, it is more
fun to argue as follows. Let Ak be the event that Pascal is awarded the kth bout. Then,

E(X ) = E(X |A1)p + E
(
X |Ac

1

)
q,(1)

by conditioning on the outcome of the first bout. Now if Pascal is awarded the first bout but
not the second, the state of the duel in respect of the final outcome is exactly the same as if
he had lost the first bout, except of course that one bout extra has been fought. Formally,
this says

E
(
X |A1 ∩ Ac

2

) = 1+ E
(
X |Ac

1

)
.

Hence,

E(X |A1) = E(X |A1 ∩ A2)p + E
(
X |A1 ∩ Ac

2

)
q = 2p + q

(
1+ E

(
X |Ac

1

))
.(2)

Likewise,

E
(
X |Ac

1

) = 2q + p(1+ E(X |A1)).(3)

Solving (2) and (3), and substituting into (1), yields

E(X ) = 2+ qp

1− qp
.

Because qp = 1
4 − (p − 1

2 )
2, this is greatest when p = 1

2 and then E(X ) = 3.
(4) Exercise What is P(B)?
(5) Exercise What is P(Bc)?
(6) Exercise Given that Pascal wins, find the distribution and expected value of the number of bouts.
(7) Exercise Find P(A1|B) and P(A2|B).
(8) Exercise Find the median number of bouts when p = 1

2 .
(9) Exercise Find P(B) and the expectation of the number of bouts fought if the winner is required

to win three consecutive bouts.
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(10) Exercise Brianchon suggests that they adopt a different rule for deciding the winner, viz: when
first a player has been awarded a total number of bouts two greater than the number of bouts awarded
to his opponent, then the match stops and the leading player wins. If p > q, do you think Brianchon
was wise to suggest this? (Assume he wants to win.) What is the expected duration of this game
when p = q?

4.18 Binomial Distribution: The Long Run

Let X have a binomial distribution with parameters n and p, where p = 1− q .
Show that for λ > 0 and ε > 0,

P(X − np > nε) ≤ E(exp [λ(X − np − nε)]).

Deduce that as n →∞,
P(|X − np| ≤ nε)→ 1.

(You may assume without proof that for any x, 0 < ex ≤ x + ex2 .)

Solution For k > np + nε, when λ > 0, we have exp (λ(k − np − nε)) > 1. Hence∑
k>n(p+ε)

P(X = k) <
∑

k>n(p+ε)
exp (λ(k − np − nε))P(X = k)

<
∑

k

exp (λ(k − np − nε))P(X = k), because ex > 0,

= E(exp (λ(X − np − nε))).

Now, the left side is just P(X > np + nε) and

E(eλX ) =
n∑
0

(n

k

)
(peλ)kqn−k = (q + peλ)n,

so the right side is

(peλq + qe−λp)ne−λnε ≤ (peλ
2q2 + qeλ

2 p2 )ne−λnε, because ex ≤ x + ex2

≤ exp (nλ2 − λnε).

Now, choosing λ = ε/2 gives

P(X − np > nε) ≤ exp (−nε2/4).

Likewise, P(X − np < nε) ≤ exp (−nε2/4), so

P(|X − np| > nε) ≤ 2 exp (−nε2/4)→ 0 as n →∞,(1)

as required.

(2) Exercise You want to ask each of a large number n of people a question to which the answer
“yes” is so embarrassing that many individuals would falsely answer “no”. The answer “no” is not
embarrassing. The following procedure is proposed to determine the embarrassed fraction of the
population. As the question is asked, a coin is tossed out of sight of the questioner. If the true answer
would have been “no” and the coin shows heads, then the answer “yes” is given. Otherwise, people
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should respond truthfully. If the number responding “yes” is now Yn and “yes” is the true answer
for a proportion p of the whole population, show that for ε > 0

P
(∣∣∣∣Yn

n
− 1

2
(1+ p)

∣∣∣∣ > ε

)
≤ 2 exp (−nε2/4).

Explain the advantages of this procedure.
(3) Exercise Suppose a coin shows a head with probability p, and let Xn be the number of heads

in n tosses, and An(ε) the event that |Xn/n − p| > ε, where 2 > ε > 0. Show that as n →∞,

P

( ∞⋃
n

Ak(ε)

)
→ 0.

(4) Exercise Suppose a gambler wins $28 with probability 1
32 , or loses his stake of

$1 with probability 31
32 at each trial. Let Wn be his fortune after n such indepen-

dent trials, and An(ε) the event that |Wn/n + 3/32| > ε. Show that as n →∞,P(
⋃∞

n=m
An(ε))→ 0. Deduce that his fortune is equal to its initial value on only finitely many occasions,
with probability one. (Hint: recall Problem 1.24.)
Note: In the following exercise, X is a binomially distributed random variable with parameters n
and p.

(5) Exercise Show that for any fixed finite a and b, as n →∞, P(a < X ≤ b)→ 0.
(6) Exercise Show that for a > 0,

P
(∣∣∣∣ X

n
− p

∣∣∣∣ > a

)
≤ (p(1− p))1/2

a2n
min {(p(1− p))1/2, an1/2}.

(7) Exercise (a) Show that if p = (m − 1)/n where m is an integer, then

E
(∣∣∣∣ X

n
− p

∣∣∣∣
)
= 2

(
n − 1
m − 1

)
pm(1− p)n−m+1.

(b) Find var (|X/n − p|).
(8) Exercise If n = 2m and p = 1

2 , show that

P(X − m = k) =
(
2m

m

)
1

4m
a(m, k)

where, as m →∞, (a(m, k))m → e−k2 .
Also, show that

1

2m
1
2

<

(
2m

m

)
1

4m
<

1

(2m + 1) 12
.

[You may assume that |log(1+ x)− x | < x2 for small enough x .]

4.19 Example: Uncertainty and Entropy

Let X and Y be simple random variables taking values in the same set {x1, . . . , xn}, with
respective probability mass functions fX (.) and fY (.). Show that

−E(log fY (X )) ≥ −E(log fX (X )),(1)
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and

−E(log fX (X )) ≤ log n,(2)

with equality in (1) if and only if fY (.) ≡ fX (.), and equality in (2) if and only if fX (xi ) =
n−1 for all xi . (Hint: Show first that log x ≤ x − 1.)

Solution By definition, for x > 0,

− log x =
∫ 1

x
y−1 dy ≥

∫ 1

x
dy = 1− x,(3)

with equality if and only if x = 1. Hence,
E(log fX (X ))− E(log fY (X )) =

∑
i

fX (xi ) log fX (xi )−
∑

i

fX (xi ) log fY (xi )

= −
∑

i

fX (xi ) log[ fY (xi )/ fX (xi )]

≥ −
∑

i

fX (xi )[1− fY (xi )/ fX (xi )] by (3)

= 0,
with equality iff fX (xi ) = fY (xi ) for all xi , which proves (1). In particular, setting fY (xi ) =
n−1 yields (2).

Remark It is conventional to denote−E(log fX (X )) by H (X ) [or alternatively h(X )]
and the logarithms are taken to base 2. The number H (X ) is known as the uncertainty or
entropy of X , and is an essential tool in information theory and communication theory.
The result (1) is sometimes called the Gibbs inequality.

(4) Exercise Let fX (x) = ( n
x )p

x (1− p)n−x ; 0 ≤ x ≤ n. Show that

H (X ) ≤ −n(p log p + (1− p) log(1− p)),

with equality if n = 1.
(5) Exercise Let fX (x) = pqx−1/(1− q M ), for 1 ≤ x ≤ M , where p = 1− q. Show that

lim
M→∞

H (X ) = −p−1[p log p + (1− p) log(1− p)].

(6) Exercise Let Y = g(X ) be a function of the random variable X . Show that for any c > 0

H (Y ) ≤ H (X ) ≤ cE(Y )+ log
(∑

i

e−cg(xi )

)
.

When does equality hold?

PROBLEMS

1 A box contains 12 sound grapefruit and four that are rotten. You pick three at random.
(a) Describe the sample space.
(b) Let X be the number of sound grapefruit you pick. Find fX (x) and E(X ).
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2 Show that the expected number of pairs in your poker hand is about 0.516.
3 You roll a die once. What is the variance of your score?
4 What is the variance of a uniform random variable?
5 For each of the following functions f (x) (defined on the positive integers x = 1, 2, . . .), find:

(a) The value of c for which f (x) is a probability mass function.
(b) The expectation

(i) f (x) = c.2x/x! (iv) f (x) = cx−2

(ii) f (x) = cpx ; 0 ≤ p ≤ 1 (v) f (x) = c[x(x + 1)]−1
(iii) f (x) = cpx x−1; 0 ≤ p ≤ 1

6 If X is a random variable, explain whether it is true that X + X = 2X and X − X = 0.
Are 0 and 2X random variables?

7 For what value of c is f (x) = c(x(x + 1)(x + 2))−1; 1 ≤ x ≤ M , a probability mass function? Find
its expectation E(X ). Find the limit of c and E(X ) as M →∞.

8 A fair coin is tossed repeatedly. Let An be the event that three heads have appeared in consecutive
tosses for the first time on the nth toss. Let T be the number of tosses required until three consecutive
heads appear for the first time. Find P(An) and E(T ).
Let U be the number of tosses required until the sequence HTH appears for the first time. Can

you find E(U )?
9 You choose a random number X as follows. Toss a coin repeatedly and count the number of

tosses until it shows a head, N say. Then pick an integer at random in 1, 2, . . . , 10N . Show
that

P(X = k) = 1

19
.
1

20d−1 ,

where d is the number of digits in the decimal expansion of k. What is E(X )?
10 Let X have a Poisson distribution f (k), with parameter λ. Show that the largest term in this

distribution is f ([λ]).
11 Show that if E(X2) <∞, min

a
E((X − a)2) = var (X ).

12 Let f1(x) and f2(x) be probability mass functions. Show that if 0 ≤ p ≤ 1, then f3(x) = p f1(x)+
(1− p) f2(x) is a probability mass function. Interpret this result.

13 Let X be a geometric random variable. Show that, for n > 0 and k > 0, P(X > n + k|X > n) =
P(X > k).

14 Let X be a random variable uniform on 1 ≤ x ≤ m. What is P(X = k|a ≤ X ≤ b)? In particular
find P(X > n + k|X > n).

15 A random variable is symmetric if for some a and all k, f (a − k) = f (a + k). Show that the mean
and a median are equal for symmetric random variables. Find a nonsymmetric random variable for
which the mean and median are equal.

16 If X is symmetric about zero and takes integer values, find E(cos(πX )) and E(sin(πX )).
17 Let X have distribution function F . Find the distribution of Y = aX + b and of Z = |X |.
18 Let X have a geometric distribution such that P(X = k) = qk−1 p; k ≥ 1. Show that E(X−1) =

log(p(1/p−1).
19 (a) Let X have a Poisson distribution with parameter λ. Show that E(1/(X + 1)) =

λ−1(1− e−λ), and deduce that for all λ, E(1/(X + 1)) ≥ (E(X + 1))−1. When does equality
hold?

(b) Find E(1/(X + 1)) when P(X = k) = (−k−1 pk)/ log(1− p); k ≥ 1.
20 Fingerprints It is assumed that the number X of individuals in a population, whose fingerprints

are of a given type, has a Poisson distribution with some parameter λ.
(a) Explain when and why this is a plausible assumption.
(b) Show that P(X = 1|X ≥ 1) = λ(eλ − 1)−1.
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(c) A careless miscreant leaves a clear fingerprint of type t . It is known that the probability that any
randomly selected person has this type of fingerprint is 10−6. The city has 107 inhabitants and
a citizen is produced who has fingerprints of type t . Do you believe him to be the miscreant on
this evidence alone? In what size of city would you be convinced?

21 Initially urn I contains n red balls and urn II contains n blue balls. A ball selected randomly from
urn I is placed in urn II, and a ball selected randomly from urn II is placed in urn I. This whole
operation is repeated indefinitely. Given that r of the n balls in urn I are red, find the mass function
of R, the number of red balls in urn I after the next repetition.
Show that the mean of this is r + 1− 2r/n, and hence find the expected number of red balls in

urn I in the long run.
22 A monkey has a bag with four apples, three bananas, and two pears. He eats fruit at random until

he takes a fruit of a kind he has eaten already. He throws that away and the bag with the rest. What
is the mass function of the number of fruit eaten, and what is its expectation?

23 Matching Consider the matching problem of Example 3.17. Let µ(k) be the kth factorial
moment of the number X of matching letters, µ(k) = E(X (X − 1) . . . (X − k + 1)). Show that

µ(k) =
{
1; k ≤ n
0; k > n.

24 Suppose an urn contains m balls which bear the numbers from 1 to m inclusive. Two balls are
removed with replacement. Let X be the difference between the two numbers they bear.
(a) Find P(X ≤ n).
(b) Show that if n/m = x is fixed as m →∞, then P(|X | ≤ n)→ 1− (1− x)2;

0 ≤ x ≤ 1.
(c) Show that E|X |/m → 1

3 .
25 Suppose the probability of an insect laying n eggs is given by the Poisson distribution with

mean µ > 0, that, is by the probability distribution over all the nonnegative integers defined by
pn = e−µµn/n! (n = 0, 1, 2, . . .), and suppose further that the probability of an egg developing is
p. Assuming mutual independence of the eggs, show that the probability distribution qm for the
probability that there are m survivors is of the Poisson type and find the mean.

26 Preparatory to a camping trip, you can buy six cans of food, all the same size, two each of meat,
vegetables, and fruit. Assuming that cans with the same contents have indistinguishable labels, in
how many distinguishable ways can the cans be arranged in a row?
On the trip, there is heavy rain and all the labels are washed off. Show that if you open three of

the cans at random the chance that you will open one of each type is 25 . If you do not succeed, you
continue opening cans until you have one of each type; what is the expected number of open cans?

27 A belt conveys tomatoes to be packed. Each tomato is defective with probability p, independently
of the others. Each is inspected with probability r ; inspections are also mutually independent. If a
tomato is defective and inspected, it is rejected.
(a) Find the probability that the nth tomato is the kth defective tomato.
(b) Find the probability that the nth tomato is the kth rejected tomato.
(c) Given that the (n + 1)th tomato is the first to be rejected, let X be the number of its predecessors

that were defective. Find P(X = k), the probability that X takes the value k, and E(X ).
28 Mr. Smith must site his widget warehouse in either Acester or Beeley. Initially, he assesses the

probability as p that the demand for widgets is greater in Acester, and as 1− p that it is greater in
Beeley. The ideal decision is to site the warehouse in the town with the larger demand. The cost of
the wrong decision, because of increased transport costs, may be assumed to be £1000 if Acester
is the correct choice and £2000 if Beeley is the correct choice. Find the expectations of these costs
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for each of the two possible decisions, and the values of p for which Acester should be chosen on
the basis of minimum expected cost.
Mr. Smith could commission a market survey to assess the demand. If Acester has the higher

demand, the survey will indicate this with probability 3
4 and will indicate Beeley with probability

1
4 . If Beeley has the higher demand the survey will indicate this with probability

2
3 and will indicate

Acester with probability 13 . Show the probability that the demand is higher inAcester is 9p/(4+ 5p)
if the survey indicates Acester. Find also the expected cost for each of the two possible decisions if
the survey indicates Acester.
If the survey indicates Acester and p < 8/17, where should Mr. Smith site the warehouse?

29 A coin is tossed repeatedly and, on each occasion, the probability of obtaining a head is p and the
probability of obtaining a tail is 1− p (0 < p < 1).
(a) What is the probability of not obtaining a tail in the first n tosses?
(b) What is the probability pn of obtaining the first tail at the nth toss?
(c) What is the expected number of tosses required to obtain the first tail?

30 The probability of a day being fine is p if the previous day was fine and is p′ if the previous day was
wet. Show that, in a consecutive sequence of days, the probability un that the nth is fine satisfies
un = (p − p′)un−1 + p′, n ≥ 2.
Show that as n →∞, un → p′(1− p + p′)−1.
By considering the alternative possibilities for tomorrow’s weather, or otherwise, show that if

today is fine the expected number of future days up to and including the next wet day is 1/(1− p).
Show that (today being fine) the expected number of future days up to and including the next

two consecutive wet days is (2− p)/((1− p)(1− p′)).
31 Cars are parked in a line in a parking lot in order of arrival and left there. There are two types of

cars, small ones requiring only one unit of parking length (say 15 ft) and large ones requiring two
units of parking length (say 30 ft). The probability that a large car turns up to park is p and the
probability that a small car turns up is q = 1− p. It is required to find the expected maximum
number of cars that can park in a parking length of n units, where n is an integer. Denoting
this number by M(n) show that:
(a) M(0) = 0
(b) M(1) = 1− p
(c) M(n)− q M(n − 1)− pM(n − 2) = 1, (n ≥ 2)
Show that the equations are satisfied by a solution of the form M(n) = Aαn + Bβn + Cn, where
α, β are the roots of the equation x2 − qx − p = 0, and A, B, C are constants to be found. What
happens to M(n) as n →∞?

32 The probability that the postman delivers at least one letter to my house on any day (including
Sundays) is p. Today is Sunday, the postman has passedmy house and no letter has been delivered.
(a) What is the probability that at least one letter will be delivered during the next week (including

next Sunday)?
(b) Given that at least one letter is delivered during the next week, let X be the number of days

until the first is delivered. What is fX (x)?
(c) What is the expected value of X?
(d) Suppose that all the conditions in the first paragraph hold, except that it is known that a letter

will arrive on Thursday. What is the expected number of days until a letter arrives?
33 A gambler plays two games, in each of which the probability of her winning is 0.4. If she loses a

game she loses her stake, but if she wins she gets double her stake. Suppose that she stakes a in the
first game and b in the second, with a + b = 1. Show that her expected loss after both games is 0.2.
Suppose she plays again, but now the stake in the first game buys knowledge of the second, so that

the chance of winning in the second is ap (≤1). Show that the value of a which gives the greatest
expected gain is 0.5+ 0.2/p.
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34 Let f1(X ) and f2(X ) be functions of the random variable X . Show that (when both sides exist)
[E( f1 f2)]2 ≤ E( f 21 )E( f 22 ). Deduce that P(X = 0) ≤ 1− [E(X )]2/E(X2).
(Recall that at2 + 2bt + c has distinct real roots if and only if b2 > ac.)

35 Any oyster contains a pearl with probability p independently of its fellows. You have a tiara that
requires k pearls and are opening a sequence of oysters until you find exactly k pearls. Let X be the
number of oysters you have opened that contain no pearl.
(a) Find P(X = r ) and show that

∑
r P(X = r ) = 1.

(b) Find the mean and variance of X .
(c) If p = 1− λ/k, find the limit of the distribution of X as k →∞.

36 A factory produces 100 zoggles a day. Each is defective independently with probability p. If a
defective zoggle is sold, it costs the factory£100 in fines and replacement charges. Therefore, each
day 10 are selected at random and tested. If they all pass, all 100 zoggles are sold. If more than
one is defective, then all 100 zoggles are scrapped. If one is defective, it is scrapped and a further
sample of size 10 is taken. If any are defective, the day’s output is scrapped; otherwise, 99 zoggles
are sold.
(a) Show that the probability r of not scrapping the day’s output is (1− p)10(1+

10p(1− p)9).
(b) If testing one zoggle costs £10, find the expected cost of a day’s testing.
(c) Find the expected returns on a day’s output in terms of the profit b of a sold zoggle and cost c

of a scrapped zoggle.
37 An urn contains two blue balls and n − 2 red balls; they are removed without replacement.

(a) Show that the probability of removing exactly one blue ball in r − 1 removals is
2(r − 1)(n − r + 1)

n(n − 1) .

(b) Show that the probability that the urn first contains no blue balls after the r th removal is

2(r − 1)
n(n − 1) .

(c) Find the expected number of removals required to remove both blue balls.
38 Suppose that n dice are rolled once; let X be the number of sixes shown. These X dice are rolled

again, let Y be the number of sixes shown after this second set of rolls.
(a) Find the distribution and mean of Y .
(b) Given that the second set of rolls yielded r sixes, find the distribution and mean of X .

39 Pascal and Brianchon now play a series of games that may be drawn (i.e., tied) with probability r .
Otherwise, Pascal wins with probability p or Brianchon wins with probability q, where p + q+
r = 1.
(a) Find the expected duration of the match if they stop when one or other wins two consecutive

games. Also, find the probability that Pascal wins.
(b) Find the expected duration of the match if they stop when one or other wins two successive

games of the games that are won. (That is, draws are counted but ignored.) Find the probability
that Pascal wins.

If you were Brianchon and p > q , which rules would you rather play by?
40 Let the random variable X have a geometric distribution, P(X = k) = qk−1 p; k ≥ 1. Show that for

t > 0, P(X ≥ a + 1) ≤ pe−ta(1− qet )−1. Deduce that P(X ≥ a + 1) ≤ (a+ 1)p[q(a+ 1)a−1]a ,
and compare this with the exact value of P(X ≥ a + 1).

41 An archer shoots arrows at a circular target of radius 1 where the central portion of the target inside
radius 1

4 is called the bull. The archer is as likely to miss the target as she is to hit it. When the
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archer does hit the target, she is as likely to hit any one point on the target as any other. What is the
probability that the archer will hit the bull? What is the probability that the archer will hit k bulls in
n attempts? Prove that the mean number of bulls that the archer hits in n attempts is n/32.
Show that if the archer shoots 96 arrows in a day, the probability of her hitting no more than one

bull is approximately 4e−3. Show that the average number of bulls the archer hits in a day is 3, and
that the variance is approximately (63

√
3/64)2.

42 Prove Chebyshov’s inequality that, for a random variable X with mean µ and variance σ 2,

P(|X − µ| ≤ hσ ) ≥ 1− 1

h2
, for any h > 0.

When an unbiased coin is tossed n times, let the number of tails obtained be m. Show that

P
(
0.4 ≤ m

n
≤ 0.6

)
≥ 0.75

when n ≥ 100. Given that n = 100, show that
P
(
0.49 ≤ m

n
≤ 0.51

)
� 3(5

√
(2π ))−1.

(You may assume Stirling’s formula that n! � √(2π )nn+1/2e−n when n is large.)
43 An ambidextrous student has a left and a right pocket, each initially containing n humbugs. Each

time she feels hungry she puts a hand into one of her pockets and if it is not empty, takes a humbug
from it and eats it. On each occasion, she is equally likely to choose either the left or the right
pocket. When she first puts her hand into an empty pocket, the other pocket contains H humbugs.
Show that if ph is the probability that H = h, then

ph =
(
2n − h

n

)
1

22n−h
,

and find the expected value of H , by considering
∑n

h=0(n − h)ph , or otherwise.
44 You insure your car. You make a claim in any year with probability q independently of events in

other years. The premium in year j is a j (where a j < ak for k < j), so long as no claim is made.
If you make a claim in year k, then the premium in year k + j is a j as long as no further claim is
made, and so on. Find the expected total payment of premiums until the first claim.

45 A Scotch die has faces bearing tartan patterns: three are McDiarmid, two are
Meldrum, and one is Murray. Show that the expected number of times you must roll the die before
all three patterns have appeared is 7.3.

46 Tail Sums Let X ≥ 0 be integer valued. Use the indicator I (X > k) to prove that

EX =
∑
k ≥ 0

P(X > k),

and

EXr =
∑
k ≥ 0

rkr−1P(X > k).

47 Coupon Collecting: Example (4.3.15) Revisited Let Xn be the number of coupons collected
until you first obtain a coupon that is a duplicate of one you already possess. Find P(Xn = k) and
deduce that

(a)
n+1∑
k=2

n!

(n − k + 1)!
k − 1

nk
= 1.

(b) EXn =
n∑

k=0

n!

(n − k)!
n−k .
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48 Let (xi ; 1 ≤ i ≤ n) be a collection of positive numbers. Show that(
1

n

n∑
i=1

1

xi

)−1
≤
(

n∏
i=1

xi

)1/n

.

49 If (yi ; 1 ≤ i ≤ n) is any ordering of (xi ; 1 ≤ i ≤ n), show that
∑n

i=1
xi
yi
≥ n.

50 Let X have finite variance, and set ν(x) = E(X − x)2. Show that Eν(X ) = 2varX .
51 Let X have mean µ, variance σ 2, and median m. Use (4.6.4) to show that

|µ− m| < σ .



5
Random Vectors: Independence

and Dependence

Wherever there is wealth there will be dependence and expectation.
Samuel Johnson [The Rambler, 189]

5.1 Joint Distributions

Commonly, each outcome of an experiment generates two (or more) real numbers of
interest. We can treat these as individual random variables (Xi ; 1 ≤ i ≤ n), but it is often
important to consider their joint behaviour. For example, if the experiment is your visit to
your doctor, youmayfindout your height H andweightW . These are separate randomvari-
ables, but are often informative when considered jointly. Thus, the outcome H = 150 cm
and W = 150 kg might disturb your physician, whereas the outcome H = 190 cm and
W = 80 kg probably would not. Likewise, the random vector comprising height, weight,
age, sex, blood pressure, and heart rate is of more use considered jointly than separately.
As another example, complicated systems (e.g., space shuttles) have several on-board

computers that work together to run the system. If one fails or makes an error, the others
can override it; thus, the system fails only when a majority of the computers fail. If
Xi is the time until the i th processor fails, then the time until the system fails depends
jointly on the collection of random variables, X1, . . . , Xn . It is natural to refer to such a
collection as a random vector, and write X = (X1, X2, . . . , Xn). Formally, as before, we
have X = X (ω);ω ∈ � and Ax = {ω : X (ω) = x} ∈ F , but we do not often refer to the
underlying sample space�. Because X maps� into a countable subset S of Rn , we think
of S as the sample space. (You may well have already been doing this instinctively in
Chapter 4.)
For simplicity, we summarize the properties of random vectors in two dimensions; the

appropriate generalizations in more dimensions are straightforward.

Definition Let X and Y be two discrete random variables taking values (xi ; i ≥ 1)
and (y j ; i ≥ 1), respectively. Their joint probability mass function f (x, y) is defined
by

f (x, y) = P(X = x, Y = y)

as x and y range over all possible values xi and y j of X and Y . �

158
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The mass function f (x, y) is zero, except at a countable set of points in R
2. In fact,

f (x, y) ≥ 0 for all x and y,(1)

and further if
∑

i, j f (xi , y j ) = 1, then the joint distribution f (x, y) is not defective. Most
important is the Key Rule:

P((X, Y ) ∈ C) =
∑

(x,y)∈C

f (x, y).(2)

(3) Example Suppose that a coin is tossed twice; let X be the total number of heads shown
and Y the total number of tails. Then, (X, Y ) takes values in

S = {0, 1, 2} × {0, 1, 2} = {(i, j) : i ∈ {0, 1, 2}, j ∈ {0, 1, 2}}.
Clearly, f (x, y) is zero, except at the points (0, 2), (1, 1), and (2, 0). Furthermore,

f (0, 2)+ f (1, 1)+ f (2, 0) = (1− p)2 + 2p(1− p)+ p2 = 1,
where we have denoted the probability of a head by p, as usual. �

Any real function g(X, Y ) of two such jointly distributed random variables is itself a
random variable. If we set Z = g(X, Y ), then Z has a probability mass function given by
using the Key Rule (2) above:

fZ (z) = P(g(X, Y ) = z) =
∑

f (x, y),(4)

where the summation is over all x and y, such that g(x, y) = z.

In particular, if g(x, y) = x , we have

fX (x) =
∑

y

f (x, y),(5)

and if g(x, y) = y, we have

fY (y) =
∑

x

f (x, y).(6)

Thus, we have shown the important result that, if we know the joint mass function of
several random variables, we can find all their separate mass functions. When obtained in
this way, fX (x) and fY (y) are sometimes called marginal mass functions.
Here are some examples illustrating joint mass functions.

(7) Example A row of n numberedmachines are producing components that are identical,
except for the serial number. On any day, the kth component produced by the j th machine
bears the serial number ( j, k). On the day in question, the r th machine produces cr (1 ≤
r ≤ n) components, and at the end of the day one component C is picked at random from
all those produced. Let its serial number be (X, Y ). Find f (x, y), fX (x) and fY (y).
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Solution Because C is picked at random from all
∑n

r=1 cr components, we have

f (x, y) =
(

n∑
1

cr

)−1
, 1 ≤ x ≤ n; 1 ≤ y ≤ cx ,

= a (say).

Then, by (5),
fX (x) =

∑
y

f (x, y) = acx .

Now define the function H (i, j) =
{
1 if ci ≥ c j ,

0 otherwise.

Then, by (6),

fY (y) =
∑

x

f (x, y) = a
n∑

x=1
H (x, y).

�

(8) Example: Cutting for the Deal It is customary, before engaging in a card game, to
cut for the deal; each player removes a portion of the deck in turn, and then each reveals
the bottom card of his segment. The highest card wins. For these to be random variables,
we need to assign numerical values to the court cards, so we set J = 11, Q = 12, K = 13,
A = 14, when aces are high.
(a) Art and Bart cut for deal, aces high. Let X be Art’s card, and Y be Bart’s card. Find

the joint mass function of X and Y . Does it make any difference how many cards Art
removes from the deck?

(b) Let V be the loser’s card, and W the dealer’s (winning) card. Find the joint mass
function of V and W , and the separate mass functions of V and W .

(c) Find the mass function of the dealer’s winning margin (namely, W − V ).
(d) What is the mass function of the dealer’s card when three players cut for deal?

Note that in the event of a tie, the deck is shuffled and the players cut again to choose the
dealer.

Solution (a) Each random variable takes values in {2, 3 . . . , 14}. Cutting the deck
twice amounts to selecting two cards at random, and because ties are not allowed, X �= Y .
By symmetry, any two unequal values are equally likely to occur, so

fX,Y (x, y) = P(X = x, Y = y) =


1

12
.
1

13
x �= y

0 x = y


 2 ≤ x, y ≤ 14.

It makes no difference how many cards Art removes with his cut.
(b) Of course, W > V , so

fV,W (v,w) = P(V = v,W = w) = P(X = v, Y = w)+ P(X = w, Y = v)

=


2

12
· 1
13
= 1

78
; 2 ≤ v < w ≤ 14

0 · ; otherwise.
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This is otherwise obvious, because the experiment amounts to choosing an unordered
pair of unequal cards at random, with equal probability of choosing any pair. Hence, for
v < w, f (v,w) = ( 132 )−1, as above. Now, by (5),

fV (v) =
14∑

w=v+1

1

78
= 14− v

78
; 2 ≤ v ≤ 13.

Then by (6),

fW (w) =
w−1∑
2

1

78
= w − 2

78
; 3 ≤ w ≤ 14.

(c) By (4),

fZ (z) = P(W − V = z) =
∑ 1

78
,

where the summation is over all v and w such that w − v = z. Because z ≤ v < w ≤ 14,
there are exactly 13− z terms in this sum, so

P(W − V = z) = 13− z

78
; 1 ≤ z ≤ 12.

(d) Arguing as we did for (b), where now u < v < w, we have

P(U = u, V = v,W = w) =
(
13
3

)−1
.

Hence,

fW (w) =
∑

2≤u<v<w

(
13
3

)−1
; 4 ≤ w ≤ 14,

=
∑
3≤v<w

(v − 2)
(
13
3

)−1
= 1

2
(w − 3)(w − 2)

(
13
3

)−1
. �

(9) Example For what value of c is the function

f (x, y) = c

(
x + y − 1

x

)
λxµy, x ≥ 0; y ≥ 1; 1 > 1− λ > µ > 0

a joint mass function? For this value of c, find the mass functions of X and Y .

Solution By (2),

c−1 =
∞∑

y=1

∞∑
x=0

(
x + y − 1

x

)
λxµy =

∞∑
y=1

µy

(1− λ)y by (3.6.12),

= µ

1− λ− µ.
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Then, by (5),

fX (x) = c
∞∑

y=1
µλx

(
x + 1+ y − 2

y − 1
)
µy−1 = (1− λ− µ)λx

(1− µ)x+1 , x ≥ 0.

Likewise,

fY (y) = c
∞∑

x=0

(
x + y − 1

x

)
λxµy = (1− λ− µ)µy−1

(1− λ)y , y ≥ 1.

Thus, X + 1 and Y are both geometric, with parameters λ
1−µ and

µ

1−λ , respectively, X
taking values in the nonnegative integers and Y in the positive integers. �

(10) Example Leif and Rolf are bored with fair games. They want to play a game in which
the probability of winning (for Leif) is λ, where λ is an arbitrary number in [0, 1]. Also,
they want the game to be of finite duration with probability 1. Unfortunately, the only
gaming aid they have is a fair coin. Can you supply them with a game?

Solution Let λ have binary expansion

λ = 0.b1b2b3 . . . =
∞∑

n=1
bn2

−n.

Now toss the coin repeatedly and let In be the indicator of the event that the nth toss is
a head. Let T be the first toss such that In �= bn, T = min{n: In �= bn}. If IT < bT , then
Leif wins; otherwise, Rolf wins. Now, P(T = n) = ( 12 )n so that

P(T <∞) =
∞∑
1

(
1

2

)n

= 1

and indeed E(T ) = 2. Also, Leif can only win at the nth toss if bn = 1 so
P(Leif wins) =

∑
n

bnP(T = n) =
∑

n

bn2
−n = λ,

as required. �

5.2 Independence

Given the joint mass function of X and Y , equations (5.1.5) and (5.1.6) yield the marginal
mass functions of X and Y . However, to be given the marginal distributions does not in
general uniquely determine a joint distribution.

(1) Example Let X and Y have joint mass function given by

f (0, 0) = 1

6
, f (0, 1) = 1

3
, f (1, 0) = 1

12
, f (1, 1) = 5

12
,

and let U and V have joint mass function given by

f (0, 0) = 1

4
, f (0, 1) = 1

4
, f (1, 0) = 0, f (1, 1) = 1

2
.
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Then, summing to get the marginal mass functions shows that:

fX (0) = fU (0) = 1

2
, fX (1) = fU (1) = 1

2
;

and

fY (0) = fV (0) = 1

4
, fY (1) = fV (1) = 3

4
.

These marginal mass functions are the same, but the joint mass functions are different.
�

There is one exceptionally important special case when marginal mass functions do
determine the joint mass function uniquely.

(2) Definition Random variables X and Y are independent if, for all x and y,

f (x, y) = fX (x) fY (y).

This is equivalent to P(A ∩ B) = P(A)P(B), where A = {ω: X (ω) = x} and B =
{ω: X (ω) = y}, which is the definition of independence for the events A and B. More
generally, a collection (Xi ; 1 ≤ i ≤ n) with mass function f is independent if for all
x = (x1, . . . , xn)

f (x) =
n∏

i=1
fXi (xi ).(3) �

Note that if X or Y (or both) are improper random variables [so that f (x, y) is defective],
then to say they are independent is interpreted as meaning

P(X = x, Y = y) = P(X = x)P(Y = y)(4)

for all finite x and y. This may seem odd, but such random variables occur quite naturally
in simple random walks and other topics.

Example 5.1.7 Revisited Recall that n machines produce components. Suppose that
all the machines produce the same number c of components, and as before we pick one at
random and let its serial number be (X, Y ), where X is the machine number and Y is the
component index. Then,

f (x, y) = (nc)−1; 1 ≤ x ≤ n; 1 ≤ y ≤ c

and

fX (x) = 1

n
; 1 ≤ x ≤ n and fY (y) = 1

c
; 1 ≤ y ≤ c.

Obviously, f (x, y) = fX (x) fY (y) and so X and Y are independent in this case.
�
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(5) Example 1 Revisited Observe that the mass functions of X and Y , and of U and
V , do not satisfy Definition 2. Let W and Z be independent random variables such that
fW (0) = 1

2 , fW (1) = 1
2 and fZ (0) = 1

4 , fZ (1) = 3
4 .

Then, by Definition 2, their joint mass function is

f (0, 0) = 1

8
, f (0, 1) = 3

8
, f (1, 0) = 1

8
, f (1, 1) = 3

8
. �

(6) Example 5.1.9 Revisited Observe that X and Y are not independent because
( x+y−1

x )λxµy cannot be expressed in the form fX (x) fY (y). If X + 1 and Y were inde-
pendent geometric random variables with parameters λ

1−µ and
µ

1−λ , then the joint mass
function would be

f (x, y) =
(
1− λ

1− µ
)(
1− µ

1− λ
)(

λ

1− µ
)x(

µ

1− λ
)y−1

, x ≥ 0; y ≥ 1.
�

The apparently simple Definition 2 implies a great deal more about independent random
variables, as the following result shows.

(7) Theorem Let X and Y be independent random variables. Then:
(a) For arbitrary countable sets A and B,

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B),(8)

and
(b) For any real functions g(·) and h(·), g(X ) and h(Y ) are independent.

Proof (a) The left-hand side of (8) is∑
x∈A

∑
y∈B

P(X = x, Y = y) =
∑
x∈A

∑
y∈B

P(X = x)P(Y = y) by independence

=
∑
x∈A

P(X = x)
∑
y∈B

P(Y = y) = P(X ∈ A)P(Y ∈ B),

as required. For (b), let A = {x : g(X ) = ξ} and B = {y: h(Y ) = η}. Then, by part (a), for
any ξ and η,

P(g(X ) = ξ, h(Y ) = η) = P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B)
= P(g(X ) = ξ )P(h(Y ) = η),

as required. �

(9) Example Independent random variables X and Y take the values −1 or +1 only, and
P(X = 1) = a,P(Y = 1) = α. A third random variable Z is defined by Z = cos((X +
Y )π2 ). If 0 < a, α < 1, show that there are unique values of a and α such that X and Z are
independent, and Y and Z are independent. In this case, are X, Y , and Z independent?
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Solution First, for Z ,

P(Z = 1) = P(X + Y = 0) = a(1− α)+ α(1− a)

and, likewise, P(Z = −1) = aα + (1− a)(1− α). Now,
P(Z = 1, X = 1) = P(X = 1, Y = −1) = a(1− α).

Hence, if

a(1− α) = a(a(1− α)+ α(1− a))(10)

we have P(Z = 1, X = 1) = P(Z = 1)P(X = 1). Simplifying (10) yields α = 1
2 . Now,

plodding through three similar constraints shows that X and Z are independent iff α =
a = 1

2 . By symmetry, the same condition holds iff Y and Z are independent.
However, X, Y , and Z are not independent because

P(X = 1, Y = 1, Z = −1) = 0 �= P(X = 1)P(Y = 1)P(Z = −1). �

Independent random variables often have interesting and useful properties.

(11) Example Let X and Y be independent geometric random variables having respective
mass functions fX (x) = (1− λ)λx and fY (y) = (1− µ)µy for x ≥ 0 and y ≥ 0. What is
the mass function of Z = min{X, Y }?

Solution By independence,

P(Z > n) = P(X > n ∩ Y > n) = P(X > n)P(Y > n) = λn+1µn+1 = (λµ)n+1.
Hence,

P(Z = n) = P(Z > n − 1)− P(Z > n) = (1− λµ)(λµ)n

and Z is also geometric with parameter λµ. �

5.3 Expectation

Let the random variable Z = g(X, Y ) be a function of X and Y . Using (5.1.4) and the
definition of expectation (4.3.1), we have

E(Z ) =
∑

z

z fZ (z) =
∑

z

zP(g(X, Y ) = z).

This expression for E(Z ) is not always simple or convenient for use in calculation. The
following generalization of Theorem 4.3.4 is therefore very useful.

(1) Theorem Let X and Y have joint mass function f (x, y). Whenever the sum on
the right-hand side is absolutely convergent, we have

E(g(X, Y )) =
∑
x,y

g(x, y) f (x, y).

Proof The proof is essentially the same as that of Theorem 4.3.4. �
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(2) Corollary For any real numbers a and b,

E(aX + bY ) = aE(X )+ bE(Y )

when both sides exist and are finite.

Proof Because the sum is absolutely convergent, by (1),

E(a X + bY ) =
∑
x,y

(ax + by) f (x, y) =
∑
x,y

ax f (x, y)+
∑
x,y

by f (x, y)

=
∑

x

ax fX (x)+
∑

y

by fY (y) by (5.1.5) and (5.1.6)

= aE(X )+ bE(Y ). �

(3) Example: Coupons Recall Example 4.3.15 in which you were collecting coupons;
we can now findE(R) more quickly. Let T1 be the number of packets required to obtain the
first coupon, T2 the further number of packets required to obtain a second type of coupon,
T3 the further number required for the third type and so on. Then,

R =
n∑

k=1
Tk .

Obviously, T1 = 1. Also,

P(T2 = r ) =
(
1

n

)r−1(
1− 1

n

)
so that T2 is geometric with mean n

n−1 . Likewise, Tk is geometric with mean

E(Tk) = n

n − k + 1; 1 ≤ k ≤ n.

Hence, by (2),

E(R) =
n∑

k=1
E(Tk) =

n∑
k=1

n

n − k + 1 ,

the same as the answer obtained with somewhat more effort in Example 4.3.15. �

Corollary (2) is often useful when considering sums of indicators. For example, let
{A1, A2, . . . , An} be any collection of events, and let

Ii =
{
1 if Ai occurs
0 if Ai does not occur

be the indicator of Ai . Now, let X be the number of the Ai that occur. Then, by construction
X =∑n

i=1 Ii , and by (2)

E(X ) =
n∑

i=1
E(Ii ) =

n∑
i=1

P(Ai ).

We use this result in the following example.
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Example: Binomial Distribution Let X be binomial with parameters n and p. Show
that the factorial moments of X are given by

µ(k) = pkn(n − 1) . . . (n − k + 1).

Solution Suppose a coin that shows heads with probability p is tossed n times. Then,
the number of heads has the mass function of X . Let Y be the number of distinct sets
of k such that all k tosses show heads. Then, Y = ( X

k ). However, each of the (
n
k ) distinct

sets of k tosses shows k heads with probability pk . Hence, E(Y ) = ( n
k )p

k . Therefore, we
have

E
((

X
k

))
=

(
n
k

)
pk,

which is the desired result. �

We single certain expectations out for special notice. Just as random variables have mo-
ments, jointly distributed random variables have joint moments.

(4) Definition The joint moments of X and Y are

µi j = E(Xi Y j ); i, j ≥ 1. �

(5) Definition The covariance of X and Y is

cov (X, Y ) = E[(X − E(X ))(Y − E(Y ))] = E(XY )− E(X )E(Y ). �

This is the most important of the central joint moments, which are

σi j = E[(X − E(X ))i (Y − E(Y )) j ]; i, j ≥ 1.
Here are two interesting properties of cov (X, Y ).

(6) Theorem For jointly distributed random variables X and Y, and constants a, b, c, d,
we have:

(i) cov (a X + b, cY + d) = ac cov (X, Y )
(ii) var (X + Y ) = var (X )+ var (Y )+ 2 cov (X, Y )

Proof

(i) cov (a X + b, cY + d) = E[(aX + b − aE(X )− b)(cY + d − cE(Y )− d)]
= E[ac(X − E(X ))(Y − E(Y ))] = ac cov(X, Y )

(ii) var (X + Y ) = E(X + Y − E(X )− E(Y ))2

= E[(X − E(X ))2 + (Y − E(Y ))2 + 2(X − E(X ))(Y − E(Y ))],

as required. �

Let us find cov (X, Y ) for the simple examples we have met above.
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(1) Examples 5.2.1 and 5.2.5 Revisited Find the covariance for each of the three joint
mass functions given in these two examples.

Solution In every case,

E(XY ) = 12 f (1, 1)

and E(X ) = f (1, 0)+ f (1, 1), and E(Y ) = f (0, 1)+ f (1, 1).
Hence,

cov (X, Y ) = f (1, 1)− ( f (1, 0)+ f (1, 1))( f (0, 1)+ f (1, 1)).

Evaluating this in the three given instances shows that:

(i) cov (X, Y ) = 5

12
−
(
1

3
+ 5

12

)(
1

12
+ 5

12

)
= 1

24

(ii) cov (U, V ) = 1

2
−
(
1

4
+ 1

2

)
.
1

2
= 1

8

(iii) cov (W, Z ) = 3

8
−
(
3

8
+ 3

8

)(
1

8
+ 3

8

)
= 0. �

(7) Example 5.1.8 Revisited Recall that Art and Bart are cutting for the deal. Find cov
(X, Y ) and cov (V,W ).

Solution

E(X ) = E(Y ) =
14∑
2

x

13
= 8.

Also, using (1),

E(XY ) =
∑

2≤x �=y≤14

x

12
.

y

13
= 1

12
.
1

13

∑
y

(105− y − 1)y

= 1

12
.
1

13
(105× 104− 1118) = 64− 7

6
.

Hence, cov (X, Y ) = − 7
6 .

Likewise, using the expressions in Example 5.1.8 for the marginal mass functions of V
and W , we find

E(V ) =
13∑
v=2

v(14− v)
78

= 1

78

13∑
v=2
(13v − v(v − 1))

= + 1

78

13∑
v=2

(
13

2
[v(v + 1)− v(v − 1)]

−1
3
[(v + 1)v(v − 1)− v(v − 1)(v − 2)]

)

= 17

3

after successive cancellation of the terms in the sum.
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Similarly, we find E(W ) = 31
3 .

Now for all ω, X (ω)Y (ω) = V (ω)W (ω), so E(V W ) = E(XY ), and finally,

cov (V,W ) = 62+ 5

6
− 17

3
.
31

3
= +77

18
. �

Just as joint mass functions have a simple form when random variables are independent,
so too do joint moments simplify.

(8) Theorem If X and Y are independent random variables with finite expectations, then
E(XY ) exists, and E(XY ) = E(X )E(Y ). It follows that cov (X, Y ) = 0 in this case.

Proof By independence and Theorem 5.3.1,

E(|XY |) =
∑
x,y

|xy| fX (x) fY (y) =
∑

x

|x | fX (x)
∑

y

|y| fY (y) = E(|X |)E(|Y |)

so E(|XY |) <∞. Thus, E(XY ) exists, and the same argument shows that E(XY ) =
E(X )E(Y ). �

(9) Definition If cov (X, Y ) = 0, then X and Y are said to be uncorrelated. If
E(XY ) = 0, then X and Y are said to be orthogonal. �

It follows that independent random variables are uncorrelated, but the converse is not true,
as the following example shows.

(10) Example A random variable X is said to be symmetric if P(X = −x) = P(X = x)
for all x . Let X be symmetric with E(X3) <∞, and let Y = X2. Then, because X has an
expectation it is zero, by symmetry, and

E(XY ) = E(Y 3) =
∑
x>0

x3( f (x)− f (−x)) = 0 = E(X )E(Y ).

Thus, cov(X, Y ) = 0, even though X and Y are not independent. In this case, X and Y are
uncorrelated and orthogonal, but dependent. �

Thus, up to a point, and in a way that we carefully leave unspecified, cov (X, Y ) can be an
indication of the dependence of X and Y . It has the drawback that it depends on the scale
of X and Y . Thus, if a is a constant, aX and Y have the same “dependence” as X and Y
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(whatever we mean by that), but cov (aX, Y ) = a cov (X, Y ). For this reason, statisticians
more commonly use the following.

(11) Definition The correlation coefficient of random variables X and Y is

ρ(X, Y ) = cov (X, Y )

(var (X ) var (Y ))
1
2

,

whenever the right-hand side exists. �

Example 5.1.3 Revisited Here, X and Y are the number of heads and tails, respec-
tively, when a coin is tossed twice. What are cov (X, Y ) and ρ(X, Y )?

Solution Trivially,

E(XY ) = 12P(X = 1,Y = 1) = 2p(1− p).

Likewise, E(X ) = 2p,E(Y ) = 2(1− p), var (X ) = 2p(1− p) and var (Y ) = 2p(1− p).
Hence,

cov (X, Y ) = 2p(1− p)− 4p(1− p) = −2p(1− p)

and

ρ(X, Y ) = −2p(1− p)

(4p2(1− p)2)
1
2

= −1. �

The correlation coefficient ρ has the following interesting properties; we assume that
X and Y are not constant, and have finite variance.

(12) Theorem If X and Y have correlation ρ(X, Y ), then:

(i) −1 ≤ ρ(X, Y ) ≤ 1.
(ii) |ρ| = 1 if and only if P(X = aY ) = 1 for some constant a.
(iii) ρ(a X + b, cY + d) = sgn (ac)ρ(X, Y ), where sgn(x) denotes the sign of x.
(iv) ρ = 0 if X and Y are independent.

The proof of this theorem relies on the following important and useful result.

(13) Lemma: Cauchy–Schwarz Inequality If E(X2)E(Y 2) <∞, then

(E(XY ))2 ≤ E(X2)E(Y 2).(14)

Proof Suppose 0 < E(X2)E(Y 2). By Theorem 4.3.6 (iii),

0 ≤ E[(XE(Y 2)− YE(XY ))2]
= E(X2)(E(Y 2))2 − 2E(XY )2E(Y 2)+ E(Y 2)[E(XY )]2(15)
= E(Y 2)[E(X2)E(Y 2)− (E(XY ))2].
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Because E(Y 2) > 0, (14) follows. Of course, (14) is trivially true if E(Y 2) = 0,
for then Y = XY = 0 with probability one. �

Proof of (12) (i) Applying Lemma 13 to the random variables X − E(X ) and Y − E(Y )
shows that (ρ(X, Y ))2 ≤ 1, and so −1 ≤ ρ ≤ 1, as required.
(ii) If |ρ| = 1, then from (15),

E[(XE(Y 2)− YE(XY ))2] = 0,
and so from Example 4.6.10, with probability one X = (E(XY )/E(Y 2))Y .
(iii) Expanding, and using Theorem 6(i),

ρ(a X + b, cY + d) = ac cov (X, Y )

(a2var (X )c2var (Y ))
1
2

= ac√
(ac)2

ρ(X, Y ),

as required
(iv) This follows immediately from Theorem 8. �

(16) Example (5.1.9) Revisited Recall that X and Y have joint mass function

f (x, y) = 1− λ− µ
µ

(
x + y − 1

x

)
λxµy .

Show that ρ(X, Y ) =
(

λµ

(1− λ)(1− µ)
) 1

2

.

Solution First, we calculate E(XY ) as

1− λ− µ
µ

∑
x,y

xy

(
x + y − 1

x

)
λxµy = 1− λ− µ

µ

∞∑
y=1

y2µyλ

×
∞∑

x=1

(
x + y − 1

x − 1
)
λx−1 = (1− λ− µ)λ

(1− λ)µ
∞∑

y=1
y2

(
µ

1− λ
)y

= λ(1− λ+ µ)
(1− λ− µ)2 .

Now we have already discovered in Example 5.1.9 that X and Y have geometric mass
functions, so by Example 4.3.13

E(X ) = 1− µ
1− λ− µ − 1, E(Y ) = 1− λ

1− λ− µ
var (X ) = µ(1− λ)

(1− λ− µ)2 , var (Y ) = λ(1− µ)
(1− λ− µ)2

and plugging all this into (11) yields

ρ = λ(1− λ+ µ)− λ(1− λ)
(µ(1− λ)λ(1− µ)) 12

,

as required. �
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Finally, we remark that cov (X, Y ) and ρ(X, Y ) are not the only functions used to measure
dependence between X and Y . Another such function is

I (X, Y ) =
∑

x

∑
y

f (x, y) log

(
f (x, y)

fX (x) fY (y)

)
= E

(
log

(
f (X, Y )

fX (X ) fY (Y )

))
.(17)

See Example 5.16 for more on this.

5.4 Sums and Products of Random Variables: Inequalities

These arise in many ways. For example, it is often useful to write a random variable as a
sum of simpler random variables.

(1) Example: Binomial Random Variable The random variable X with mass function

fX (k) =
(

n
k

)
pk(1− p)n−k

has arisen in many ways; classically, it is the number of heads in n tosses of a biased coin.
We now see that we can think about X in a different way. Let Ik be the indicator of the
event that the kth toss of the coin shows a head. Then,

X = I1 + I2 + · · · + In =
n∑

k=1
Ik .

We have written X as a sum of Bernoulli trials or indicators. Hence,

E(X ) = E

(
n∑

k=1
Ik

)
=

n∑
k=1

E(Ik) = np.

Likewise,

E(X2) = E

(
n∑

k=1
Ik

)2
=

n∑
k=1

E
(
I 2k
)+∑

j �=k

E(I j Ik) = np + n(n − 1)p2.

Hence, var (X ) = np(1− p). You should compare this with your earlier methods using

E(X2) =
n∑

k=1
k2
(

n
k

)
pk(1− p)n−k =

n∑
k=1
(k(k − 1)+ k)

n!

k!(n − k)!
pk(1− p)n−k

and so on. �

(2) Theorem Any discrete random variable X can be written as a linear combination of
indicator random variables; thus,

X =
∑

i

ai I (Ai )

for some collection of events (Ai ; i ≥ 1) and real numbers (ai ; i ≥ 1).
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Proof Just let (ai ; i ≥ 1) include the set of possible values of X , and set Ai = {ω:X (ω) =
ai }. �

(3) Example: Matching Suppose that n distinct numbered keys ordinarily hang on n
hooks bearing corresponding distinct numbers. On one occasion an inebriated turnkey
hangs the keys at random on the hooks (one to each hook). Let X be the number of keys,
which are then on the correct hooks. Find E(X ) and var (X ).

Solution Let I j be the indicator of the event that the j th key does hang on the j th
hook. Then,

X =
n∑

j=1
I j .

Now by symmetry P(I j = 1) = 1/n and for j �= k,

P(I j Ik = 1) = 1

n(n − 1) .(4)

Hence,

E(X ) = E

(
n∑

j=1
I j

)
=

n∑
j=1

E(I j ) =
n∑

j=1
P(I j = 1) = 1.

Also,

E(X2) = E

(
n∑

j=1
I 2j +

∑
j �=k

I j Ik

)
= 1+ 1,

using (4), and the fact that I 2j = I j . Hence, var (X ) = 1. �

Indicators can also be useful when multiplied together; here is an illustration.

(5) Example Let us prove (1.4.8). Recall that we have events A1, . . . , An , and we seek
the probability that at least one of them occurs, namely,

P

(
n⋃

j=1
A j

)
= tn (say).

For economy of notation, we set

sr =
∑

i1<i2<···<ir

P
(

Ai1 ∩ . . . ∩ Air

)
; 1 ≤ r ≤ n.(6)

We let I j be the indicator of the event that A j occurs, and set

Sr =
∑

i1<i2<···<ir

Ii1 Ii2 . . . Iir .
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Next, observe that

1−
n∏

j=1
(1− I j ) =

{
1 if at least one A j occurs
0 otherwise

(7)

Hence, this is the indicator of the event whose probability we seek, and

P

(
n⋃

j=1
A j

)
= E

(
1−

n∏
j=1
(1− I j )

)

= E(S1 − S2 + · · · + (−)n+1Sn) on multiplying out,
= s1 − s2 + · · · + (−)n+1sn by (6), as required. �

The same expansion (7) can be used to prove the following interesting inequalities.

TheoremTheorem: Inclusion–Exclusion Inequalities With the notation of Exam-
ple 5, for 1 ≤ r ≤ n,

(−)r
(
P

(
n⋃

j=1
A j

)
− s1 + s2 − · · · (−)r sr

)
≥ 0.

Proof First, we prove a simple identity. Obviously, (1+ x)k(1+ 1
x )
−1 = x(1+ x)k−1.

Hence, equating the coefficient of xr+1 on each side gives(
k

r + 1
)
−
(

k
r + 2

)
+ · · · + (−)k−r+1

(
k
k

)
=

(
k − 1

r

)
≥ 0.(8)

Furthermore, we have

1−
n∏
1

(1− I j )− S1 + S2 − · · · + (−)r Sr

= (−)r (Sr+1 − Sr+2 + · · · + (−)n−r+1Sn).(9)

Now suppose exactly k of A1, . . . , An occur. If k ≤ r, the right-hand side of (9) is zero. If
k > r , the contribution in the bracket on the right-hand side is(

k
r + 1

)
−
(

k
r + 2

)
+ · · · + (−)k−r+1

(
k
k

)
=

(
k − 1

r

)
by (8),

> 0.

Hence, no matter how many A js occur

(−)rE
(
1−

n∏
1

(1− I j )− S1 + S2 + · · · + (−)r Sr

)

= (−)2rE(Sr+1 − · · · + (−)t−r+1Sn) ≥ 0,
as required. �
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It can similarly be shown (or deduced from the above) that if

tr =
∑

i1<i2<···<ir

P
(

Ai1 ∪ · · · ∪ Air

)
,

then tn =
∑n

r=1(−)r−1sr , and

(−)r
(
P

(
n⋂
1

Ai

)
− t1 + t2 − · · · + (−)r tr

)
≥ 0.

Often, it is natural and important to consider the sum Z of two variables X and Y . This
is itself a random variable, and so we may require the distribution of Z = X + Y . This is
given by Example 5.1.3, so we have proved that

fZ (z) =
∑

x

fX,Y (x, z − x).(10)

One special case of this result must be singled out.

(11) Theorem If X and Y are independent discrete random variables, then Z = X + Y
has probability mass function

fZ (z) =
∑

x

fX (x) fY (z − x).(12)

Proof Substitute Definition 5.2.2 into (10). A summation of this form is called a
convolution. �

(13) Example: Sum of Geometric Random Variables (a) Let X1 and X2 be independent
random variables, each having a geometric distribution

P(Xi = k) = (1− p)k p; k ≥ 0.(14)

Show that the mass function of X1 + X2 is f (z) = (z + 1)(1− p)z p2; z ≥ 0.
(b) If (Xi ; i > 1) are independent random variables, each having the geometric distri-

bution (14), find the mass function of Z =∑n
1 Xi .

Solution (a) Using (12),

f (z) =
z∑

k=0
(1− p)k p(1− p)z−k p =

z∑
k=0

p2(1− p)z = (z + 1)p2(1− p)z.

Alternatively, suppose we have a coin that, when tossed, shows a head with probability
p. Toss this coin repeatedly until a head first appears, and let T1 be the number of tails
shown up to that point. Continue tossing the coin until the second head appears and let T2
be the further number of tails shown up to that point. Then, T1 and T2 are independent and
have the geometric distribution (14), and T1 + T2 is the number of tails shown before the
second head appears. But we know from Example 4.2.8 that

P(T1 + T2 = z) =
(

z + 1
1

)
p2(1− p)z.

Thus, X1 + X2 also has this mass function.
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(b) Extending the second argument above, we see that
∑n

1 Xi has the same distribution
as the number of tails shown upto the point where n heads have first appeared in successive
tosses of our biased coin. But the probability that z tails have appeared is just(

z + n − 1
n − 1

)
pn(1− p)z(15)

and so this is the mass function of Z . It is negative binomial.
Now that we are in possession of the answer, we can use (12) to verify it by induction.

Assume that
∑n

1 Xi hasmass function (15). Then, by (12), themass function of
∑n+1

1 Xi is

P

(
n+1∑
i=1

Xi = z

)
=

z∑
k=0

p(1− p)k
(

z + n − k − 1
n − 1

)
(1− p)z−k pn

=
z∑

k=0
pn+1(1− p)z

(
z + n − k − 1

n − 1
)
= pn+1(1− p)z

(
z + n

k

)
,

as required, where we have used the identity

z∑
r=0

(
n − 1+ r

n − 1
)
=

(
n + z

n

)
.(16)

Because (15) holds for n = 1, the result follows by induction. Note that (16) can be
derived immediately by equating the coefficient of xz on both sides of the trivial identity

1

1+ x
.

1

(1+ x)n
= 1

(1+ x)n+1
. �

Example: Sum of Binomial Random Variables Let X and Y be independent ran-
dom variables with respective mass functions

fX (x) =
(

m
x

)
px (1− p)m−x , and fY (y) =

(
n
y

)
py(1− p)n−y .

Show that X + Y has a binomial distribution.

Solution The expeditious method of doing this is to use Example 5.4.1 to write X =∑m
i=1 Ii and Y =∑m+n

i=m+1 Ii . Hence,

X + Y =
m+n∑
i=1

Ii ;

this has the B(m + n, p) mass function by Example 5.4.1.
Alternatively, this may be shown by using (5.4.12); this is an exercise for you.

�

Turning to expected values, we recall that from Definition 5.2.2, for any random
variables (Xi ; i ≥ 1) with finite expectation, whether they are independent or not,

E

(
n∑

i=1
Xi

)
=

n∑
i=1

E(Xi ).(17)
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If in addition the Xi are independent, then

E

(
n∏

i=1
Xi

)
=

n∏
i=1

E(Xi ).(18)

Many inequalities for probabilities and moments are useful when dealing with random
vectors.Most of them are beyond our scope at this stage, butwe give a few simple examples
with some applications.

(19) Basic Inequality If X ≤ Y with probability one, then E(X ) ≤ E(Y ).

Proof This follows immediately from Theorem 4.3.6. �

Corollary (a) For 1 < r < s,

E(|X |r ) ≤ (E(|X |s))+ 1.(20)

(b) For r ≥ 1,
E(|X + Y |r ) ≤ 2r (E(|X |r )+ E(|Y |r )).(21)

Proof (a) If |x | ≤ 1, then |x |r ≤ 1; and if |x | > 1 and r < s, then |x |r ≤ |x |s . Hence, in
any case, when r ≤ s, |x |r ≤ |x |s + 1. Thus,

E(|X |r ) =
∑

x

|x |r f (x) ≤
∑

x

|x |s f (x)+ 1 = E(|X |s)+ 1.

(b) For any real numbers x and y, if k ≤ r, |x |k |y|r−k ≤ |xr + |y|r , because either
(|x |k/|y|k) ≤ 1 or (|y|r−k/|x |r−k) < 1. Hence,

|x + y|r ≤ (|x | + |y|)r ≤
r∑

k=0

(
r
k

)
|x |k |y|r−k

≤
r∑

k=0

(
r
k

)
(|x |r + |y|r ) = 2r (|x |r + |y|r ),

and (3) follows. �

(22) Corollary These inequalities show that:

(a) If E(Xs) <∞, then for all 1 ≤ r ≤ s,E(Xr ) <∞.
(b) If E(Xr ) and E(Y r ) are finite then E((X + Y )r ) <∞. �

5.5 Dependence: Conditional Expectation

Let X and Y be jointly distributed random variables. We may be given the value of Y ,
either in fact, or as a supposition. What is the effect on the distribution of X?
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(1) Definition If X and Y have joint probability mass function f (x, y), then given
Y = y, the random variable X has a conditional probability mass function given by

fX |Y (x |y) = f (x, y)

fY (x)

for all y such that fY (y) > 0. �

Example Let X and Y be independent geometric random variables each having mass
function f (x) = (1− λ)λx ; x ≥ 0, 0 < λ < 1. Let Z = X + Y . Show that for 0 ≤ x ≤
z, fX |Z (x |z) = 1/(z + 1).

Solution From Example 5.4.13, we know that Z has mass function fZ (z) =
(z + 1)(1− λ)2λz and so

fX |Z (x |z) = P(X = x, Z = z)

(z + 1)(1− λ)2λz
= (1− λ)2λxλz−x

(1− λ)2λz(z + 1) = (z + 1)
−1. �

(2) Example 5.1.8 Revisited: Cutting for the Deal Find the conditional mass function
of the loser’s card conditional on W = w; find also fW |V (w|v).

Solution According to Example 5.1.8, f (v,w) = 1
78 ; 2 ≤ v < w ≤ 14, and

fW (w) = w − 2
78

; 3 ≤ w ≤ 14.
Hence, using Definition 1,

fV |W (v|w) = 1

w − 2; 2 ≤ v < w.

The loser’s score is uniformly distributed given W . Likewise,

fW |V (w|v) = 1

78

/
14− v
78

= 1

14− v ; v < w ≤ 14,

also a uniform distribution. �

(3) Example Let X and Y be independent. Show that the conditional mass function of X
given Y is fX (x), the marginal mass function.

Solution Because X and Y are independent, f (x, y) = fX (x) fY (y). Hence, applying
Definition 1,

fX |Y (x |y) = f (x, y)/ fY (y) = fX (x). �

(4) Theorem fX |Y (x |y) is a probability mass function, which is to say that

(i) fX |Y (x |y) ≥ 0 and
(ii)

∑
x fX |Y (x |y) = 1.
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Proof Part (i) is trivial. Part (ii) follows immediately from (5.1.5). �

Recall that two events A and B are said to be conditionally independent given C , if
P(A ∩ B|C) = P(A|C)P(B|C). Likewise, it is possible for two random variables X and
Y to be conditionally independent given Z , if

fX,Y |Z = fX |Z fY |Z .

Example: Cutting for the Deal (Example 5.1.8 Revisited) Suppose three players
cut for the deal (with ties not allowed, as usual). Let X be the lowest card, Y the highest
card and Z the intermediate card. Clearly, X and Y are dependent. However, conditional
on Z = z, X and Y are independent. The mass function fX |Z is uniform on {2, . . . , z − 1}
and fY |Z is uniform on {z + 1, . . . , 14}. �

Being amass function, fX |Y mayhave an expectation; it has a special name and importance.

(5) Definition The conditional expectation of X, given that Y = y where fY (y) > 0,
is

E(X |{Y = y}) =
∑

x

x f (x, y)/ fY (y),

when the sum is absolutely convergent. �

As y varies over the possible values of Y , this defines a function of Y , denoted by E(X |Y ).
Because it is a function of Y , it is itself a random variable, which may have an expectation.

(6) Theorem If both sides exist,

E(E(X |Y )) = E(X ).(7)

Proof Assuming the sums are absolutely convergent we have, by Theorem 4.3.4,

E(E(X |Y )) =
∑

y

E(X |{Y = y}) fY (y) =
∑

y

∑
x

x f (x, y)

fY (y)
fY (y) by Example 2

=
∑

x

x fX (x) by (5.1.4)

= E(X ). �

This is an exceptionally important and useful result. Judicious use of Theorem 6 can
greatly simplify many calculations; we give some examples.



180 5 Random Vectors: Independence and Dependence

(8) Example: Eggs Ahen lays X eggs where X is Poissonwith parameter λ. Each hatches
with probability p, independently of the others, yielding Y chicks. Show that ρ(X, Y ) =√

p.

Solution Conditional on X = k, the number of chicks is binomial B(k, p), with mean
kp. Hence,

E(XY ) = E(E(XY |X )) = E(X2 p) = (λ2 + λ)p.
Likewise,

E(Y 2) = E(E(Y 2|X )) = E(X p(1− p)+ X2 p2)
= λp(1− p)+ (λ+ λ2)p2 = λp + λ2 p2.

Hence,

ρ(X, Y ) = E(XY )− E(X )E(Y )

(var (X ) var (Y ))
1
2

= λ2 p + λp − λ.λp

(λ(λp + λ2 p2 − λ2 p2))
1
2

= √p. �

(9) Example: Variance of aRandomSum Let X1, X2, . . . be a collection of independent
identically distributed random variables, and let Y be an integer valued random variable
independent of all the Xi . Let SY =

∑Y
i=1 Xi . Show that

var (SY ) = E
(
X1

)2
var (Y )+ E(Y )var (X1).

Solution By (7),

E(SY ) = E(E(SY |Y )) = E

(
E

(
Y∑
1

Xi |Y
))
= E(YE(X1)) = E(Y )E(X1).

Likewise,

E
(
S2Y
) = E

(
E
(
S2Y |Y

)) = E
(
YE

(
X2
1

)+ Y (Y − 1)[E(X1)]2
)

= E(Y )
(
E
(
X2
1

)− [E(X1)]2)+ E(Y 2)[E(X1)]2,

and so substituting into var (SY ) = E(S2Y )− (E(SY ))2, gives the result. �

(10) Example 4.12 Revisited: Gamblers’ Ruin Two gamblers, A and B, have n coins.
They divide this hoard by tossing each coin; A gets those that show heads, X say, B gets
the rest, totalling n − X .
They then play a series of independent fair games; each time A wins he gets a coin from

B, each time he loses he gives a coin to B. They stop when one or other has all the coins.
Let DX be the number of games played. Find E(DX ), and show that, when the coins

are fair, ρ(X, DX ) = 0.

Solution Conditional on X = k, as in Example 4.12,

Dk = 1

2
Dk+1 + 1

2
Dk−1 + 1
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with solution Dk = k(n − k). Hence, observing that X is B(n, p) (where p is the chance
of a head), we have

E(DX ) = E(E(DX |X )) = E(X (n − X )) = n(n − 1)p(1− p).

Finally,

cov(X, DX ) = E(X2(n − X ))− EXEDX = n(n − 1)p(p − 1)(2p − 1),
whence ρ = 0, when p = 1

2

(11) Example Partition Rule: Show that if X and Y are jointly distributed, then

fX (x) =
∑

y

fY (y) fX |Y (x |y). �

Solution This is just Theorem 6 in the special case when we take X to be Ix , the
indicator of the event {X = x}. Then, E(Ix ) = fX (x), and E(Ix |Y = y) = fX |Y (x |y).
The result follows from (7). Alternatively, you can substitute from Definition 1.
Essentially this is the Partition Rule applied to discrete random variables. �

Recall thatwe have already definedE(X |B) for any event B inChapter 4. It is convenient
occasionally to consider quantities, such as E(X |Y ; B). This is defined to be the expected
value of the conditional distribution

P(X = x |{Y = y} ∩ B) = P({X = x} ∩ {Y = y} ∩ B)

P({Y = y} ∩ B)
(12)

for any value y of Y such that P({Y = y} ∩ B) > 0.
We give some of the more important properties of conditional expectation.

(13) Theorem Let a and b be constants, g(.) an arbitrary function, and suppose that X, Y,
and Z are jointly distributed. Then (assuming all the expectations exist),

(i) E(a|Y ) = a
(ii) E(a X + bZ |Y ) = aE(X |Y )+ bE(Z |Y )
(iii) E(X |Y ) ≥ 0 if X ≥ 0
(iv) E(X |Y ) = E(X ), if X and Y are independent
(v) E(Xg(Y )|Y ) = g(Y )E(X |Y )
(vi) E(X |Y ; g(Y )) = E(X |Y )
(vii) E(E(X |Y ; Z )|Y ) = E(X |Y ).

Property (v) is called the pull-through property, for obvious reasons.
Property (vii) is called the tower property. It enables us to consider multiple conditioning
by taking the random variables in any convenient order.
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Proof We prove the odd parts of Theorem 13, the even parts are left as exercises for you.

(i) f (a, y) = fY (y), so

E(a|Y ) = a fY (y)/ fY (y) = a.

(iii) If X ≥ 0, then every term in the sum in Theorem 6 is nonnegative. The result follows.

(v) E(Xg(Y )|Y = y) =
∑

x

xg(y) f (x, y)/ fY (y) = g(y)
∑

x

f (x, y)/ fY (y)

= g(y)E(X |Y = y).

(vii) For arbitrary values, Y = y and Z = z of Y and Z , we have E(X |Y ; Z ) =∑
x x f (x, y, z)/ fY,Z (y, z). Hence, by definition,

E(E(X |Y ; Z )|Y ) =
∑

z

E(X |Y ; Z ) fY,Z (y, z)/ fY (y) =
∑

z

∑
x

x f (x, y, z)/ fY (y)(14)

=
∑

x

x f (x, y)/ fY (y) = E(X |Y ). �

(15) Example Three children (Aelhyde, Beowulf, and Canute) roll a die in the order
A, B,C, A, . . . , etc. until one of them rolls a six and wins. Find the expected number of
rolls, given that Canute wins.

Solution We use a form of the tower property, (14). Let C be the event that Canute
wins, let X be the duration of the game, and let Y denote the first roll to show a six in the
first three rolls, with Y = 0 if there is no six. Then,

E(X |C) = E(E(X |Y ;C)|C).(16)

Now if Y = 0, then with the fourth roll the game stands just as it did initially, except that
three rolls have been made. So

E(X |Y = 0;C) = 3+ E(X |C).
Obviously, Y is otherwise 3, and

E(X |Y = 3;C) = 3.
Therefore, substituting in (16), we have

E(X |C) = 3+ E(X |C)P(Y = 0|C)
and so

E(X |C) = 3

1−
(
5

6

)3 = 648

91
.

Of course, there are other ways of doing this. �

Finally, we remark that conditional expectation arises in another way.

(17) Theorem Let h(Y ) be any function of Y such that E(h(Y )2) <∞. Then,

E((X − h(Y ))2) ≥ E((X − E(X |Y ))2).(18)
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Further, if h(Y ) is any function of Y such that

E((X − h(Y ))2) = E((X − E(X |Y ))2),(19)

then

E((h(Y )− E(X |Y ))2) = 0.

Proof

E((X − h(Y ))2) = E((X − E(X |Y )+ E(X |Y )− h(Y ))2)(20)
= E((X − E(X |Y ))2)+ E((E(X |Y )− h(Y ))2)
+2E((X − E(X |Y ))+ (E(X |Y )− h(Y ))).

However, by (7), we can write

E((X − E(X |Y ))(E(X |Y )− h(Y ))) = E(E((X − E(X |Y ))(E(X |Y )− h(Y ))|Y ))
= E(E(X |Y )− h(Y ))E((X − E(X |Y ))|Y )

by Theorem 13(v)
= 0,

because E((X − E(X |Y ))|Y ) = 0. The result (18) follows because E((E(X |Y )−
h(Y ))2) ≥ 0. Finally, if (19) holds then from (20), we have

E((E(X |Y )− h(Y ))2) = 0,
as required to complete the proof of Theorem 17. �

Recall that if E(X2) = 0, then P(X = 0) = 1; hence, if E((X − Y )2) = 0, then X = Y
with probability one. This suggests that the smaller E((X − Y )2) is, then the “closer” X is
to Y , in some sense. The point of the theorem is then that among all functions of Y,E(X |Y )
is the one which is “closest” to X .
It is thus possible, and in later work desirable, to define E(X |Y ) by this property.

However, to explore all these ideas would take us too far afield.

5.6 Simple RandomWalk

The ideas above now enable us to consider an exceptionally famous and entertaining
collection of random variables.

(1) Definition Let (Xi ; i ≥ 1) be a collection of independent identically distributed ran-
dom variables with mass function

P(X1 = 1) = p;P(X1 = −1) = q = 1− p.

Then the collection (Sn; n ≥ 0), where

Sn = S0 +
n∑

i=1
Xi ,(2)

is called a simple random walk. If p = q, it is called a symmetric simple random walk.
�
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Figure 5.1 A path (or realization) of a simple random walk. The points represent successive
positions (or values) of the walk; these are joined by steps of the walk. In this case,

S0 = 2, S1 = 3, S2 = 2, and so on. The walk visits the origin at the fourth step.

The nomenclature follows from the visualization of Sn as representing the position of a
particle that is initially at S0, and then takes a series of independent unit steps; each step
being positive with probability p or negative with probability q .
It is conventional to display the walk in Cartesian coordinates as the sequence of points

(n, Sn) for n ≥ 0. Any particular such sequence is called a path of the random walk; see
Figure 5.1 for an illustration.
Much of the effort of the first probabilists (Fermat, Pascal, Bernoulli, de Moivre,

Laplace) was devoted to discovering the properties of the simple random walk, and more
general random walks are still being investigated by modern probabilists.
It is easy to see that the celebrated gambler’s ruin problem of Example 2.11 is just a

simple random walk in which S0 is interpreted as the initial capital of the gambler, and the
walk stops on the first occasion D when either Sn = 0 (the gambler is ruined) or Sn = K
(his opponent is ruined). That is, the random variable

D = min{n : {Sn = 0} ∪ {Sn = K }}(3)

is the duration of the game. In the context of random walks, D is called the first passage
time of the walk to {0, K }.
The first thing to find is the mass function of Sn (when it is not stopped).

(4) Theorem

P(Sn − S0 = k) =
(

n
1
2 (n + k)

)
p
1
2 (n+k)q

1
2 (n−k).

Proof Consider a path of the walk from (0, S0) to (n, Sn) with r positive steps and s
negative steps. If Sn − S0 = k, then r − s = k and r + s = n. Hence, r = 1

2 (n + k) and

s = 1
2 (n − k). There are (nr) such paths, and each has the same probability, namely, pr qs .

Hence,

P(Sn − S0 = k) =
(

n
r

)
pr qs,

which is (4).
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Alternatively, we can simply observe that 12 (Sn − S0 + n) is a binomial random variable
with parameters n and p, and (4) follows. �

As suggested by the gambler’s ruin problem, we are interested in the first passage times
of random walks.

(5) Definition Let (Sn; n ≥ 0) be a simple random walk with S0 = i . Then, thefirst passage
time from i to k is the random variable

Tik = min{n > 0; Sn = k}. �
When i = k, the random variable Tkk is called the recurrence time of k. We often denote
Tkk by Tk . One obvious but important property of a first passage time Tik is that steps after
the first passage to k are independent of those before. It follows that we can write, for
example,

T02 = T01 + T12,(6)

where T01 and T12 are independent. Furthermore, T12 and T01 have the same distribution
because the Xi are identically distributed. These simple remarks are of great importance
in examining the properties of the walk.
Our first result is striking.

(7) Theorem If p ≥ q, then T01 is certainly finite. If p < q, then T01 is finite with prob-
ability p/q.

Proof Let P(Tjk <∞) = r jk . Now let us condition on the first step of the walk from
S0 = 0, giving

r01 = P(T01 <∞) = pP(T01 <∞|X1 = 1)+ qP(T01 <∞|X1 = −1).(8)

On the one hand, if X1 = 1, then T01 = 1. On the other hand, if X1 = −1, then the walk
has to go from −1 to 0 and then from 0 to +1 in a finite number of steps for T01 <∞.
Hence, as r01 = r−10,

r01 = p + qr201.(9)

This has two roots r01 = 1 and r01 = p/q. It follows that if p ≥ q , then the only root that
is a probability is r01 = 1, as required.
If p < q, then it certainly seems plausible that r01 = p/q , but a little work is needed

to prove it. This can be done in several ways. We choose to use the following interesting
fact; that is, for all i ,

E

((
q

p

)Xi
)
= p

(
q

p

)+1
+ q

(
q

p

)−1
= 1.(10)

Hence, if S0 = 0,

E

((
q

p

)Sn
)
=

n∏
i=1

E

((
q

p

)Xi
)
= 1.(11)
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Now denote T01 by T , and suppose that

p < q and r01 = 1.(12)

Then conditioning on whether T ≤ n or T > n gives

1 = E

((
q

p

)Sn
)

(13)

= E

((
q

p

)Sn
∣∣∣∣T ≤ n

)
P(T ≤ n)+E

((
q

p

)Sn
∣∣∣∣T > n

)
P(T > n).

Now if T ≤ n, then ST = 1 and Sn = 1+ XT+1 + · · · + Xn . Hence,

E

((
q

p

)Sn
∣∣∣∣T ≤ n

)
= q

p
E

((
q

p

)XT+1+···+Xn
)
= q

p
by (10).

Furthermore, if T > n, then Sn ≤ 0, and so

E

((
q

p

)Sn
∣∣∣∣T > n

)
≤ 1.

Hence, allowing n →∞ in (13) gives 1 = q/p + 0. But this is impossible when
p < q, so (12) must be impossible. Hence, when p < q , we must have r01 = p/q . �

In the case when p > q, so that T01 is finite, it is natural to ask what is E(T01)? If we knew
that E(T01) <∞, then we could write

E(T01) = E(E(T01|X1)) = pE(T01|X1 = 1)+ qE(T01|X1 = −1)
= p + q(1+ E(T−1.1)) = 1+ 2qE(T01) by (6).

Hence,

E(T01) = 1

p − q
; p > q,(14)

as required.
It is not too difficult to show that E(T01) <∞, as we now demonstrate.

(15) Theorem E(T01) <∞ when p > q.

Proof

P(T01 > n) = P(Si ≤ 0 for 0 ≤ i ≤ n)

≤ P(Sn ≤ 0) = P
(
1

2
(Sn + n) ≤ n

2

)
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= P

((
q

p

) 1
2 (Sn+n)

≥
(

q

p

)n/2
)
since p > q,

≤ E

((
q

p

) 1
2 (Sn+n)

)(
q

p

)−n/2

by the basic inequality, Theorem 4.6.1.
Now we recall the observation in Theorem 4 that 12 (Sn + n) has the B(n, p) mass

function. Hence,

E

((
q

p

) 1
2 (Sn+n)

)
=

(
q + p .

q

p

)n

= (2q)n.(16)

Therefore, finally,

E(T01) =
∞∑

n=0
P(T01 > n) ≤

∞∑
n=0
(2q)n

(
p

q

)n/2

= 1

1− 2(pq)
1
2

since pq <
1

4

This establishes (14), as required. �

There are one or two gaps in the above; for example, we do not yet know either the mass
function of T01 orE(T01) in the case p = q = 1

2 . Both of these can be filled by the following
beautiful theorem.

(17) Hitting Time Theorem Let (Sn; n ≥ 0) be a simple random walk with S0 = 0. Let
T0b be the first passage time from 0 to b > 0, with mass function f0b(n). Then

f0b(n) = P(T0b = n) = b

n
P(Sn = b) = b

n

(
n

1
2 (n + b)

)
p
1
2 (n+b)q

1
2 (n−b).

The proof of (17) relies on the following lemma,which is of considerable interest in its own
right. First, we observe that the number of paths of the walk from (0, 0) to (n − 1, b + 1)
is denoted by Nn−1(0, b + 1), and we have

Nn−1(0, b + 1) =
(

n − 1
1
2 (n − b)− 1

)
.(18)

(19) Lemma: The Reflection Principle Let N b
n−1(0, b − 1) be the number of paths from

(0, 0) to (n − 1, b − 1) that pass through b at least once. Then

N b
n−1(0, b − 1) = Nn−1(0, b + 1).(20) �

Proof Let π be a path that visits b on its journey from (0, 0) to (n − 1, b − 1). Let
L be the occasion of its last visit. Now reflect that part of the walk after L in the line
y = b. This yields a path π ′ from (0, 0) to (n − 1, b + 1). Conversely, for any path
from (0, 0) to (n − 1, b + 1), we may reflect the segment in y = b after its last visit
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Figure 5.2 The solid line is the path of the walk: the dashed line is the reflection in y = b of that
part of the walk after its last visit to b before n, at time L .

to b, to give a path π from (0, 0) to (n − 1, b − 1). These two sets are thus in one–
one correspondence, and (20) follows. Figure 5.2 illustrates the reflection. �

Proof of (17): Hitting Time Theorem If T0b = n, then we must have Xn = +1 and
Sn−1 = b − 1. Now there are Nn−1(0, b − 1) paths from (0, 0) to (n − 1, b − 1) of which
N b

n−1(0, b − 1) visit b on route. Each such path has probability p
1
2 (n+b)−1q

1
2 (n−b). Hence,

using the reflection principle,

P(T0b = n) = p(Nn−1(0, b − 1)− Nn−1(0, b + 1))p 1
2 (n+b)−1q

1
2 (n−b)

=
((

n − 1
1
2 (n + b)− 1

)
−
(

n − 1
1
2 (n + b)

))
p
1
2 (n+b)q

1
2 (n−b)

= b

n

(
n

1
2 (n + b)

)
p
1
2 (n+b)q

1
2 (n−b)

= b

n
P(Sn = b), by (4). �

Because a similar argument works for negative values of b, we have

P(T0b = n) = |b|
n
P(Sn = b)(21)

and E(T0b) =
∑∞

n=1 |b|P(Sn = b).

(22) Example: Symmetric Random Walk When p = q , the simple random walk is said
to be symmetric. In this case,

E(T01) =
∞∑

m=0
P(S2m+1 = 1) =

∞∑
m=0

(
2m + 1
m + 1

)
2−(2m+1)

≥
∞∑

m=0

2m(2m − 2) . . . 2.1
(m + 1)(m) . . . 1 2−m =

∞∑
m=0

1

m + 1 = ∞.
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Hence, the symmetric random walk has the interesting property that P(T01 <∞) = 1, but
E(T01) = ∞.(23) �

(24) Example: Conditioned Random Walk Now, of course, when p < q we know that
P(T01 <∞) = p/q < 1, so T01 has no expectation. But consider Sn conditional on the
event that T01 <∞. In this case, by conditional probability,

P(X1 = +1|T01 <∞) = P(T01 <∞|X1 = 1)P(X1 = 1)
P(T01 <∞) = p/

(
p

q

)
= q.

Likewise,P(X1 = −1|T01 <∞) = p. Hence, ifweknew thatE(T01|T01 <∞)werefinite,
then by conditioning on the first step,

E(T01|T01 <∞) = q + pE(T01|X1 = −1; T01 <∞)
= 1+ p2E(T01|T01 <∞), by (6).

Hence, when q > p,

E(T01|T01 <∞) = 1

q − p
.(25)

It is straightforward to use Theorem 17 to establish thatE(T01|T01 <∞) <∞ (an exercise
for you) and (25) is proved. Together with (14) and Example 22, this shows that for any
value of p and b > 0,

E(T0b|T0b <∞) = b

|p − q| .(26) �

We may also consider recurrence times.

(27) Example Let T0 be the recurrence time of 0. Show that P(T0 <∞) = 1− |p − q|
and

E(T0|T0 <∞) = 1+ 1

|p − q| .

Solution Just consider T0 conditional on the outcome of the first step, and then use
what we know about T01 and T10. You fill in the details. �

Finally, we prove a famous result, the so-called

(28) Ballot Theorem Let Sn =
∑n

1 Xi be a simple random walk with S0 = 0. Then

P

(
2n−1∏
1

Si �= 0|S2n = 2r
)
= r

n
.

Proof We count paths as we did in the hitting time theorem. What is the number
N 0
2n−1(1, 2r ) of paths from (1, 1) to (2n, 2r ) that visit the origin? We can reflect the
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Figure 5.3 The ballot theorem The solid line is a path of the walk; the dashed line is the
reflection in the x-axis of that part of the walk before its first visit to zero.

walk before its first zero in the x-axis, see Figure 5.3, and this shows that N 0
2n−1(1, 2r ) =

N2n−1(−1, 2r ). Because all N2n(0, 2r ) paths from (0, 0) to (2n, 2r ) are equally likely, it
follows that the required probability is

N2n−1(1, 2r )− N 0
2n−1(1, 2r )

N2n(0, 2r )
= N2n−1(1, 2r )− N2n−1(−1, 2r )

N2n(0, 2r )

=

(
2n − 1

n + r − 1
)
−
(
2n − 1
n + r

)
(
2n

n + r

) = 2r

2n
. �

The following application explains the name of the theorem.

Example: Ballot In an election, candidate A secures a votes and candidate B secures b
votes.What is the probability that A is ahead throughout the count?By the above argument,
this probability is (a − b)/(a + b) when a > b. �

5.7 Martingales

In this section, we consider a remarkably useful class of random processes called martin-
gales. They arise naturally as general models for fair games, but turn up in all kinds of
unexpected places. In particular, they are used extensively in modern financial mathemat-
ics, but it is beyond our scope to explore this area in great detail. We begin with this:

(1) Definition A collection (Sn; n ≥ 0) of random variables is a martingale if, for
all n,

(a) E|Sn| <∞.
(b) E(Sn+1|S0, S1, . . . , Sn) = Sn. �
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This definition clearly shows the interpretation as a fair game; if Sn is a gambler’s
fortune after the nth play, then (b) asserts that the expectation of this fortune after the
next play—taking into account all previous fluctuations in his fortune—is simply equal to
Sn . Briefly, conditional on the past, future expectations equal the current value. Note that
this section will rely heavily on the properties of conditional expectations summarized in
5.5.13; keep them well in mind.
Martingales get their name from a particularly well-known gambling strategy that we

discussed above. We recall example 4.15 in the special case when p = 1
2 .

(2) Example: The Martingale You bet $1 at evens (calling heads on the flip of a fair
coin, say); if you win you quit. If you lose, you bet $2 at evens, and so on. That is, you
double the stake at each loss, and quit at the first win. Let Sn denote your fortune after the
nth bet, and let Xn denote the outcome of the nth flip of the coin; thus,

Xn =
{+1 with probability 1

2

−1 with probability 1
2 .

Because EXn+1 = 0, it follows immediately that E(Sn+1|S0, . . . , Sn) = Sn . Also,

|Sn| ≤ 1+ 2+ · · · + 2n ≤ 2n+1,

so E|Sn| <∞ and Sn is a martingale. If the game stops at the nth flip, your fortune is
Sn = −1− 2− 4− · · · − 2n−1 + 2n = 1, so you always win.
However, recall that this game is “fair” only in a mathematical sense, and the strategy

is not as good as it may look! It has the serious drawback that the expected size of the
winning bet is infinite. To see this, note that the game ends on the nth play with probability
2−n . The stake on this play is $ 2n−1. So the expected stake is $

∑∞
1 2

−n . 2n−1, which
is infinite. You are well-advised not to gamble, and above all avoid the martingale if
you do. �

We give a few simple examples of natural martingales.

(3) Example Let (Xn; n ≥ 0) be independent.
(a) If EXn = 0, then Sn =

∑n
r=0 Xr defines a martingale because

E(Sn+1|S0, . . . , Sn) = E(Sn + Xn+1|Sn) = Sn.

(b) If EXn = 1, then Sn =
∏n

r=0 Xr defines a martingale because

E(Sn+1|S0, . . . , Sn) = E(Sn Xn+1|Sn) = Sn.
�

The properties of conditional expectation extend in natural and obvious ways to larger
collections of random variables; we single out, in particular, the tower property 5.5.13 vii
in the presence of random vectors Y and Z:

E(X |Y) = E(E(X |Y,Z)|Y).(4)

This leads to an important class of martingales.
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(5) Example:DoobMartingale Let X, X0, X1, . . .be any collection of jointly distributed
random variables with E|X | <∞. Define

Mn = E(X |X0, X1, . . . , Xn).

Then by Jensen’s inequality, see Theorem 4.6.14 and Problem 5.42,

E|Mn| = E[|E(X |X0, . . . , Xn)|]
≤ E[E(|X ||X0, . . . , Xn)] = E|X | <∞,

and

E(Mn+1|X0, . . . , Xn) = E(E(X |X0, . . . , Xn+1)|X0, . . . , Xn)

= E(X |X0, . . . , Xn) by (4)

= Mn.

Hence, Mn is a martingale. �

As one example of this, consider the following example.

(6) Example: An Options Martingale Suppose that (Xn; n ≥ 0) represent the price of
some stock on successive trading days, n ≥ 0. Naturally, E|Xn| <∞. Suppose you own
the right (but not the obligation) to purchase this stock at a fixed price K at an exercise
date T . Then your option at that date is worth X , say, where

X = max{(XT − K ), 0} = (XT − K )+,

because if XT < K , then your option is worthless; you could buy the stock anyway for
the actual price less than K . At any time n < T , the expected value of your option, in the
knowledge of the stock prices up to then, is

Mn = E(X |X0, . . . , Xn).

By the previous example, Mn is a martingale. [Note well that Mn is not the fair price for
this option!] �

Wewill see many more examples of martingales later, but for the moment we turn aside
to observe that the key property of all realistic fair games is that they have to stop. For
example, the gambler is bankrupt or decides to quit while ahead, or the casino imposes a
house limit. There are many other real life actions that have this central property that their
nature is fixed, but their timing is optional. In all such cases, the action can only be taken
in light of your knowledge up to the time of execution. Nobody can follow a rule that says
“stop just before you have a big loss.” This is unreasonable.
We thereforemake a useful definition of such reasonable times of action, called stopping

times, as follows.
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(7) Definition A random variable T taking values in {0, 1, 2, . . .} is called a stop-
ping time with respect to {S0, S1, . . .}, if the event {T = n} may depend only on
{S0, S1, . . . Sn}, and is independent of Sn+k for all k ≥ 1. It may be that P(T <∞) =
1, in which case T is said to be almost surely finite. �

(8) Example: TheMartingale 4.15 Again Thewheel is spun repeatedly and, in this case,
T is the time when it first yields red. Let Ik be the indicator of the event that the kth spin
yields red, so that by construction

{T = n} = {Ik = 0, 1 ≤ k ≤ n − 1, In = 1}.
Note that {T = n} does not depend on any In+k , so T is a stopping time for the martingale.
In this case, P(T <∞) = limk→∞{1− P(T > k)} = 1− limk→∞(1− p)k = 1, so T is
almost surely finite. �

(9) Example: First Passage Times If {Sn; n ≥ 0} is a random walk, with S0 = 0 (say)
and T = min{n : Sn ≥ b}, then T is easily seen to be a stopping time. �

Stopping times are at least as important to the theory of martingales as they are in real
life. The main reason for this is the fact that a martingale {Xn; n ≥ 0} that is stopped at
a random time T is still a martingale, provided that T is a stopping time for {Xn; n ≥ 0}.
That is to say, formally:

(10) Theorem Let T be a stopping time for the martingale {Xn; n ≥ 0}, and let

Zn = XT∧n =
{

Xn, n ≤ T
XT , n > T

.(11)

Then Zn is a martingale, and

EZn = EX0.(12)

Proof We can rewrite Zn using indicators as

Zn =
n−1∑
r=0

Xr I {T = r} + Xn I {T ≥ n}.

Hence, E|Zn| ≤
n∑
0

E|Xr | <∞. Also, using indicators again,

Zn+1 = Zn + (Xn+1 − Xn)I {T > n}.
To see this, note that if I {T > n} = 1, then Zn+1 = Xn+1, and if I {T ≤ n} = 1, then
Zn+1 = Zn , both being consonant with the definition of Zn .
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Next we note that, because {T > n} is independent of Xn+k for all k, and is a function
of X, . . . , Xn ,

E[(Xn+1 − Xn)I (T > n)|X0, . . . , Xn]
= I (T > n)E(Xn+1 − Xn|X0, . . . , Xn) = 0,(13)

using the pull through property (5.5.13)(v). Hence,

E(Zn+1|Z0, . . . , Zn) = E(Zn+1|X0, . . . , Xn) = Zn,

and the result follows. �

Now, if T is almost surely finite, it is true with probability 1 that Zn → XT as n →∞,
from (11). It is natural to ask if also, as n →∞,

EZn → EXT ,

which would entail, using (12), the remarkable result that

EXT = EX0.

It turns out that this is true, under some extra conditions. Here are some popular cases:

(14) Theorem: Optional stopping Let Xn be a martingale and T a stopping time for
(Xn; n ≥ 0). Then EXT = EX0, if any of the following hold for some positive finite
constant K .

(a) T is bounded (i.e., T ≤ K <∞).
(b) |Xn| ≤ K for all n, and P(T <∞) = 1.
(c) E(|Xn+1 − Xn||X0, . . . , Xn) ≤ K for n < T, and ET <∞.

Proof We prove (a) and (b) here, postponing the proof of (c) to Theorem 5.9.9. First,
recall that we showed EXT∧n = EX0 in Theorem (10). So if we take n = K , this proves
(a) is sufficient.
To show that (b) is sufficient, note that

|EX0 − EXT | = |EXT∧n − EXT |
≤ 2KP(T > n), because |Xn| < K ,

→ 0 as n →∞, because P(T <∞) = 1.

Hence, |EX0 − EXT | = 0, which yields the result. �
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This simple-looking result is remarkably useful and powerful;we givemany illustrations
of this in later worked examples. Here is one to begin with.

(15) Example: Wald’s Equation Let (Xn; n ≥ 1) be independent, having the common
mean µ, and set

Yn = Y0 +
n∑

r=1
Xr − nµ.

It is easy to see that Yn is a martingale (when E|Y0| <∞) because
E(Yn+1|Y0, . . . , Yn) = Yn + E(Xn+1 − µ).

Furthermore,

E|Yn+1 − Yn| = E|Xn+1 − µ| ≤ E|X1| + |µ| <∞.

Hence, when Y0 = 0, and if T is any stopping time for (Yn, n ≥ 0) such that ET <∞,
part (c) of the optional stopping theorem yields

EYT = E

(
T∑

r=1
Xr − Tµ

)
= EY0 = 0.

That is to say,

E
T∑

r=1
Xr = µET .(16)

Of course, this would be trivial when T is independent of the Xn . It is remarkable that it
remains true when T depends on the sequence Xn . �

We conclude this section by noting that there are several other kinds of interesting and
important martingales. Recall that a martingale is intuitively your fortune at the nth play of
some fair game, and themartingale property implies that, for themartingale Xn,E(Xn+1 −
Xn|X0, . . . , Xn) = 0. It is equally easy to show that this implies the martingale property.
The extension to unfair games is natural:

(17) Definition Suppose that the sequence Xn satisfies E|Xn| <∞. Then

(a) Xn is a supermartingale if E(Xn+1 − Xn|X0, . . . , Xn) ≤ 0.
(b) Xn is a submartingale if E(Xn+1 − Xn|X0, . . . , Xn) ≥ 0.

These correspond to unfavourable and favourable games, respectively. �

A different type of martingale is motivated by looking at the average of a random walk.

(18) Example: Backward Martingale Let Sn =
∑n

1 Xr , where the Xr are independent
and identically distributed with common mean µ <∞. Define

M1 = Sn

n
, M2 = Sn−1

n − 1 , . . . , Mn = X1
1
,
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which is to say that Mm = Sn−m+1/(n − m + 1). Then obviously, E|Mn| <∞. Also by
symmetry, for 1 ≤ r ≤ m,

E(Xr |Sm) = Sm/m.

Hence, also by symmetry,

E(Mm+1|M1, . . . , Mm) = E
(

X1 + · · · + Xn−m

n − m
|Sn−m+1

)

= Sn−m+1
n − m + 1 = Mm .

Therefore, Mm, 1 ≤ m ≤ n is a martingale, and so the sequence

Yr = Sr

r
, 1 ≤ r ≤ n

is called a backward martingale for obvious reasons. �

It is often convenient to make a slightly more general definition of a martingale.

(19) Definition A sequence (Sn; n ≥ 0) is a martingale with respect to the sequence
(Xn; n ≥ 0) if E|Sn| <∞ and

E(Sn+1|X0, . . . , Xn) = Sn,

for all n. �

In fact, we often omit any reference to the underlying sequence (Xn; n ≥ 0), but simply
say that (Sn; n ≥ 0) is a martingale.
Finally, we note that there are appropriate optional stopping theorems for sub-, super-,

and backward martingales also. For example, if Xn is a nonnegative supermartingale and
T is a stopping time for Xn , then EXT ≤ EX0. We do not pursue these matters further
here.

5.8 The Law of Averages

Suppose that, as a result of some experiment, the event A occurs with probability p (or
the event Ac occurs with probability 1− p). Typically, A might be an event such as “the
patient was cured,” “the dart hit the target,” or “the molecule split.” Let Nn be the number
of times A occurs in n independent repetitions of this experiment. Now we have shown
that Nn is a binomial random variable, and in Example 4.17, we proved that for ε > 0

P
(∣∣∣∣1n Nn − p

∣∣∣∣ > ε

)
≤ 2 exp (−nε2/4)(1)

→ 0 as n →∞.

Roughly speaking, this says that the proportion of experiments in which A occurs ap-
proaches the probability of A as n increases. (It is pleasing that this agrees with our
intuitive notions about events and their probabilities.)
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We now develop this simple idea a little. Statements such as (1) are common in proba-
bility, so we make a formal definition.

(2) Definition Let (Xn; n ≥ 1) be a sequence of random variables. We say the sequence
Xn converges in probability to X if, for any ε > 0, as n →∞

P(|Xn − X | > ε)→ 0.(3)

For brevity, this is often written as Xn
P→ X. �

In this notation, (1) becomes

1

n
Nn

P→ p.(4)

Here the limit p is a constant random variable of course.
In Section 5.5 above, we observed that we could write

Nn = Sn =
n∑

k=1
Ik,

where Ik is the indicator of the event that A occurs in the kth experiment, and E(Ik) = p.
In the notation of Definition 2, we can thus write (4) as

1

n
Sn

P→ E(I1).(5)

It is natural towonderwhether this resultmay also hold for sequences other than indicators.
The following celebrated result shows that in many cases it does.

(6) Theorem: Weak Law of Large Numbers Let (Xn; n ≥ 1) be a sequence of
independent random variables having the same finite mean and variance,µ = E(X1)
and σ 2 = var (X1). Then, as n →∞,

1

n
(X1 + · · · + Xn)

P→ µ.(7)

It is customary to write Sn =
∑n

i=1 Xi for the partial sums of the Xi .

Proof Recall Chebyshov’s inequality: for any random variable Y and ε > 0,
P(|Y | > ε) ≤ E(Y 2)ε−2. Hence, letting Y = n−1(Sn − nµ), we have

P
(∣∣∣∣1n Sn − µ

∣∣∣∣ > ε

)
≤ 1

n2ε2
E

([
n∑

i=1
(Xi − µ)

]2)

= n−2ε−2
n∑

i=1
var (Xi ) = σ 2/(nε2)

→ 0 as n →∞,

and (6) is proved. �
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Actually, when Sn is a binomial random variable, we have already shown in Exer-
cise 4.18.3 that more can be said.

(8) Theorem If (Xi ; i ≥ 1) are independent indicator random variables with E(Xi ) = p,
then as n →∞, for 0 < ε < 1,

P
(∣∣∣∣ 1m Sm − p

∣∣∣∣ > ε for any m ≥ n

)
→ 0.

Proof Remember that for any events (Ai ; i ≥ 1), we have

P
(⋃

i

Ai

)
≤
∑

i

P(Ai ).

It follows [using (1)] that

P
(∣∣∣∣ 1m Sm − p

∣∣∣∣ > ε for any m ≥ n

)
≤

∞∑
m=n

P
(∣∣∣∣ 1m Sm − p

∣∣∣∣ > ε

)
≤

∞∑
m=n

2e−mε2/4

= 2e−nε2/4(1− e−ε
2/4)−1→ 0 as n →∞.

�

Roughly speaking, this says that not only does the chance of finding n−1Sn far from p
vanish, but also the chance that any of (m−1Sm ;m ≥ n) are far from p vanishes as n →∞.
Results of this type are called strong laws of large numbers.
Results like those above go some way toward justifying our intuitive feelings about

averages in the long run. Such laws of large numbers also have other applications; the
following two examples are typical.

(9) Example:Monte Carlo Integration Suppose f (x) is a nonnegative function, and we
require I = ∫ b

a f (x) dx . If f is sufficiently nasty to defy basic methods, a surprisingly
effective method of finding I is as follows. Let R be the rectangle {x, y : a ≤ x ≤ b; c ≤
y ≤ d} where 0 ≤ c < f (x) < d for a ≤ x < b. The curve y = f (x) divides R into two
disjoint regions, A lying above f and B lying below f .
Now pick a point P1 at random in R, by which we mean uniformly in R. Then

P(P1 ∈ B) = 1

|R|
∫ b

a
f (x) dx = p say.(10)

Now we pick a series (Pj ; j ≥ 1) of such points independently in R, and let I j be the
indicator of the event that Pj lies in B. Then by the weak law above

1

n

n∑
j=1

I j
P→ p,

as n →∞. Hence, for large n, we may expect that (|R|/n)
∑n

j=1 I j is a reasonable
approximation to I and that it improves as n increases.
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(We have glossed over one or two details in this simple account; more discussion is
provided in Chapter 7.) �

Here is a similar example.

(11) Example: Estimation of Mass Functions Let (Xi ; i ≥ 1) be independent and identi-
cally distributed with an unknownmass function f (x). Suppose we want to know f (x) for
some given x . Let Ik be the indicator of the event that Xk = x . Obviously, E(Ik) = f (x),
so by the weak law

1

n
Sn = 1

n

n∑
k=1

Ik
P→ f (x).

Thus, n−1Sn should be a good guess at f (x) for large n. �

Notice that in both these cases, we applied the weak law of large numbers (WLLN) to a
binomial random variable arising as a sum of indicators. Despite its simplicity, this is an
important special case, so we return to Theorem 6 and note that the proof shows something
a little stronger than the WLLN. In fact, in using Chebyshov’s inequality we showed that,
as n →∞,

E
(∣∣∣∣ Sn

n
− µ

∣∣∣∣
2)
→ 0.(12)

This type of statement is also widespread in probability and warrants a formal emphasis.

(13) Definition Let X1, X2, . . . be a sequence of random variables. If there is a random
variable X such that

lim
n→∞E(Xn − X )2 = 0,

then Xn is said to converge in mean square to X. We sometimes write this as Xn
m.s.→ X.

�

5.9 Convergence

Although important, this section may be omitted at a first reading.

In the preceding section and at various earlier times, we introduced several ideas about the
long run behaviour of random variables and their distributions. This seems an appropriate
moment to point out the connections between these concepts.
First, we recall our earlier definitions. Here (Xn; n ≥ 1) is a sequence of random vari-

ables with corresponding distributions (Fn(x); n ≥ 1). Also, F(x) is the distribution of a
random variable X . Then, as n →∞, we say:
(1) Xn converges in distribution if Fn(x)→ F(x) whenever F(x) is continuous.
(2) Xn converges in probability if P(|Xn − X | > ε)→ 0, for any ε > 0.
(3) Xn converges in mean square if E(|Xn − X |2)→ 0, where E(X2

n)E(X
2) <∞.
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These are clearly not equivalent statements. For example, let X be integer valued and
symmetrically distributed about zero, then let Y = −X . By symmetry X and Y have the
same distribution, so |FY (x)− FX (x)| = 0. However, P(|X − Y | > ε) = P(2|X | > ε) =
1− P(X = 0). Hence, convergence in distribution does not necessarily imply convergence
in probability. This in turn does not necessarily imply convergence inmean square because
(2) may hold for random variables without a variance.
What we can say is the following.

Theorem Let (Xn; n ≥ 1) be a sequence of random variables having corresponding
distributions (Fn(x); n ≥ 1). We have the following two results:

(i) If Xn
m.s.→ X, then Xn

P→ X .

(ii) If Xn
P→ X, then Fn(x)→ F(x) at all points x where F(x) is continuous.

Proof (i) By Chebyshov’s inequality, for ε > 0

P(|Xn − X | > ε) ≤ ε−2E(Xn − X )2→ 0 by hypothesis.

(ii) For any ε > 0,

Fn(x) = P(Xn ≤ x)
= P(Xn ≤ x, X ≤ x + ε)+ P(Xn ≤ x, X > x + ε)
≤ F(x + ε)+ P(|Xn − X | > ε).

Likewise,

F(x − ε) = P(X ≤ x − ε, Xn ≤ x)+ P(X ≤ x − ε, Xn > x)
≤ Fn(x)+ P(|Xn − X | > ε).

Hence,

F(x − ε)− P(|Xn − X | > ε) ≤ Fn(x) ≤ F(x + ε)+ P(|Xn − X > ε).

Now allowing n →∞ and ε → 0 yields the result. �

Furthermore, it is not always necessary to postulate the existence of a limit random
variable X . A typical result is this, which we give without proof.

(4) Theorem Let (Xn; n ≥ 0) be a sequence of random variables with finite variance such
that, as j →∞ and k →∞,

E(Xk − X j )
2→ 0.

Then there exists a random variable X such that EX2 <∞ and Xn
m.s.→ X.

Such sequences are called “Cauchy-convergent.”

In fact, we can go a little further here, by usingMarkov’s inequality (4.6.2) in this form:

P(|Xn − X | > ε) ≤ E|Xn − X |/ε, where ε > 0.(5)
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It follows that, as n →∞,
Xn

P→ X, if E|Xn − X | → 0.(6)

The converse implications to the above result are false in general, but can become true if
appropriate extra conditions are added. We single out one famous and important example.

(7) Theorem: Dominated Convergence Let (Xn; n ≥ 0) be a sequence of random

variables such that |Xn| ≤ Z for all n, where EZ <∞. If Xn
P→ X, then E|Xn −

X | → 0, as n →∞.

Proof Note that because we are dealing with random variables, many statements should
include the modifier “with probability 1.” This quickly becomes boring, so we omit this
refinement.
Let Zn = |Xn − X |. Because |Xn| ≤ Z for all n, it follows that |X | ≤ Z .
Hence,

|Zn| ≤ 2Z .

Introduce the indicator function I (A), which takes the value 1 if the event A occurs, and
is otherwise 0. Then, for ε > 0,

E|Zn| = E[Zn I (Zn ≤ ε)]+ E[Zn I (Zn > ε)]
≤ ε + 2E[Z I (Zn > ε)].(8)

BecauseE|Z | <∞ and Zn
P→ 0, the last term decreases to zero as n →∞. To see this set,

E[Z I [Zn > ε]] = E[Z I (Zn > ε, Z > y)]+ E[Z I (Zn > ε, Z ≤ y)]
≤ E[Z I (Z > y)]+ yP(Zn > ε).(9)

Now choose first y and then n as large as we please, to make the right side arbitrarily
small. The result follows because ε was arbitrary. �

If Z is a finite constant, then this yields a special case called the bounded convergence
theorem. There is another theoremcalled themonotone convergence theorem,which asserts
that

EXn → EX if Xn ↑ X, as n →∞.(10)

We offer no proof of this, though we will use it as necessary.
Now we can use Theorem (7) immediately to prove some optional stopping theorems

for martingales.

(11) Theorem Let Xn be a martingale and T a stopping time for Xn. ThenEXT = EX0
if any of the following hold for some real positive finite constant K :

(a) T is bounded (i.e., T ≤ K <∞).
(b) |Xn| ≤ K for all n, and P(T <∞) = 1.
(c) ET <∞ and E(|Xn+1 − Xn|X0, . . . , Xn) ≤ K , n < T .
(d) E|XT | <∞,P(T <∞) = 1, and E(Xn I (T > n))→ 0 as n →∞.
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Remark In practice a popular technique when P(T <∞) = 1 is to apply part (a) of
the theorem at T ∧ n, and then let n →∞, using Dominated or Monotone convergence
to obtain the required result.

Proof We proved this when (a) holds in (5.7.14), where we also showed that

E(XT∧n − X0) = 0.
Allowing n →∞, we have XT∧n − X0→ XT − X0. Now suppose (b) holds. Because
the sequence is bounded, using (7) above gives the result. Next, we suppose (c) holds and
write

|XT∧n − X0| =
∣∣∣∣∣

T∧n∑
r=1
(Xr − Xr−1)

∣∣∣∣∣ ≤
∞∑

r=1
|Xr − Xr−1|I (T ≥ r ).

Hence, because (c) holds,

E
∞∑

r=1
|Xr − Xr−1|I (T ≥ r ) ≤

∞∑
r=1

KP(T ≥ r ) = KET .

Because ET <∞, we can use the dominated convergence theorem as n →∞ to obtain
the required result. For (d) see Problem 5.44 �

Similar results hold for submartingales and supermartingales, and are proved in the
same way; we omit the details.
We conclude with another important result. One of the principal features of martingales

is that they converge with only weak additional constraints on their nature. Here is one
example.

(12) Example:Martingale Convergence Let (Yn; n ≥ 0) be amartingale such thatEY 2
n ≤

K for all n. Show that Yn converges in mean square as n →∞.

Solution For r ≥ i, E(Yr |Y0, . . . , Yi ) = E(E(Yr |Yr−1, . . . , Y0)|Y0, . . . , Yi ) =
E(Yr−1|Y0, . . . , Yi ). Iterating shows that E(Yr |Y0, . . . , Yi ) = Yi . Hence,

E(Yr Yi ) = E[E(Yr Yi |Y0, . . . , Yi )] = E
(
Y 2

i

)
.

It follows that for i ≤ j ≤ k

E((Yk − Y j )Yi ) = E(YkYi )− E(Y j Yi ) = 0.(13)

Thus, after some algebra,

E[(Yk − Y j )
2|Y0, . . . , Yi )] = E

(
Y 2

k |Y0, . . . , Yi
)− E

(
Y 2

j |Y0, . . . , Yi
)
.

Therefore, 0 ≤ E(Yk − Y j )2 ≤ EY 2
k − EY 2

j . Now (EY 2
n ; n ≥ 1) is nondecreasing and

bounded, and therefore converges. Finally, we deduce thatE(Yk − Y j )2→ 0 as k, j →∞,
and this shows Yk

ms→ Y ; by (4). �

The above example included a proof of the following small but important result.
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(14) Corollary: Orthogonal Increments If (Xn; n ≥ 0) is a martingale and i ≤ j ≤ k ≤
m, then using (11)

E[(Xm − Xk)(X j − Xi )] = 0,
which is called the orthogonal increments property, because of (5.3.9) �

5.10 Review and Checklist for Chapter 5

This chapter extended ideas from earlier chapters to enable us to make probabilistic state-
ments about collections and sequences of random variables. The principal instrument to
help us is the joint probability distribution and joint probability mass function of discrete
random variables. We defined the concepts of independence and conditioning for random
variables. Jointly distributed random variables have joint moments, and we looked at co-
variance and correlation. Conditional expectation is a concept of great importance and
utility; we used all these ideas in examining the properties of functions of random vari-
ables. Finally, we looked at randomwalks, martingales, stopping times, optional stopping,
sequences of random variables, and simple ideas about their convergence.
We give details of these principal properties for pairs of random variables; all these

expressions are easily generalized to arbitrary collections, at the expense of more notation
and space.

SYNOP S I S OF FORMULAE :

Pairs X and Y of such variables have a joint mass function

f (x, y) = P(X = x, Y = y),

which appears in the

Key Rule for joint distributions: for any set C of possible values of (X, Y )

P((X, Y ) ∈ C) =
∑

(x,y)∈C

f (x, y).

In particular, we have the

Joint distribution:

F(x, y) = P(X ≤ x, Y ≤ y) =
∑
u≤x
v≤y

f (u, v).

Marginals:

fX (x) =
∑

y

f (x, y), fY (y) =
∑

x

f (x, y).

Functions:

P(g(X, Y ) = z) =
∑

x,y:g=z

f (x, y).
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Sums:

P(X + Y = z) =
∑

x

f (x, z − x) =
∑

y

f (z − y, y).

Independence: X and Y are independent if f (x, y) = fX (x) fY (y) for all x and y.

Conditioning: The conditional probability mass function of X given Y is

fX |Y (x |y) = f (x, y)

fY (y)
, fY (y) > 0.

The Key Rule for conditional mass functions:

P(X ∈ A|Y = y) =
∑
x∈A

fX |Y (x |y),

and the Partition Rule says

fX (x) =
∑

y

fY (y) fX |Y (x |y).

Expectation: The expected value of the random variable g(X, Y ) is

Eg(X, Y ) =
∑
x,y

g(x, y) f (x, y).

In particular, for constants a and b,

E(ag(X, Y )+ bh(X, Y )) = aEg + bEh.

Moments: The covariance of X and Y is

cov (X, Y ) = E[(X − EX )(Y − EY )]

and the correlation coefficient is

ρ(X, Y ) = cov (X, Y )/{var X varY }1/2.
We note that

cov

(∑
Xi ,

∑
Y j

)
=

∑
i, j

cov (Xi , X j ).

Independence: When X and Y are independent E(XY ) = EXEY , so that X and Y are
uncorrelated and

cov (X, Y ) = ρ(X, Y ) = 0.
In this case, when the Xi are independent,

var

(∑
Xi

)
=

∑
var Xi .

Conditional expectation: The conditional expectation of X given Y = y is

E(X |Y = y) =
∑

x

x fX |Y (x |y) =
∑

x f (x, y)/ fY (y).
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For any pair of random variables where both sides exist,

E[E(X |Y )] = EX.

Key properties: the conditional expectation E(X |Y ) satisfies
E(X |Y ) = EX, if X and Y are independent.

E(Xg(Y )|Y ) = g(Y )E(X |Y ), the pull-through property.

E(E(X |Y ; Z )|Y ) = E(X |Y ), the tower property.

Conditional variance:

var X = varE(X |Y )+ Evar (X |Y ),
where

var (X |Y ) = E(X2|Y )− [E(X |Y )]2.

Remark Experience of student calculations leads us to stress that it is not in general
true that

var X = E var (X |Y ).
Conditional independence: X and Y are conditionally independent given Z = z if, for
all x and y,

P(X = x, Y = y|Z = z) = fX |Z (x |z) fY |Z (y|z).

Checklist of Terms for Chapter 5

5.1 joint probability mass function
marginal mass function

5.2 independent random variables
5.3 expectation

covariance
joint moments
orthogonal random variables
correlation coefficient
Cauchy–Schwarz inequality

5.4 sums of indicators
inclusion–exclusion inequalities
convolution

5.5 conditional mass function
conditional expectation
random sum
tower property
discrete partition rule

5.6 simple random walk
first passage time
recurrence time
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hitting time theorem
reflection principle
ballot theorem

5.7 martingale
stopping time
optional stopping
Wald’s equation

5.8 weak law of large numbers
convergence mean square

5.9 convergence of distributions
dominated convergence
martingale convergence

WORKED EXAMPLES AND EXERCISES

5.11 Example: Golf

Arnold and Bobby play a complete round of 18 holes at golf. Holes are independent, and
any hole is won by Arnold with probability p, won by Bobby with probability q , or it is
halved with probability r . Of the 18 Arnold wins X , Bobby wins Y , and Z are halved.

(a) Find the joint mass function of X, Y, and Z .
(b) What is the marginal distribution of X?
(c) Show that the correlation coefficient of X and Y is

ρ(X, Y ) = −
(

pq

(1− p)(1− q)

) 1
2

.

Solution Let Ak be the event that Arnold wins the kth hole, Bk the event that he loses
the kth hole, and Hk the event that the kth hole is halved. We illustrate the possibilities by
giving more than one solution.
(a) I A typical outcome is a string of x As, y Bs, and zHs. Such a sequence has probability
pxq yr z of occurring, by independence, and by Theorem 3.3.2 there are 18!/(x!y!z!) such
sequences. Hence,

P(X = x, Y = y, Z = z)
18!pxq yr z

x!y!z!
; x + y + z = 18.(1)

II By Definition 5.5.1,

P(X = x, Y = y, Z = z) = P(X = x, Y = y|Z = z)P(Z = z).

Now the number of holes halved is just the number of successes in 18 Bernoulli trials with
P(success) = r . Hence, by Example 5.4.1 (or Example 4.2.3),

P(Z = z) = r z(1− r )18−z

(
18
z

)
.
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Now for any given hole, P(A|H c) = p/(p + q). Hence, given Z = z, the number of holes
won by Arnold is just the number of successes in 18− z Bernoulli trials with P(success)
= p/(p + q). Therefore,

P(X = x, Y = y|Z = z) =
(
18− z

x

)(
p

p + q

)x( q

p + q

)y

,

where x + y = 18− z. Thus,

P(X = x, Y = y, Z = z) = (x + y)! pxq y

x!y! (1− r )x+y
r z(1− r )18−z 18!

(x + y)!z!
.

= 18!pxq yr z

x!y!z!
.

(b) I As in (5.1.5), we have

P(X = x) =
∑
y,z

P(X = x, Y = y, Z = z)(2)

=
18−x∑
y=0

18!px

x!(18− x)!

(18− x)!

y!(18− x − y)!
q yr18−x−y

=
(
18
x

)
px (q + r )18−x ,

which is binomial with parameters 18 and p.
II Either Arnold succeeds with probability p in winning each hole, or he fails with

probability 1− p = q + r . Hence, by Example 5.4.1, the mass function of X is binomial
as in (2).
(c) Let Ik be the indicator of the event Ak that Arnold wins the kth hole, and Jk the
indicator of the event Bk that Bobby wins it. Then Ik Jk = 0, and I j is independent of Jk

for j �= k. Hence, E(I j Ik) = pq for j �= k, and therefore,

E(XY ) = E

(
18∑

k=1
Ik

18∑
j=1

Jj

)
= 18× 17pq.

Thus,

cov (X, Y ) = 18× 17pq − 18p × 18q = −18pq.

Finally, we note that because X and Y are binomial, we have var (X ) = 18p(1− p) and
var (Y ) = 18q(1− q). Therefore,

ρ(X, Y ) = cov (X, Y )

(var (X ) var (Y )))
1
2

= −18pq

(18p(1− p).18q(1− q))
1
2

,

as required.

(3) Exercise What is ρ(Y, Z )?
(4) Exercise What is the conditional mass function of X , given X + Y = m?
(5) Exercise What is the probability that the match is halved?
(6) Exercise What is E(X |Y )?
(7) Exercise What is E(X |Y, Z )?



208 5 Random Vectors: Independence and Dependence

5.12 Example: Joint Lives

Suppose that 2m individuals constitute m married couples at some given initial date. We
want to consider the survivors at some given later date. Suppose that each individual is
alive at the later date with probability p independently of the others. Let A be the number
of individuals then alive, and let S be the number of surviving couples in which both the
partners are alive. Show that

E(S|A) = A(A − 1)
2(2m − 1) .

Remark This problem was discussed by Daniel Bernoulli in 1768.

Solution Let Sa be the number of surviving couples given that A = a. We give several
methods of solution; you can choose your favourite, or of course find a better one.
I Let I j be the indicator of the event that the j th couple survives. Then

E(Sa) = E

(
m∑
1

I j

)
= mE(I1) = mP(I1 = 1)

because the chance of survival is the same for every couple. Now we can choose the a
survivors in (2m

a ) ways, and the number of these in which the first couple remain alive is

(2m − 2
a − 2 ). (This is the number ways of choosing a − 2 other survivors from the other m − 1
couples.)
Because these are equally likely outcomes

P(I1 = 1) =
(
2m − 2
a − 2

)/(
2m
a

)
= a(a − 1)
2m(2m − 1) .

Hence, E(Sa) = a(a − 1)/(2(2m − 1)).
II Suppose that the a individuals remaining alive include x couples. If one more individ-
ual were to die, then the expected number of couples remaining would beE(Sa−1|Sa = x).
To evaluate this, observe that if a widow/er dies then there are still x couples; however, if a
survivor’s spouse dies, there are now x − 1 couples. The probability of a widow/er’s death
is (a − 2x)/a; the probability of the death of one individual of the x couples is (2x/a).
Hence,

E(Sa−1|Sa = x) = x(a − 2x)

a
+ (x − 1)2x

a
= (a − 2)

a
x .

Hence, by Theorem 5.5.6,

E(Sa−1) = E(E(Sa−1|Sa)) = a − 2
a

E(Sa).

This relation may be iterated on the left or the right, to give either

E(Sa) = a(a − 1)
2

E(S2) = a(a − 1)
2(2m − 1)
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or

E(Sa) = a(a − 1)
2m(2m − 1)E(S2m) = a(a − 1)

2(2m − 1) .

III Number the couples 1, . . . ,m. Let Yi be the indicator of the event that the male of
the i th couple survives and Xi the indicator of the event that the female of the i th couple
survives. Then Sa =

∑m
1 Xi Yi .

Now P(Y1 = 1|X1 = 1) = (a − 1)/(2m − 1) and P(X1 = 1) = a/(2m). Hence,

E(Sa) =
m∑
1

E(Yi Xi ) = mE(Y1|X1 = 1)P(X1 = 1) = m
a

2m

a − 1
2m − 1 ,

as required.

(1) Exercise Find the mass function of S, and write down its mean and variance.
(2) Exercise Show that E(AS) = 2m((m − 1)p3 + p2).
(3) Exercise Show that E(A|S) = 2mp + 2(1− p)S.
(4) Exercise Show that the correlation ρ(A, S) is given by ρ(A, S) = (2p/(1+ p))

1
2 .

(5) Exercise Suppose that males and females have different death rates, so the probability of a male
surviving is µ and the probability of a female surviving is φ. Show that S has a B(m, µφ) mass
function. What is the mass function of A? What is E(A)?

(6) Exercise When males and females have different survival rates µ and φ, find E(A|S) and hence
show that in this case

ρ(A, S) = (2− φ − µ)(φµ) 12
((1− φµ)(φ(1− φ)+ µ(1− µ))) 12

.

5.13 Example: Tournament

Suppose that 2n tennis players enter a knock-out singles tournament, and the players are
completely ranked (with no ties). The draw for the tournament is at random, and we
suppose that in any match the higher ranked player always wins. Let Rn be the rank of the
losing finalist; find E(Rn), and show that as n →∞

E(Rn)→ 3.

Solution The losing finalist comes from the half of the draw not containing the top-
ranked player. These 2n−1 players have ranks N1 < N2 < · · · < N2n−1 , which are drawn
at random from the 2n − 1 integers {2, 3, 4, . . . , 2n}, and Rn = N1.

Let X1, X2, . . . be the numbers of players drawn with the top-ranked player, between
successive players drawn for the other half. That is to say

X1 = N1 − 2
Xk = Nk − Nk−1 − 1, 2 ≤ k ≤ 2n−1,

X2n−1+1 = 2n − N2n−1 .
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By symmetry, for all j and k,E(Xk) = E(X j ). Hence,

(2n−1 + 1)E(X1) = E

(
2n−1+1∑
1

Xk

)
= 2n − 1− 2n−1.(1)

Thus,

E(Rn) = E(N1) = E(X1)+ 2
= 2n+1 − 2n−1 + 1

2n−1 + 1 → 3, as n →∞.

(2) Exercise Suppose that the ranking allows ties (so that, for example, a possible ranking is 1, 1,
3, 3, 3, 6, . . .). Show that as n →∞, limE(Rn) ≤ 3.

(3) Exercise Suppose that there are 3× 2n−1 entrants, and these are divided at random into a group
of size 2n−1 and a group of size 2n who then knock each other out in the usual way to provide two
finalists. Find E(Rn) and show that E(Rn)→ 7

2 .
(4) Exercise An urn contains b blue and r red balls. Balls are removed at random until the first blue

ball is drawn. Show that the expected number drawn is (b + r + 1)/(b + 1).
The balls are replaced, and then removed at random until all the balls remaining are of the same

colour. Show that the expected number remaining is r/(b + 1)+ b/(r + 1). What is the probability
pr that they are all red?

(5) Exercise Let X1, X2, . . . be independent and identically distributed. What is

E




m∑
1

Xi

n∑
1

Xi


 when m ≤ n?

5.14 Example: Congregations

Suppose that n initially separate congregations of people are then united, and one person
is picked at random from the united group. Let the size of the congregation of which she
was originally a member be Y . If the respective sizes of the original congregations are the
random variables (Xi ; 1 ≤ i ≤ n), show that

E(Y ) = E




n∑
1

X2
i

n∑
1

Xi


(1)

≥ 1

n

n∑
1

E(Xi ).(2)

Solution Let us use conditional expectation. Given that Xi = xi for 1 ≤ i ≤ n, the
probability that the selected individual was in the r th congregation initially is xr/(

∑n
1 xi ).
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Hence,

E(Y |X1 = x1, . . . , Xn = xn) =
n∑
1

xrP(Y = xr ) =
n∑

r=1
x2r /

(
n∑

i=1
xi

)
.

Therefore,

E(Y ) = E(E(Y |X1, . . . , Xn)) = E




n∑
1

X2
i

n∑
1

Xi


 .

Now recall Cauchy’s inequality for real numbers (xi ; 1 ≤ i ≤ n) and (yi ; 1 ≤ i ≤ n),
namely, (

n∑
1

xi yi

)2
≤
(

n∑
1

x2i

)(
n∑
1

y2i

)
.(3)

Setting yi = 1, for all i , yields (
∑n

1 x2i )/(
∑n

1 xi ) ≥
∑n

1 xi/n, and the required inequality
(2) follows.

Remark Observe that if a congregation is picked at random by choosing a number in
{1, 2, . . . , n} at random, then the expected size of the chosen congregation is 1n

∑n
1 E(Xi ).

The fact that a member picked at random was in a larger expected congregation is a form
of sampling “paradox.”

(4) Exercise For what distributions of Xi , if any, does the expected size of a randomly selected
individual’s group actually equal the mean size of groups?

(5) Exercise Family sizes are independent and identically distributed with mean µ. If you pick an
individual at random find the probability that she is the kth born of her family, and the expectation
of her order of birth in her family. Compare this with µ.

(6) Exercise Use the Cauchy–Schwarz inequality Lemma 5.3.13 to prove Cauchy’s inequality (3).

5.15 Example: Propagation

A plant sheds N seeds, where N is a binomial random variable with parameters n and p.
Each seed germinates with probability γ independently of all the others. Let S denote the
number of resulting seedlings. Find:

(a) The conditional mass function of S given N .
(b) The joint mass function of S and N .
(c) The probability mass function of S.
(d) The conditional mass function of N given S.

Solution (a) Given that there are i seeds, that is N = i , the germination of any one
can be regarded as a Bernoulli trial with P(success) = γ . Then by Example 5.4.1 (also
discussed in Example 4.2.3), the total number of successes is a binomial random variable
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with parameters i and γ . So

P(S = j |N = i) =
(

i
j

)
γ j (1− γ )i− j ; 0 ≤ j ≤ i.

(b) Now for the joint mass function

P(N = i ∩ S = j) = P(S = j |N = i)P(N = i)

=
(

i
j

)
γ j (1− γ )i− j

(
n
i

)
pi (1− p)n−i .

(c) Now we require the marginal mass function of S, which is given by

P(S = j) =
n∑

i= j

P(N = i, S = j) using (5.1.6)

=
n∑

i= j

γ j (1− γ )i− j pi (1− p)n−i

(n − i)! j!(i − j)!

= (1− p)n
(

γ

1− γ
) j(

n
j

) n∑
i= j

(
(1− γ )p
1− p

)i (n − j)!

(n − i)!(i − j)!

=
(

n
j

)
(γ p) j (1− γ p)n− j .

Thus, S is binomial with parameters n and γ p.
(d) Finally,

P(N = i |S = j) = P(N = i ∩ S = j)

P(S = j)
=

(
n − j
n − i

)(
1− p

1− γ p

)n−i

×
(
1− 1− p

1− γ p

)i− j

; j ≤ i ≤ n.

Thus, the variable N − S given that S = j germinate is binomial with parameters n − j
and (p − pγ )/(1− γ p).

(1) Exercise Find E(N |S).
(2) Exercise Find E(S|N ).
(3) Exercise Find cov (N , S) and ρ(N , S).
(4) Exercise Each seedling independently succeeds in growing into a tree with probability τ , or

succumbs to wilt with probability 1− τ . Let T be the number of resulting trees.
Find the joint probability mass function of N , S, and T , and also the conditional mass function

of N given T .
(5) Exercise Find the joint mass function of N and T given that S = s.
(6) Exercise Find the conditional covariance of N and T given that S = s.

5.16 Example: Information and Entropy

(a) Let the random variable X take a finite number of values (xi ; 1 ≤ i ≤ n), with mass
function P(X = x) = f (x). Suppose that (ai ; 1 ≤ i ≤ n), are such that ai > 0 for 1 ≤ i ≤
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n and
∑n

i=1 ai = 1. Show that

−
n∑

i=1
f (i) log ai ≥ −

n∑
i=1

f (i) log f (i)

with equality if and only if ai = f (i) for all i .
(b) The random variables X and Y take a finite number of values and have joint mass
function f (x, y). Define

I (X, Y ) =
∑

x

∑
y

f (x, y) log

(
f (x, y)

fX (x) fY (y)

)
.

Show that I ≥ 0, with equality if and only if X and Y are independent.

Solution (a) By definition,

log y =
∫ y

1
x−1dx ≤

∫ y

1
dx with equality if y = 1,

= y − 1.
Hence,

log y ≤ y − 1(1)

with equality if and only if y = 1. Therefore,

−
∑

i

f (i) log f (i)+
∑

i

f (i) log ai =
∑

i

f (i) log

(
ai

f (i)

)

≤
∑

i

f (i)

(
ai

f (i)
− 1

)
by (1)

= 0,
with equality if and only if f (i) = ai for all i .
(b) The positive numbers fX (x) fY (y) satisfy

∑
fX (x) fY (y) = 1. Therefore, by

part (a), ∑
x,y

f (x, y) log f (x, y) ≥
∑
x,y

f (x, y) log( fX (x) fY (y))

with equality if and only if for all x and y f (x, y) = fX (x) fY (y). But this is a necessary
and sufficient condition for the independence of X and Y .

(2) Exercise Show that I = E(log f (X, Y ))− E(log fX (X ))− E(log fY (Y )).
(3) Exercise Show that if the conditional mass function of X given that Y = y is f (x |y), we have

I =
∑
x,y

fY (y) f (x |y) log f (x |y)− E(log fX (X ))

=
∑
x,y

fX (x) f (y|x) log f (y|x)− E(log fY (Y )).

(4) Exercise A die is rolled twice, yielding the respective scores X and Y . Let Z = max{X, Y }.
Find I (X, Z ) and I (Z , X ).
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Remark The quantity I is sometimes said to be the information about X conveyed by Y . It is
interesting that this is equal to the information about Y conveyed by X .

The quantity H (X ) = E(− log fX (X )) is known as the entropy or uncertainty of X , and
H (X |Y ) = H (X )− I (X, Y ) is known as the conditional entropy (or uncertainty) of X given Y .
It is interpreted as the uncertainty of X , reduced by the information conveyed about X by Y .

(5) Exercise Show that H (X |X ) = 0.
(6) Exercise Show that if H (X |Y ) = 0 = H (Y |X ) and H (Y |Z ) = H (Z |Y ) = 0, then H (X |Z ) =

H (Z |X ) = 0.

5.17 Example: Cooperation

Achilles and his two friends, Briseis and Chryseis, play a cooperative game. They possess
a die with n faces, and each of them rolls it once. Then I (AC) is the indicator of the event
that Achilles and Chryseis each turn up the same face of the die. I (AB) and I (BC) are
defined similarly. Show that I (AB), I (AC), and I (BC) are pairwise independent if and
only if the die is unbiased.

Solution Let the die, when rolled, show its kth face with probability f (k). Then

P(I (AB) = 1, I (BC) = 1) = P(all three rolls show the same face) =
n∑

k=1
( f (k))3

and

P(I (AB) = 1) = P(two rolls show the same face) =
n∑

k=1
( f (k))2.

Pairwise independence then requires that(∑
k

( f (k))2
)2
=

∑
k

( f (k))3.(1)

Now let X be a random variable that takes the value f (k) with probability f (k). Then (1)
states that

0 = E(X2)− (E(X ))2 = E(X − E(X ))2 = var (X ).
Hence, X must be constant by Example 4.6.10, and so the die is unbiased because f (k) =
1
n ; 1 ≤ k ≤ n. In this case, it is easy to check that

P(I (AB) = 1, I (BC) = 0) =
n∑

k=1

1

n
.

n − 1
n

.
1

n
= 1

n
.

n − 1
n

= P(I (AB) = 1)P(I (BC) = 0)
and two other conditions are satisfied. The indicators are pairwise independent only in
this case.



Worked Examples and Exercises 215

(2) Exercise Are the indicators independent?
(3) Exercise Find the mean and variance of Z = I (AB)+ I (BC)+ I (AC).
(4) Exercise If n women play a similar game, and I (Ai , A j ) is the indicator of the event that the

i th and j th women turn up the same face of the die, find the mean and variance of
∑

i �= j I (Ai A j ).

5.18 Example: Strange But True

Let (Sn; n ≥ 0) be a simple symmetric random walk with S0 = 0. Let f0(n) = P(T0 = n)
be the probability that thewalkfirst returns to zero at thenth step, and letu(n) = P(Sn = 0).
Let Vn be the number of values which a walk of n steps has visited exactly once.

(a) Show that

f0(2k) = u(2k − 2)− u(2k).(1)

(b) Deduce that

P

(
2n∏

k=1
Sk �= 0

)
= P(T0 > 2n) = u(2n).(2)

(c) Hence, show that for all n ≥ 1
E(Vn) = 2.(3)

Solution (a) By symmetry and the reflection principle, using Theorem 5.6.17,

f0(2k) = 1

2k − 1P(S2k−1 = 1) = 2−(2k−1)

2k − 1
(
2k − 1

k

)

= 2−2k

2k − 1
(
2k
k

)
= 2−2k+2

(
2k − 2
k − 1

)
− 2−2k

(
2k
k

)
= u(2k − 2)− u(2k).

(b)

P(T0 > 2n) = 1−
n∑

k=1
f0(2k) = 1−

n∑
k=1
(u(2k − 2)− u(2k)) by (1),

= u(2n).

(c) Clearly, V1 = 2, so it suffices to show that E(Vn) = E(Vn−1) for n ≥ 2. Let V ′n be
the number of points visited just once by S1, S2, . . . , Sn . This has the same distribution as
Vn−1, and so also the same expectation. Let T0 be the time of first return to the origin.
Now,

Vn =



V ′n + 1 if T0 > n
V ′n − 1 if S1, . . . , Sn revisits zero exactly once
V ′n otherwise

(4)
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Hence,

E(Vn)− E(Vn−1) = E(Vn)− E(V ′n)(5)
= P(T0 > n)− P(S1, . . . , Sn revisits 0 exactly once) by (4),

= P(T0 > n)−
[ n
2 ]∑

k=1
P(T0 = 2k)P

(
n∏

i=2k+1
Si �= 0

)

= P(T0 > n)−
[ n
2 ]∑

k=1
P(T0 = 2k)P(Sn−2k = 0) by (2).

= P(T0 > n)− P(Sn = 0)
= 0 by (2).

(6) Exercise Show that 2k f0(2k) = u(2k − 2).
(7) Exercise Show that P(S2n = 0) = (1/2n)E(|S2n|).
(8) Exercise Let L2n be the time of the last visit to 0 up to time 2n. Show that P(L2n = 2k) =

u(2k)u(2n − 2k).
Show that if k and n increase in such a way that k/n = x , then

P
(

L2n

2n
≤ x

)
→ 2

π
sin−1 x ; 0 ≤ x ≤ 1

= 2

π
arc sin x .

[Stirling’s formula says that n! � e−nnn+ 1
2 (2π )

1
2 for large n.] This is an arc-sine law.

5.19 Example: Capture–Recapture

A population of b animals has had a number a of its members captured, marked, and
released.

(a) Let Ym be the number of animals that it is necessary to capture (without re-release) to
obtain m, which have been marked. Find P(Ym = n) and E(Ym).

(b) If, instead, it had been decided just to capture [E(Ym)] animals, what would have been
the expected number of marked animals among them? Compare this with m.

Solution (a) I For the event {Ym = n} to occur, it is necessary that:
(i) The nth animal is marked, which can occur in a ways.
(ii) The preceding n − 1 animals include exactly m − 1 marked and n − m unmarked

animals, which may occur in (a − 1
m − 1)(

b − a
n − m) ways.

The total number of ways of first selecting a distinct animal to fill the nth place, and
then choosing n − 1 animals to fill the remaining n − 1 places is b.(b − 1n − 1). Because these
are assumed to be equally likely, the required probability is

P(Ym = n) = a

b

(
a − 1
m − 1

)(
b − a
n − m

)/(
b − 1
n − 1

)
; m ≤ n ≤ b − a + m.(1)



Worked Examples and Exercises 217

To calculate E(Ym), you may write

E(Ym) =
b−a+m∑

n=m

nP(Ym = n) =
b−a+m∑

n=m

m

(
a
m

)(
b − a
n − m

)/(
b
n

)

= m

(
b + 1
a + 1

)
b+1−(a+1)+m∑

n+1=m+1

a + 1
b + 1

(
a
m

)(
b + 1− (a + 1)
n + 1− (m + 1)

)/(
b
n

)

= m

(
b + 1
a + 1

)
b′−a′+m ′∑

n′=m ′

a′

b′

(
a′ − 1
m ′ − 1

)(
b′ − a′

n′ − m ′

)/(
b′ − 1
n′ − 1

)
,

where a′ = a + 1 and so on,
= m

(
b + 1
a + 1

)
,

because (1) is a probability distribution with sum equal to unity.
II Alternatively, suppose that you were to capture them all, and let X0 be the number

of unmarked animals captured before the first marked animal, Xr the number of unmarked
animals captured between the r th and the (r + 1)st marked animals and Xa the number
captured after the last marked animal. Then

a∑
0

Xi = b − a,

and, by symmetry, for all i and j,E(Xi ) = E(X j ). Hence,

E(Xr ) = b − a

a + 1 , and E(Ym) =
m−1∑
0

E(Xr )+ m = m
b + 1
a + 1 .

(b) It is possible towrite down thedistributionof the number ofmarked animals captured,
and then evaluate the mean by a method similar to the first method of (a). It is easier to let
I j be the indicator of the event that the j th captured animal is marked. Then the required
expectation is

E

(
[E(Ym )]∑
1

I j

)
= [E(Ym)]E(I j ) = [E(Ym)]

a

b
=

[
b + 1
a + 1 .m

]
a

b
< m.(2)

Remark The distribution of Ym is called the negative hypergeometric distribution,
by analogy with the relation between the negative binomial distribution and the binomial
distribution. The hypergeometric p.m.f. is (3.16.1).

(3) Exercise If you capture and keep a fixed number n of animals, find the variance of the number
that are marked.

(4) Exercise Your pen will only hold m animals, so you return the unmarked ones. Now if Zm is
the number of captures required to secure m marked animals, find E(Zm).

(5) Exercise Let X and Y be independent binomial random variables with the same parameters n
and p. Find P(X = k|X + Y = j) and explain why the answer takes the form you find.
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5.20 Example: Visits of a RandomWalk

Let (Sn; n ≥ 0) be a simple symmetric random walk with S0 = 0.
(a) Let Vr be the number of visits to r before the walk revisits the origin. Show that

E(Vr ) = 1.
(b) Show that the expected number of visits to the origin is infinite.

Solution Let In be the indicator of a visit to the point r at the nth step before any
return to 0. Then

E(Vr ) = E

( ∞∑
n=1

In

)
=

∞∑
n=1

E(In)(1)

=
∞∑

n=1
P(Sn = r, S1 �= 0, . . . , Sn−1 �= 0).

Now we make two important observations:

If Sn = r, then X1 + · · · + Xk �= 0 if and only if Xk+1 + · · · + Xn �= r.(2)
Because the Xi are independent and identically distributed, Xk+1 + · · · + Xn(3)

has the same distribution as X1 + · · · + Xn−k, and this remains true when Sn = r.
Hence, we can write (1) as

E(Vr ) =
∞∑

n=1
P

(
n∑

i=1
Xi = r, X1 �= 0, . . . , X1 + · · · + Xn−1 �= 0

)
(4)

=
∞∑

n=1
P

(
n∑

i=1
Xi = r, X2 + · · · + Xn �= r, . . . , Xn �= r

)
by (2),

=
∞∑

n=1
P

(
n∑

i=1
Xi = r, X1 + · · · + Xn−1 �= r, . . . , X1 �= r

)
by (3),

=
∞∑

n=1
fr (n) = 1, using Theorem 5.6.7.

(b) Let Jn be the indicator of a visit to the origin at the nth step, and let R be the total
number of returns to the origin. Then

E(R) = E

( ∞∑
n=1

Jn

)
=

∞∑
n=1

E(Jn) =
∞∑

n=1
P(Sn = 0)

=
∞∑

k=1

1

22k

(
2k
k

)
where n = 2k,

=
∞∑

k=1

(2k − 1)(2k − 3) . . . 3.1
2kk(k − 1) . . . 2.1

≥
∞∑

k=1
(2k − 1) . (2k − 2)

(2k − 1) . (2k − 3) . (2k − 4)
(2k − 3) . . . 3 .

2

3
.
1

2kk!

=
∞∑

k=1

1

2k
= ∞.
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Remark Result (a) is indeed remarkable. Interpreted as a game, it says that if a coin
is tossed repeatedly and you get $1 every time the total number of heads is r more than
the total number of tails, until heads and tails are equal, then your expected gain is $1,
independently of r . [See Example 9.11 (b) for another method.]

(5) Exercise For a symmetric simple randomwalk with S0 = 0, let Rr be the total number of returns
to r . What is E(Rr )?

(6) Exercise For a symmetric simple random walk with S0 = 0, show that the probability that the
first visit to S2n takes place at time 2k is P(S2k = 0)P(S2n−2k = 0); 0 ≤ k ≤ n.

(7) Exercise What is E(V ), the expected number of visits of an asymmetric simple random walk
to r?

(8) Exercise Consider a two-dimensional symmetric random walk (SX , SY ) on the points (i, j),
where i and j are integers. From (i, j), the walk steps to any one of (i ± 1, j) or (i, j ± 1) with
equal probability 1

4 . Show that the expected number E(V ) of visits to the origin is infinite.

5.21 Example: Ordering

Let X and Y be random variables such that for all x

FX (x) ≤ FY (x).(1)

Show that E(X ) ≥ E(Y ), and deduce that FX (x) ≤ FY (x) if and only if, for all increasing
functions h(.),

E(h(X )) ≥ E(h(Y )).(2)

Solution From Example 4.3.3, we have

E(X ) =
∞∑
0

P(X > k)−
−∞∑
k=0

P(X < k) =
∞∑
0

(1− FX (k))−
−∞∑
0

FX (k)(3)

≥
∞∑
0

(1− FY (k))−
−∞∑
0

FY (k) by (1)

= E(Y ).

Now if h(.) is an increasing function

P(h(X ) > z) = P(X > inf {t: h(t) > z}) ≥ P(Y > inf {t: h(t) > z}) by (1)
= P(h(Y ) > z).

Hence, P(h(X ) ≤ z) ≤ P(h(Y ) ≤ z) and (2) follows on using (3).
Conversely, if we choose h(Z ) to be the indicator of the event that Z ≤ x , then

E(h(X )) = P(X ≤ x) ≤ P(Y ≤ x) = E(h(Y )).(4)

(5) Exercise If X and Y are independent and for all x FX (x) ≤ FY (x), show that P(X ≥ Y ) ≥ 1
2 .

(6) Exercise If X, Y , and Z are independent show that X, Y , and Z can be distributed in such a
way that P(X > Y ) > 1

2 ;P(Y > Z ) > 1
2 ;P(Z > X ) > 1

2 .
(7) Exercise Let X (n, p) have binomial distribution with parameters n and p. Show that

P(X (m, p) ≤ x) ≥ P(X (n, p) ≤ x) for m ≤ n
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and

P(X (n, p1) ≤ x) ≥ P(X (n, p2) ≤ x) for p1 ≤ p2.

5.22 Example: More Martingales

Let (Xn; n ≥ 1) be a collection of independent random variables with respective means
(µn; n ≥ 1) and finite variances (σ 2n ; n ≥ 1). Show that

Mn =
{

n∑
r=1
(Xr − µr )

}2
−

n∑
r=1

σ 2r

defines amartingalewith respect to Xn . Now assume that the Xn are identically distributed,
with mean µ and variance σ 2, and T . is a stopping time for (Xn; n ≥ 1) with ET <∞.
Show that when Yn =

∑n
1 Xr ,

E(YT − Tµ)2 = σ 2ET .

Solution First, by the independence,

E|Mn| ≤
n∑

r=1
E(Xr − µr )

2 +
n∑

r=1
σ 2r <∞.

Second, we have by using independence again,

E(Mn+1|X1, . . . , Xn) = Mn + E(Xn+1 − µn+1)2 − σ 2n+1 = Mn,

and Mn is a martingale.
For the last part, it is easy to see that we cannot apply the Optional Stopping theorem

directly; so we employ an ingenious trick. First, note that T ∧ n is a finite stopping time.
By the first case in the optional stopping theorem 5.9.11, it follows that

E(YT∧n − µT ∧ n)2 = σ 2ET ∧ n.(1)

Next, we observe that as n →∞, we have
T∧n → T and YT∧n → YT ,(2)

both statements being true with probability 1. Also, for any m ≥ n, we have, using the
fact that martingales have orthogonal increments, Corollary (5.9.14),

E(YT∧m − µT ∧ m − YT∧n + µT ∧ n)2

= E(YT∧m − µT∧m)2 − E(YT∧n − µT∧n)2

= σ 2(ET∧m − ET∧n)→ 0 as m, n →∞, since ET <∞.

Hence, by Theorem (5.7.4), YT∧n − µn ∧ T converges in mean square as n →∞. But
from (2) above, we know it converges to YT − µT with probability 1. Hence,

E(YT∧n − µT∧n)2→ E(YT − µT )2.

Now taking the limit as n →∞ in (1) gives the required result.
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(3) Exercise Let (Xn ; n ≥ 1) be independent with respective finite means (µn ; n ≥ 1). Show that
Un and Vn are martingales, where

(a) Un =
n∑

r=1
Xr −

n∑
r=1

µr . (b)Vn = X1 . . . Xn

µ1 . . . µn
.

(4) Exercise Let Dn = Xn − Xn−1, where Xn is a martingale with finite variance. Show that

var Xn =
n∑

r=1
var Dr .

(5) Exercise Let (Xn ; n ≥ 1) and (Yn ; n ≥ 1) be two collections of independent random variables,
with each collection identically distributed having respective means µx and µy . Show that if T is
a stopping time with respect to the sequence {(Xn, Yn); n ≥ 1} and ET <∞, then

E

[(
T∑
1

Xr − Tµx

)(
T∑
1

Yr − Tµy

)]
= ET cov(X1, Y1).

(6) Exercise Let (Xn ; n ≥ 1) be independent and identically distributed with M(t) = Eet X1 <∞.
Set Sn =

∑n
1 Xr . Show that Mn = exp(t Sn)(M(t))−n is a martingale with respect to Sn .

5.23 Example: Simple RandomWalk Martingales

Let Sn = S0 + X1 + · · · + Xn , where (Xn; n ≥ 1) are independent, and such that
0 �= P(X1 = 1) = p = 1− q = 1− P(X1 = −1) �= 1

(a) Show that (q/p)Sn is a martingale with respect to Sn .
(b) If a < S0 < b, find the probability that the walk hits a before it hits b, where a, b and

S0 are integers.

Solution (a) We noted in (5.6.10) that E( q
p )

Xr = 1. Because the Xn are independent,

the conditions for ( q
p )

Sn to be a martingale follow easily.

Let T be the first time at which Sn takes either of the values a or b. The probability
that any consecutive sequence of Xn , of length a + b, yields a + b consecutive 1s is pa+b.
Hence,

P(T > m(a + b)) < (1− pa+b)m → 0, as m →∞.

Hence, P(T <∞) = 1. Because Sn and Sn∧T are bounded, so are (
q
p )

Sn and ( q
p )

Sn∧T . Let
A be the event that the walk hits a before b; because P(T <∞) = 1, we must have

P(walk hits b before a) = 1− P(A).

We can apply the second case of the optional stopping theorem 5.9.11 to obtain, if S0 = s,(
q

p

)s

= E
(

q

p

)S0

= E
(

q

p

)ST

=
(

q

p

)a

P(A)+
(

q

p

)b

(1− P(A)).
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Hence,

P(A) =

(
q

p

)s

−
(

q

p

)b

(
q

p

)a

−
(

q

p

)b .

(1) Exercise If p = q = 1
2 , show that Sn is a martingale and deduce that

P(A) = s − b

a − b
.

(2) Exercise If p = q = 1
2 , show that S2n − n is a martingale and hence that

ET = (s − a)(b − s).

(3) Exercise If a →−∞ and p > 1
2 , use an appropriate martingale to show that

ET = (b − s)

1− 2q
.

(4) Exercise Show that [(Sn − n(p − q))2 − 4npq; n ≥ 0] is a martingale. If a →−∞
and p > 1

2 , deduce that

varT = 4(b − s)pq

(p − q)3
.

(5) Exercise Let Sn be a simple symmetric random walk started at the origin, and let T be the
number of steps until the walk first hits−a or b, where a and b are positive. Show that the following
are all martingales:
(a) Sn ; (b) S2n − n; (c) S3n − 3nSn ; (d) S4n − 6nS2n + 3n2 + 2n.
Hence find P(ST = −a),ET , and E(T ∩ {ST = −a}). Show finally that varT = ab(a2 + b2 −
2)/3.

5.24 Example: You Can’t Beat the Odds

LetYn be the total net fortune of a gambler after betting a unit stake on each of n consecutive
fair plays in a casino. Thus, the return from the nth unit stake is Yn − Yn−1. We assume
that Yn constitutes a martingale. A gambler devises a betting system that entails placing a
stake Sn on the nth play, where Sn is not necessarily a unit stake, but Sn is necessarily a
function only of (Y0, . . . , Yn−1), and does not depend on any Yn+k, k ≥ 0. Write down an
expression for the gambler’s fortune Zn , after n plays, and show that Zn is a martingale if
E|Zn| <∞.

Solution From the description of the system, the return on the nth play is Sn(Yn −
Yn−1). Hence,

Zn = Zn−1 + Sn(Yn − Yn−1) = Y0 +
n∑

r=1
Sr (Yr − Yr−1).
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Because Sn is a function of (Y0, . . . , Yn−1), we have

E(Zn+1|Y0, . . . , Yn) = Zn + E(Sn+1(Yn+1 − Yn)|Y0, . . . , Yn)
= Zn + Sn+1[E(Yn+1|Y0, . . . , Yn)− Yn]
= Zn

because Yn is a martingale. The result follows.

Remark The point of this example is that you cannot turn a fair game in your favour
using a system. The exercises supply more instances of this.

(1) Exercise Show that using any of the following systems, the gambler’s fortune is a martingale:
(a) Optional skipping. At each play, the gambler skips the round or wagers a unit stake.
(b) Optional starting. The gambler does not join in until the (T + 1)th play, where T is a stopping

time for Yn .
(c) Optional stopping. The gambler uses the system until a stopping time T , and then quits.

(2) Exercise: Optional Sampling The gambler only uses the system at the plays numbered
(T1, T2, . . .), where (Tn ; n ≥ 1) is a sequence of stopping times such that P(Tr ≤ nr ) = 1 for some
non random sequence of finite real numbers nr . Show that (ZTr ; r ≥ 1), where T0 = 0, is a martin-
gale.

(3) Exercise Show that the result of Exercise (2) is true if the gambler’s fortunes are bounded by
K <∞, and she plays only at stopping times (Tr ; r ≥ 1), where

0 ≤ T1 ≤ T2 ≤ T3 ≤ . . .

5.25 Example: Matching Martingales

In a cloakroom, there are C distinct coats belonging to C people who all attempt to leave
by picking a coat at random. Those who select their own coat leave; the rest return their
coats and pick again at random. This continues until everyone leaves; let N be the number
of rounds required. Show that EN = C and varN ≤ C .

Solution Let Mn be the number of people present after the nth round, and Xn the
number of matches in the nth round. Thus, M0 = C, Mn+1 = Mn − Xn+1, n ≥ 0, and
MN = 0. By the result of Example 5.4.3, EXn = 1 for all n, so that

E(Mn+1 + n + 1|M0, . . . , Mn) = Mn + n.

Thus, (Mn + n; n ≥ 0) is a martingale, and N is clearly a stopping time. Also, P(at least
one match) ≥ C−1 for all values of Mn , so P(N <∞) = 1, and also EN <∞. By the
appropriate part of the optional stopping theorem,

C = M0 + 0 = E(MN + N ) = EN .

We also have from Example 5.4.3 that

var(Xn+1|M0, . . . , Mn) =
{
1 if Mn > 1
0 if Mn = 1 .
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Hence, var Xn+1 ≤ 1, and we may write
E((Mn+1 + n + 1)2 + Mn+1|M0, . . . , Mn)
= (Mn + n)2 − 2(Mn + n)E(Xn+1 − 1)+ Mn

+E((Xn+1 − 1)2 − Xn+1|M0, . . . , Mn)
≤ (Mn + n)2 + Mn.

Thus, (Mn + n)2 + Mn is a nonnegative supermartingale, and by the appropriate optional
stopping theorem [given at the end of Section 5.7],

C2 + C = M2
0 + M0 ≥ E((MN + N )2 + MN ) = EN 2.

The result follows, using the first part.

(1) Exercise Suppose the coat-grabbers adopt a slightly smarter approach. At each round, those
with their own coats leave, those left call out the name on the label of the coat they have picked. Any
pair holding each other’s coat swap them, and leave. The rest return their coats for another round.
(a) Show that the expected number of rounds now required is C/2.
(b) Let Xn be the number of departures in the nth round; show that varXn = 3, for Mn ≥ 4. [Hint:

With an obvious notation using suitable indicators, Xn =
∑

j I j +
∑

j �=k I jk .
Hence, when Mn−1 = m,

EX2
n = mEI1 + m(m − 1)E(I1 I2)

+2m(m − 1)(m − 2)E(I1 I23)+ 2m(m − 1)EI12
+m(m − 1)(m − 2)(m − 3)E(I12 I34) = 7.]

Show that (Mn + 2n)2 + 3
2 Mn is a supermartingale, and deduce that varN ≤ 3

2C .
(2) Exercise Suppose it was a mathematicians party, and at each round any subgroup of size

less than or equal to k, that holds no coats outside the subgroup, simply redistributes their coats
correctly, and leaves. Show that the expected number of rounds required is C/k.

(3) Exercise Suppose now that the purpose of the coats exercise is not simply to leave, but to leave
in pairs. Thus, only pairs holding each others coat swap and leave; the rest, including those who have
their own coat, return them for another round. Show that whenC is even,EN = C and varN ≤ 2C .
What can you say when C is odd?

5.26 Example: Three-Handed Gambler’s Ruin

Three players start with a, b, and c chips, respectively, and play the following game. At
each stage, two players are picked at random, and one of those two is picked at random
to give the other a chip. This continues until one of the three is out of chips, and quits the
game; the other two continue until one player has all the chips. Let Xn, Yn , and Zn be the
chips possessed by each player, respectively, after the nth stage; and let T be the number
of transfers until someone has all the chips. Show that

ET = ab + bc + ca.

Solution We claim that

Un = XnYn + Yn Zn + Zn Xn + n

is a martingale. To see this, we need to consider two cases; thus,
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(i) XnYn Zn > 0. Here, for instance,

E(Xn+1Yn+1|X0, Y0, Z0, . . . , Xn, Yn, Zn)

= 1

6
[(Xn + 1)Yn + (Xn − 1)Yn + Xn(Yn + 1)+ Xn(Yn − 1)
+(Xn + 1)(Yn − 1)+ (Yn + 1)(Xn − 1)]

= XnYn − 1

3
.

The other two terms being treated similarly, we find that

E(Un+1 + n + 1|X0, . . . , Zn) = Un + n + 1− 1.(1)

(ii) One of Xn, Yn or Zn is zero. If for instance Zn = 0, then

E(Xn+1Yn+1|X0, . . . , Zn) = 1

2
[(Xn + 1)(Yn − 1)+ (Xn − 1)(Yn + 1)]= XnYn − 1.

The other two possibilities being treated similarly,we obtain the samemartingale condition
(1). Clearly, T is a finite-mean stopping time for this bounded martingale, andUT = 0, so

ET = E(UT + T ) = E(U0 + 0) = ab + bc + ca.

(2) Exercise Let S be the number of transfers until one of the players is first out of chips. Show that

Mn = XnYn Zn + 1

3
n(a + b + c)

is a martingale, and deduce that

ES = 3abc

a + b + c
.

(3) Exercise The three players play a different game. Thus, they start with a, b, and c chips,
respectively. At each stage, one player is picked at random to receive one chip from each other
player still in; players drop out when they have no chips. Show that Mn and Vn are martingales,
where

Mn = XnYn Zn + n(a + b + c − 2)
Vn = XnYn + Yn Zn + Zn Xn + 3n.

If S and T are defined as above, deduce that

ES = abc

a + b + c − 2 ,

and

ET = ab + bc + ca − 2abc

a + b + c − 2 .

(4) Exercise The three players are now joined by a fourth, and all four return to play by the rules
of the first game. The fourth starts with d chips, and they have Xn, Yn, Zn , and Wn at the nth stage.
Let S be the first time at which only two players remain in the game, and T the first time at which
only one is left with all the chips. Verify that

Un = XnYn + Yn Zn + Zn Xn + Xn Wn +WnYn +Wn Zn + n,
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and

Vn = XnYn Zn +Wn XnYn +WnYn Zn +Wn Xn Zn + n

2
(a + b + c + d)

are martingales, and deduce that

ES = 2(abc + bcd + acd + abd)

a + b + c + d
,

and

ET = ab + bc + cd + da + ac + bd.

PROBLEMS

1 You roll two fair dice. Let X be the number of 2s shown, and Y the number of 4s. Write down the
joint probability mass function of X and Y , and find cov (X, Y ) and ρ(X, Y ).

2 Let the random variables X and Y have joint probability mass function f (x, y) such that:

f (1, 2) = 1

8
, f (1, 3) = 1

16
, f (1, 4) = 1

4
,

f (2, 2) = 1

16
, f (2, 3) = 1

8
, f (2, 4) = 3

8
.

Find the probability of the following:
(a) X > Y (c) X + Y is odd
(b) X ≥ Y (d) X − Y ≤ 1.

3 Find two random variables X and Y that are uncorrelated, but not independent.
4 Show that if E((X − Y )2) = 0, then X = Y with probability one.
5 Show that if E((X − Y )2) = E(X2)+ E(Y 2), then X and Y are orthogonal.
6 Let X be uniformly distributed on {0, 1, 2, . . . , 4n}. Let Y = sin( 12πX ) and Z = cos( 12πX ).

(a) What is the joint probability mass function of Y and Z?
(b) What is the distribution of Y + Z?
Show that Y and Z are orthogonal.

7 Let X and Y be jointly distributed with finite second moments and unit variance. Show that for
some nonzero constants a, b, c, d, the random variables U and V are uncorrelated where U =
a X + bY, V = cX + dY . Are a, b, c, and d unique?

8 A source produces a message forming a sequence of zeros and ones. In being transmitted, it passes
through two independent channels, each of which transmits the wrong symbol with probability
1− p, or the correct symbol with probability p. Show that a symbol is least likely to be transmitted
correctly when p = 1

2 .
Find the probability of correct transmission of a symbol when the message passes through three

similar independent channels.
9 Let (Xn ; n ≥ 1) be a sequence of independent random variables such that P(Xn = 1) = p = 1−

q = 1− P(Xn = −1). LetU be the number of terms in the sequence before the first change of sign,
and V the further number of terms before the second change of sign. (In other words, X1, X2, . . .



Problems 227

is made up of runs of +1s and runs of −1s; U is the length of the first run and V the length of the
second.)
(a) Show that E(U ) = pq−1 + qp−1 and E(V ) = 2.
(b) Write down the joint distribution of U and V , and find cov (U, V ) and ρ(U, V ).

10 An urn contains n balls numbered individually with the integers from 1 to n. Two balls are
drawn at random without replacement, and the numbers they bear are denoted by X and Y . Find
cov(X, Y ), ρ(X, Y ), and the limit of ρ(X, Y ) as n →∞.

11 Let X andY have joint distribution defined by f (0, 0) = 1− 3a; and f (0, 1) = f (1, 0) = f (1, 1) =
a; a ≤ 1

3 . Find:
(a) The p.m.f.s of X and Y
(b) cov (X, Y )
(c) E(X |Y ) and E(Y |X )
(d) Whether X and Y can be independent, and if so, when.

12 You roll two fair dice, and they show X and Y , respectively. LetU = min{X, Y }, V = max{X, Y }.
Write down the joint distributions of:
(a) {U, X}
(b) {U, V }
(c) {X, Y, V }.
Find cov (U, V ) and E(XY V ).

13 (a) If X and Y are independent with finite expectation, show that E(XY ) exists.
(b) Find a sufficient condition on the moments of X and Y , for E(XY ) to exist in general.

14 Which of the following functions f (i, j) can be a joint probability mass function of two random
variables X and Y ?
(a) θ |i |+| j |; |i | + | j | �= 0
(b) θ i+ j ; 0 ≤ i ≤ j <∞
(c) θ i+ j+2; 0 ≤ i < j <∞
(d) θ i+ j+1; 0 ≤ i, j <∞
(e) (i j − (i − 1) j )α

(
β

c

) j
; 1 ≤ i ≤ c, j ≥ 1, c an integer

(f) α(i n − (i − 1)n) j−n−2; 1 ≤ i ≤ j <∞.
Are X and Y independent in any case?

15 For each function in problem 14 that is a joint probability mass function of X and Y , find the
marginal mass functions of X and Y .

16 Suppose that random variables X and Y are such that P(|X − Y | ≤ M) = 1, where M is finite.
Show that if E(X ) <∞, then E(Y ) <∞ and |E(X )− E(Y )| ≤ M .

17 Show that the following are joint p.m.f.s and find the marginal distributions.

(a)

f (x1, . . . , xk) = x!

x1! . . . xk!
p x1
1 · · · p xk

k , where
k∑
1

p j = 1 and
k∑
1

x j = x .

(b)

f (x, x1, . . . , xk) = (x + r − 1)!
(r − 1)! pr

0
p x1
1

x1!
· · · p xk

k

xk!
,

where
∑k

0 p j = 1 and
∑k

1 x j = x ≥ 0.
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(c)

f (x1, . . . , xk) =
(

a1
x1

)
. . .

(
ak

xk

)/


k∑
1

ai

k∑
1

xi


 .

18 Let X and Y be independent geometric random variables with parameters p1 and p2, respectively.
(a) If c is an integer and Z = min{c, X}, find E(Z ).
(b) Find the distribution and expectation of min {X, Y}.

19 Let X and Y have joint p.m.f.

f (x, y) = C

(x + y − 1)(x + y)(x + y + 1) ; m ≥ 1, n ≥ 1.

Find the p.m.f. of X , the p.m.f. of Y , and the value of C .
20 Let X and Y be independent random variables each with a geometric distribution, so

fX (x) = αβx−1; x ≥ 1, α + β = 1,
fY (y) = pq y−1; y ≥ 1, p + q = 1.

Let R = X/Y .
(a) Find P(R > 1).
(b) If r = m/n where m and n are integers with no common factor except unity, find P(R = r ),

and show that when α = p = 1
2 ,P(R = r ) = 1/(2m+n − 1).

21 Triangular Distribution Let X and Y be independent random variables each uniformly dis-
tributed on {0, 1, . . . , n}. Find the p.m.f. of
(a) X + Y .
(b) X − Y .

22 Let X have binomial distribution with parameters n and p, and Y a binomial distribution with
parameters m and p. Show that if X and Y are independent then X + Y has a binomial distribution
with parameters m + n and p. Deduce that

r∑
k=0

(
m

r − k

)(
n
k

)
=

(
m + n

r

)
.

Find the conditional distribution of X given that X + Y = k.
23 If X has a binomial distribution with parameters n and p, show that

E
(

1

1+ X

)
= 1− (1− p)n+1

(n + 1)p .

24 Let X and Y be independent Poisson random variables. Show that Z = X + Y has a Poisson
distribution.
Show also that for some p,P(X = k|Z = n) = (n

k

)
pk(1− p)n−k , which is to say that the condi-

tional distribution of X given Z is binomial.
25 Let X and Y be independent geometric random variables, such that for m ≥ 0

P(X = m) = (1− λ)λm and P(Y = m) = (1− µ)µm .

(a) Show that

P(X + Y = n) = (1− λ)(1− µ)
λ− µ (λn+1 − µn+1), λ �= µ.

Find P(X = k|X + Y = n).
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(b) Find the distribution of Z = X + Y when λ = µ, and show that in this case P(X = k|Z = n) =
1/(n + 1).

26 Bell’s Inequality Let X, Y , and Z be jointly distributed random variables such that each can
take either of the values ±1. Show that E(XY ) ≤ 1− |E((X − Y )Z )|.
(This inequality is interesting because it has been claimed that there are experiments in quantum
mechanics for which it does not hold true.)

27 Show that for any c such that |c| ≤ 4 the function

f (i, j) = 1

(2m + 1)(2n + 1) +
c(i − m)( j − n)

((2n + 1)(2m + 1))2 ; 0 ≤ i ≤ 2m,
0 ≤ j ≤ 2n,

is a joint probability mass function with marginal distributions that do not depend on c.
Show that the covariance of this distribution is

cmn(m + 1)(n + 1)
9(2n + 1)(2m + 1) .

28 Construct two identically distributed random variables X and Y such that

P(X < Y ) �= P(Y < X ).

29 Bernoulli’s Urn Initially an urn contains U umber balls and a vase contains V viridian balls.
From each container, a ball is removed at random and placed in the other container. Let Ur be the
number of umber balls in the urn after r repetitions of this operation.
(a) Find E(Ur ) and show that limr→∞E(Ur ) = U 2/(U + V ).
(b) Just before each time balls are exchanged, a coin is tossed (which shows a head with probability

p); find the expected number of umber balls in the urn when the coin first shows a head. Show
that if U = V and U p = 1, this expectation is about 23U for large U .

30 Let (Xi ; i ≥ 1) be a random walk with S0 = 0 and Sr =
∑r

1 Xi . Define the maximum Mn =
max1≤k≤n{Sk}. Show that P(Mn ≥ x) ≤ ( p

q )
x , x ≥ 0, and deduce that

lim
n→∞E(Mn) ≤ q/(q − p), for p < q.

31 An urn contains n balls such that each of the n consecutive integers 1, 2, . . . , n is carried by one
ball. If k balls are removed at random, find the mean and variance of the total of their number in
the two cases:
(a) They are not replaced.
(b) They are replaced.
What is the distribution of the largest number removed in each case?

32 Let the random variables X and Y have joint distribution

P(X = a, Y = 0) = P(X = 0, Y = a) = P(X = −a, Y = 0)
= P(X = 0, Y = −a) = 1

4
.

Show that X − Y and X + Y are independent.
33 The random variables U and V each take the values ±1. Their joint distribution is given by

P(U = +1) = P(U = −1) = 1

2
,

P(V = +1|U = 1) = 1

3
= P(V = −1|U = −1),

P(V = −1|U = 1) = 2

3
= P(V = +1|U = −1).
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(a) Find the probability that x2 +U x + V = 0 has at least one real root.
(b) Find the expected value of the larger root given that there is at least one real root.
(c) Find the probability that x2 + (U + V )x +U + V = 0 has at least one real root.

34 Let Sn =
∑n

1 Xi be a random walk with S0 = a > 0, such that P(Xi = −1) = q,P(Xi = +2) =
p, p + q = 1. Let Ta0 be the time at which the walk first visits zero. Show that if p ≤ 1

3 then
P(Ta0 <∞) = 1, but if p > 1

3 then P(Ta0 <∞) = ra < 1. What is r?
35 Casualties arriving at a certain hospital require surgery, independently of one another, with proba-

bility 1
4 . What is the probability that, on a day when n casualties arrive, exactly r require surgery?

The number X of casualties arriving on weekdays follows a Poisson distribution with mean 8;
that is, for each day, P{X = n} = e−88n/n!n = 0, 1, 2, . . .
Show that the number requiring surgery each day also follows a Poisson distribution and find its

mean.
Suppose that the situation is identical on Saturdays and Sundays, except that there are on average

only four casualties arriving per day. Find the mean and variance of the number of patients requiring
surgery each week. (Assume that each day’s arrivals are independent and recall Problem 24.)

36 An urn contains m white balls and M − m black balls. Balls are chosen at random without replace-
ment. Show that the probability pk of choosing exactly k white balls in n choices (0 ≤ k ≤ m) is
given by

pk =
(

M
n

)−1(
m
k

)(
M − m
n − k

)
.

Define a random variable X = X1 + X2 + · · · + Xn , where Xi = 0 or 1 according as the i th ball
is black or white. Show that

P(X = k) = pk,

P(Xi = 1) = m/M,

P(Xi = 1, X j = 1) = m(m − 1)
M(M − 1) , i �= j.

By considering E(X ),E(X2), or otherwise, find the mean and variance of the distribution given
by pk .

37 Conditional Gambler’s Ruin An optimistic gambler seeks to know the expected duration of
the game assuming that he wins. As usual, he plays a sequence of fair wagers losing or gaining $1
each time. The game stops as soon as he has $0 or $K . Initially, his fortune is $k(< $K ), the event
that he stops with $K is Vk , and Dk is the duration of the game. Let δk = E(Dk |Vk). Show that for
1 < k < K ,

(k + 1)δk+1 − 2kδk + (k − 1)δk−1 + 2k = 0.
Write down two boundary conditions at k = 1 and k = K , and deduce that

E(Dk |Vk) = 1

3
(K 2 − k2), 1 ≤ k ≤ K .

38 Let (Sn ; n ≥ 1) be a simple random walk, and let M be its maximum, M = maxn≥1{Sn}.
(a) If S0 = 0, and p < q , show that m has a geometric distribution and find its mean.
(b) If S0 is a random variable with distribution P(S0 = −k) = αβk ; k = 0, 1, 2, . . . find the distri-

bution of M .
In this case, what is the conditional distribution of S0 given M?

39 Let X1, X2, and X3 be independent geometric random variables with parameters 1− p1, 1− p2,
and 1− p3, respectively.
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(a) Show that

P(X1 < X2 < X3) = (1− p1)(1− p2)p2 p 2
3

(1− p2 p3)(1− p1 p2 p3)
.

(b) Find P(X1 ≤ X2 ≤ X3).
(c) Three players, A, B, and C , roll a fair die in turn, that is, in the order ABCABCA . . . Show

that the probability that A throws the first six, B the second six, and C the third six, is 216
1001 .

40 Matching Once again, n letters with n matching envelopes are inadvertently placed at random
in the envelopes. Let X be the number of letters that are in their matching envelope. Find E(X ) and
var(X ), and show that

E(X (X − 1) . . . (X − k + 1)) =
{
1 k ≤ n
0 k > n.

41 Let n be a prime number greater than two, and let X and Y be independently and uniformly
distributed on {0, 1, . . . , n − 1}. For all r such that 0 ≤ r ≤ n − 1, define Zr = X + rY , modulo
n. Show that the random variables (Zr ; 0 ≤ r ≤ n − 1) are pairwise independent.
Is this true if n is not prime?

42 Jensen’s Inequality If g(.) is convex, show that g(E(X |Y )) ≤ E(g(X )|Y ).
43 Polya’s urn (Example 2.7) revisited. A bag initially contains r red and b blue balls, rb > 0.

A ball is drawn at random, its colour noted, and it is returned to the bag together with a new ball of
the same colour. Let R(n) be the number of red balls in the bag after n such operations. Let T be
the number of balls drawn until the first blue ball appears.
(a) Show that R(n)/{n + b + r} is a martingale.
(b) Deduce that E{(b + 1)(b + r )/(T + r + b)} = b.

44 Optional Stopping. Let X (n) be a martingale, and T a stopping time for X (n) such that
P(T <∞) = 1. Prove that EX (T ) = EX (0) if either of (a) or (b) holds.
(a) E(supn |X (n∧T )|) <∞.
(b) E|X (T )| <∞, and E{X (n)I (T > n)} → 0 as n →∞.



6
Generating Functions and Their Applications

Everything future is to be estimated by a wise man, in proportion to the
probability of attaining it, and its value when attained.

Samuel Johnson, [The Rambler, 20]

This chapter deals with a special subject and may be omitted on a first reading. Its contents
are important and useful, but are not a prerequisite for most of the following chapters.

6.1 Introduction

In Chapter 3, we found that generating functions can provide elegant and concise methods
for handling collections of real numbers. The mass function of an integer valued random
variable is such a collection, and so we may anticipate (correctly as it turns out) that the
following generating function will be useful.

(1) Definition The probability generating functionG(s) of the integer valued random
variable X is defined by

G(s) =
∑

k

P(X = k)sk . �

Because all random variables in this chapter are integer valued, this is not again mentioned
explicitly.

(2) Example Let X be uniformly distributed in {−a,−a + 1, . . . , b − 1, b}, wherea, b >
0. Then provided s �= 1,

G(s) =
b∑

k=−a

1

a + b + 1sk = s−a − sb+1

(a + b + 1)(1− s)
.

�

Notice that, by Theorem 4.3.4, we have from Definition 1 of G(s) that

G(s) = E(s X );(3)

232
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this is a particularly useful representation of G(s), and we use it a great deal in what
follows.
For example, suppose we seek the probability generating function of Y = X + a, where

a is constant. Using (3), we can write

GY (s) = E(sY ) = E(s X+a) = saG X (s).

We will see many other applications of (3) later. When X is defective (that is, when
P(|X | <∞) < 1), the representation (3) can still be used, provided that we remember
that the expectation is taken over the finite part of the distribution of X .
WewriteG X (s)whenwewant to stress the role of X ; and for brevity,G X (s) is sometimes

known as the p.g.f. of X .
Obviously, if P(|X | <∞) = 1, then

G X (1) =
∑

k

P(X = k) = 1.

To sum up, if X is finite with probability 1, then G X (s) is a power series in s with
nonnegative coefficients such that G X (1) = 1.
Conversely, if G(s) is a power series with nonnegative coefficients such that G(1) =

1, then G is the p.g.f. of some integer valued random variable X , which is finite with
probability 1.

(4) Example LetG(s) = (a + bs)/(1− cs).When isG the p.g.f. of a finite integer valued
random variable X?

Solution First, we note that if X is finite then G(1) = 1, and so a + b + c = 1. Now
we need to consider various cases.

(i) If 0 ≤ c < 1, then we can write, for any n,

G(s) = (a + bs)(1+ cs + · · · + (cs)n)+ a + bs

1− cs
(cs)n+1

= a+ (b+ ac)s+ (b+ ac)cs2+ · · · + (b+ ac)cn−1sn + bcnsn+1+ a + bs

1− cs
(cs)n+1.

For |s| < c−1, we can let n →∞ to obtain a series expansion of G(s). This has the
required properties of a p.g.f. if 1 ≥ a ≥ 0 and 1 ≥ b + ac ≥ 0. In this case, X is a
nonnegative random variable.

(ii) If c = 1, then a = −b = 1. In this case X is zero with probability 1.
(iii) If c > 1, then we can use a method similar to that of (i) to obtain a different series

expansion of G(s), that is:

G = −b

c
− ac + b

c2s
− ac + b

c3s2
− . . .

This is a p.g.f. if −c ≤ b ≤ 0 and −c2 ≤ b + ac ≤ 0. In this case, X is nonpositive.
(iv) If c < 0, then a = 1 and b = c. In this case, X is zero with probability 1.
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See Example 14 for more insight into the nature of this probability generating
function. �

Another useful theorem is 3.6.7, which we restate here.

(5) Theorem Let X be a random variable with mass function f (k), and suppose that
a ≤ X ≤ b. Let

tn = P(X > n) =
b∑

k= n+ 1
f (k).

Define the tail generating function

T (s) =
b−1∑

a
sntn. Then, whenever both sides exist,

(1− s)T (s) = sa − G(s).(6)

In particular, if X ≥ 0, then

(1− s)T (s) = 1− G(s).(7)

Proof The left-hand side of (7) may be written as

(1− s)
b−1∑
n=a

P(X > n)sn =
b−1∑
n= a

snP(X > n)−
b−1∑
n= a

sn+1P(X > n)

=
b−1∑

n= a+1
sn(P(X > n)−P(X > n− 1))+ saP(X > a)

− sbP(X > b− 1)

= sa −
b∑
a

P(X = n)sn = sa − G(s),

as required. �

(8) Example 2 Revisited Here X is uniform on {−a, . . . , b}, and so

TX (s) = s−a

1− s
− (s−a − sb−1)
(a + b + 1)(1− s)2

= (1− s)(a + b)s−a + sb+1 − s−a+1

(a + b + 1)(1− s)2
. �

More generally, we can show that the identity (7) holds for unbounded nonnegative random
variables. One way of doing this is to observe that the coefficients of sn on each side are
equal for all n, and then use a standard theorem about power series.

(9) Example Let X be geometric with mass function f (k) = (1− q)qk−1; k ≥ 1, 0 <
q < 1. Then

G(s) =
∞∑

k= 1
(1− q)qk−1sk = (1− q)s

1− qs
,
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and

(1− s)T (s) = 1− (1− q)s

1− qs
= 1− s

1− qs
.

Thus,

T (s) = 1

1− qs
. �

For future reference, we record the following trivial corollary of (7); that is, if P(0 ≤ X <

∞) = 1, then
∞∑

j = 0
s jP(X ≤ j) = G X (s)

1− s
.(10)

It is useful to bear in mind that conditional probability mass functions also have generating
functions. Thus, if A is some event, we can write P(X = k|A) = f (k|A) and define the
generating function

G X |A(s) =
∑

k

f (k|A)sk = E(s X |A),

in the usual notation.
If (Ai ; i ≥ 1) is a collection of disjoint events with

⋃
i Ai = �, then it is easy to show

that

E(s X ) =
∑

i

E(s X |Ai )P(Ai ).(11)

This result is often useful in finding E(s X ).
If the random variables X and Y are jointly distributed, then in like manner we have

E(s X |Y = y) =
∑

k

skP(X = k|Y = y) =
∑

k

sk f (k, y)

fY (y)
; fY (y) > 0.(12)

As y runs over all the possible values of Y , this yields the conditional p.g.f. of X given Y

G X |Y (s) = E(s X |Y ).(13)

We therefore have the useful result:

G X (s) = E(G X |Y (s)) = E(E(s X |Y )).

(14) Example 4 Revisited Suppose we have two biased coins; the first shows a head with
probability a, and the second shows a head with probability 1− c. The first coin is tossed
and, if it shows a tail then the second coin is tossed repeatedly until a head is shown. Let
X be the number of times the second coin is tossed. What is G X (s)?

Solution Let H be the event that the first coin shows a head. If H occurs then
X = 0, so E(s X |H ) = 1. If H c occurs, then X is geometric with fX (k) = (1− c)ck−1;
k ≥ 1. Hence, by Example 9,

E(s X |H c) = (1− c)s

1− cs
.
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Therefore, by (11),

E(s X ) = a + (1− a)(1− c)s

1− cs
= a + (1− a − c)s

1− cs
.

Looking back, we see that this is the generating function considered in Example 4, case (i).
It follows that we can think of (a + bs)/(1− cs) as being the p.g.f. of a random variable
X , which is either zero with probability a, or with probability 1− a is a geometric random
variablewith parameter c. Such randomvariables arise quite naturally in applications. �

(15) Example Abiased coin is tossed repeatedly until the first occasionwhen r consecutive
heads have resulted. Let X be the number of tosses required. Find E(s X ).

Solution We suppose that the chance of a head is p, and note that if the first i tosses
are i − 1 heads followed by a tail, then the further number of tosses required has the same
mass function as X . Hence, with an obvious notation:

E(s X |Hi−1T ) = siE(s X ); 1 ≤ i ≤ r.

Also, E(s X |Hr ) = sr . It follows that

E(s X ) =
r∑

i=1
qpi−1siE(s X )+ pr sr

and so

E(s X )

(
1− qs

r−1∑
i = 0
(ps)i

)
= pr sr .

Hence,

E(s X ) = pr sr (1− ps)

1− s + qpr sr+1 .

We discover different methods for proving this later. �

6.2 Moments and the Probability Generating Function

For the remainder of this chapter, random variables are assumed to be nonnegative unless
stated otherwise. In this case, whenever |s| ≤ 1,

|G X (s)| =
∣∣∣∣
∞∑
0

f (k)sk

∣∣∣∣ ≤
∞∑
0

f (k)|sk | ≤
∞∑
0

f (k) = 1.

This simple property has enormous consequences for the p.g.f. G(s). These are fully
explored in textbooks on calculus and analysis, so we merely state the most important
relevant results here. First, we state without proof:

(1) Theorem The function G(s) is differentiable for |s| < 1 and its derivative is

G ′(s) =
∞∑

n=1
n f (n)sn−1 <∞.
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At s = 1,

G ′(1) = lim
s↑1

∞∑
n=1

n f (n)sn−1(2)

whether the limit is finite or not. More generally, it follows that for k ≥ 1,

G(k)(s) =
∞∑

n= k

n!

(n − k)!
f (n)sn−k, |s| < 1(3)

and

G(k)(1) = lim
s↑1

∞∑
n= k

n!

(n − k)!
f (n)sn−k .(4)

Second, it follows that G(s) determines the collection ( f (k); k ≥ 0).

(5) Theorem (Uniqueness) Let X and Y have generating functions G X (s) and GY (s). If
for some G(s), we have

G X (s) = GY (s) = G(s) for |s| < 1,
then X and Y have the same mass function.

Proof This follows from (3) because both fX (k) and fY (k) are given by

fX (k) = G(k)(0)

k!
= fY (k)

for all k. �

Third, it follows that we can obtain all the moments of X from G(s).

(6) Theorem If X has p.g.f. G(s), then

E(X ) = G ′(1);(7)

more generally, the kth factorial moment is

µ(k) = E(X (X − 1) . . . (X − k + 1)) = G(k)(1);(8)

and, in particular,

var (X ) = G ′′(1)+ G ′(1)− (G ′(1))2.(9)

Proof Equation (7) is a trivial consequence of (2), and (8) follows from (4). To see (9),
write

var (X ) = E(X − E(X ))2 = E(X2)− (G ′(1))2(10)
= E(X (X − 1)+ X )− (G ′(1))2,

as required. �
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Just as (10) gives the second moment and second central moment in terms of the first
two factorial moments; likewise, σk and µk may be obtained in principle in terms of
(µ(k); k ≥ 1).

(11) Example: Binomial p.g.f. Let X have a binomial distribution with parameters n and
p. Then, with q = 1− p as usual,

G(s) =
n∑
0

(n

k

)
qn−k pksk = (q + ps)n.

Now using (8), we have

µ(k) =



n!

(n − k)!
pk 1 ≤ k ≤ n,

0 k > n.

Hence, by (9), var (X ) = n(n − 1)p2 + np − (np)2) = npq . �

(12) Example: Poisson p.g.f. Let X have a Poisson distribution with parameter λ.
Then

G(s) =
∞∑
0

e−λ
λk

k!
sk = e+λ(s−1).

Hence, we find that µ(k) = λk , for k ≥ 1. �

Moments can also be obtained from the tail generating function T (s) defined in Theo-
rem 6.1.5.

(13) Theorem Let X be a random variable with

T (s) =
∞∑
0

skP(X > k).

Then

E(X ) = T (1)(14)

and, if E(X ) <∞,

var (X ) = 2T ′(1)+ T (1)− T (1)2.(15)

Proof By L’Hôpital’s rule,

T (1) = lim
s↑1

1− G(s)

1− s
= G ′(1) = E(X ), by (7).

Likewise, differentiating (6.1.7) yields

T ′(1) = lim
s↑1

(
1− G(s)

(1− s)2
− G ′(s)
1− s

)
= G ′′(1)

2
, by L’Hôpital’s rule,

and the result follows using Theorem 6. �
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More generally, a straightforward extension of this theorem shows that

µ(k) = kT (k−1)(1).(16)

(17) Example: Geometric p.g.f. Let X have a geometric distribution with mass function
f (k) = (1− q)qk−1, k ≥ 1; 0 < q < 1. Then, by Example 6.1.9,

T (s) = 1

1− qs
.

Hence, by Theorem 13,

E(X ) = T (1) = 1

1− q
,

and likewise

var (X ) = 2T ′(1)+ T (1)− T (1)2 = q

(1− q)2
.

From (16),

µ(k) = kqk−1

(1− q)k
. �

We conclude this section with a note about defective probability mass functions.
If X is a nonnegative random variable such that

∑∞
k= 0 f (k) < 1, then it still makes sense

to define the generating function G(s) =∑∞
k= 0 sk f (k). Furthermore, if

∑
k k f (k) <∞,

then G ′(1) =∑
k k f (k). However, this is not now the expectation E(X ), but rather the

“defective” expectation

E(X I {X <∞}) = E(X ; X <∞) = E(X |X <∞)P(X <∞),
where I {X <∞} is the indicator of the event that X is finite.
In the general case, we have likewise

G ′(1) = E(X ||X | <∞)P(|X | <∞)
when the expectation exists. In such cases, it can be of interest to calculate

E(X |X <∞) = G ′(1)
G(1)

.

6.3 Sums of Independent Random Variables

If X and Y are independent, then the mass function of their sum Z = X + Y is

fZ (k) =
∑

j

fX ( j) fY (k − j).(1)

Practical folk (such as statisticians and the like) are frequently interested in the sum of n
independent random variables:

S =
n∑
1

Xi .(2)
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The prospect of performing the summation in (1) on n − 1 occasions to find
fS(k) is not an attractive one. The next theorem renders it unnecessary in many important
cases.

(3) Theorem (a) Let X1 and X2 be independent with generating functions G1(s) and
G2(s), respectively. Then the sum Z = X1 + X2 has generating function

G(s) = G1(s)G2(s).(4)

(b) More generally, if (Xi ; 1 ≤ i ≤ n) are independent with generating functions
(Gi (s); 1 ≤ i ≤ n), then the sum Z =∑n

1 Xi has generating function

G Z (s) =
n∏

i = 1
Gi (s).

Proof (a) Because X1 and X2 are independent, s X1 and s X2 are also independent. Hence,

G Z (s) = E(s X1+X2 ) = E(s X1 )E(s X2 ) by Theorem 5.3.8
= G1(s)G2(s).

Part (b) is proved similarly. �

Example: Binomial Sum Let X and Y be independent and binomially distributed
with parameters (m, p) and (n, p), respectively. Then recalling Example 6.2.11, we have

G X+Y (s) = E(s X+Y ) = E(s X )E(sY ) by independence

= (1− p + ps)m+n.

Hence, X + Y is binomially distributed with parameters m + n and p, using
Theorem 6.2.5, the uniqueness theorem. �

(5) Example Let (Xi ; i ≥ 1) be independent Poisson random variables having respective
parameters (λi ; i ≥ 1). Find the mass function of Z =∑n

i=1 Xi .

Solution Reproducing the argument of the above theorem, we have:

G Z (s) = E(s Z ) =
n∏

i=1
E(s Xi ) by independence

= exp
(

n∑
i=1

λi (s − 1)
)

by Example 6.2.12.

Thus, Z is Poisson with parameter
∑n

i=1 λi , by the uniqueness theorem. �
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(6) Example Let (Xi ; i ≥ 1) be independently and uniformly distributed on {1, 2, . . . , n}.
Let Sk =

∑k
i=1 Xi , and define

Tn = min {k: Sk > n}.
(Thus, Tn is the smallest number of the Xi required to achieve a sum exceeding n.) Find
the mass function and p.g.f. of Tn , and hence calculate E(Tn) and var (Tn).

Solution First, we observe that Tn ≥ j + 1 if and only if Sj ≤ n. Therefore,

P(Tn ≥ j + 1) = P(Sj ≤ n).(7)

Now, by independence,

E(zSj ) = (E(zX1 )) j = 1

n j

(
z − zn+1

1− z

) j

by Example 6.1.2.

Hence, by Example 6.1.9,
∞∑

k= j

zkP(Sj ≤ k) =
( z

n

) j (1− zn) j

(1− z) j+1 .(8)

Equating coefficients of zn on each side of (8) gives

P(Sj ≤ n) = 1

n j

(
n

j

)
= P(Tn ≥ j + 1) by (7).(9)

Hence,

P(Tn = j) = 1

n j−1

(
n

j − 1
)
− 1

n j

(
n

j

)
.

From (9), Tn has tail generating function
n∑

j = 0
z jP(Tn > j) =

n∑
j = 0

( z

n

) j
(

n

j

)
=

(
1+ z

n

)n
.

Hence, from Theorem 6.2.13,

E(Tn) =
(
1+ 1

n

)n

(10)

and

var (Tn) = 2
(
1+ 1

n

)n−1
+
(
1+ 1

n

)n

−
(
1+ 1

n

)2n

.(11)

Finally, Tn has p.g.f.

G(z) = 1+ (z − 1)
(
1+ z

n

)n
.(12) �

Generating functions become even more useful when you are required to consider the sum
of a random number of random variables.
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(13) Theorem:RandomSum Let N and (Xi ; i ≥ 1)be independent random variables,
and suppose that N is nonnegative and that for all i

E(s Xi ) = G(s).(14)

Then the sum Z =∑N
i=1 Xi has generating function

G Z (s) = G N (G(s)).

Proof By conditional expectation,

E(s Z ) = E(E(s Z |N )) = E(E(s X1 ) . . .E(SX N )) by independence
= E(G(s)N ) by (14)
= G N (G(s))

by Definition 6.1.3, and the result follows. �

(15) Example You toss a fair coin repeatedly. Each time it shows a tail you roll a fair die,
when the coin first shows a head you stop. What is the p.g.f. of the total sum of the scores
shown by the rolls of the die?

Solution As you know by now, the number N of tails shown has mass function
fN (k) = ( 12 )k+1; k ≥ 0, with generating function

G N (s) = 1

2− s
.

The score shown by each die has p.g.f.

G X (s) = 1

6

s(1− s6)

1− s
,

and so the p.g.f. of the total is given by Theorem 13 as

G(s) =
(
2− 1

6

s(1− s6)

1− s

)−1
. �

(16) Example Let Z =∑N
i=1 Xi , where

fX (k) = −k−1 pk

log(1− p)
; k ≥ 1, 0 < p < 1

and fN (k) = λke−λ/k!; k ≥ 1, 0 < λ. Show that Z has a negative binomialmass function.

Solution It is easy to show that

G X (s) = log(1− sp)

log(1− p)
; G N (s) = eλ(s−1).
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Z10 = 0

Z9 = 1

Z8 = 2

Z7 = 1

Z6 = 1

Z5 = 3

Z4 = 1

Z3 = 2

Z2 = 2

Z1 = 1

Z0 = 1

Figure 6.1 A realization of a branching process. The orientation of the diagram explains
the name.

Hence,

G Z (s) = e−λ exp(λG X (s)) =
(
1− p

1− ps

)−λ(log(1−p))−1

,

which is the p.g.f. of a negative binomial mass function. �

(17) Example: Branching A collection of particles behaves in the following way. At
time n = 0, there is one particle. At time n = 1, it is replaced by a random num-
ber X of particles, where X has mass function f (k), k ≥ 0. At every subsequent time
n = 2, 3, . . . , each particle in existence at that time is replaced by a random num-
ber of new particles, called its family. All family sizes are independent, and they
all have the same mass function as the first family X . [An example is given in Figure 6.1.]
Let the number of particles in existence at time n be Zn . FindE(s Zn ) and lim

n→∞P(Zn = 0).

Solution Let G(s) = E(s X ) and Gn(s) = E(s Zn ). Let the family sizes of the parti-
cles existing at time n be (X j ; 0 ≤ j ≤ Zn). Then we obtain the attractive and useful
representation

Zn+1 =
Zn∑
j=0

X j

and, by Theorem 13,

Gn+1(s) = Gn(G(s)).
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(This basic argument is used repeatedly in the theory of branching processes.) Hence,
Gn+1(s) is the (n + 1)th iterate of G(.), that is to say:

Gn+1(s) = G(G(. . .G(s) . . .)), n ≥ 0.(18)

Now let P(Zn = 0) = ηn , and define η to be the smallest nonnegative root of the equation

G(s) = s(19)

We now show that

lim
n→∞ ηn = η.(20)

First, we consider three trivial cases:

(i) If f (0) = 0 then ηn = Gn(0) = 0 = η.
(ii) If f (0) = 1 then ηn = Gn(0) = 1 = η.
(iii) If f (0)+ f (1) = 1, with f (0) f (1) �= 0, then

ηn = Gn(0) = 1− ( f (1))n → 1 = η.

Thus, (20) is true in each case. In what follows, we exclude these cases by requiring that
0 < f (0) < f (0)+ f (1) < 1.
Now note that {Zn = 0} ⊆ {Zn+1 = 0} and so, by Example 1.4.11,

ηn ≤ ηn+1 ≤ 1.
Hence, limn→∞ ηn exists; let us denote it by λ. By (18), Gn+1(0) = G(Gn(0)); now letting
n →∞ and using the continuity of G(s), we find that λ is a root of (19):

λ = G(λ).

However, if for some n, ηn < η then, because G(s) is increasing,

ηn+1 = G(ηn) ≤ G(η) = η.

But η0 = G(0) ≤ G(η) = η, and so ηn < η for all n. Hence, λ ≤ η and so λ = η. �

Once again, we conclude with a note about defective random variables. If X and Y are
defective, then they are independent ifP(X = i, Y = j) = P(X = i)P(Y = j) for all finite
X and Y . Hence, we can still write

G X+Y (s) = G X (s)GY (s),

and we can denote this by

E(s X+Y ) = E(s X )E(sY ).

if we remember that the expectation is taken only over the finite part of the distribution.
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6.4 Moment Generating Functions

The moments (µk ; k ≥ 1) of a random variable X also form a collection of real numbers,
so we may also expect their generating functions to be useful. In this case, it is convenient
to use the exponential generating function of the collection (µk ; k ≥ 1).

(1) Definition Let the random variable X have finite moments µk = E(Xk) for all
k ≥ 1. Then the moment generating function (or m.g.f.) of X is the function MX (t)
given by

MX (t) =
∞∑

k=0

µk tk

k!
.(2) �

If X takes only a finite number of values, then we easily obtain the convenient represen-
tation

MX (t) =
∞∑

k=0
E
(Xk)t k

k!
= E

( ∞∑
k=0

(Xt)k

k!

)
= E(eXt ).(3)

More generally, (3) holds provided the moments µk do not get too large as k increases.
For example, if

∑∞
k=0 |µk |/k! <∞, then MX (t) exists for |t | < 1, and we can use the

equivalent of Theorem 6.2.1. This yields

µk = M (k)
X (0).(4)

From (3), we find that

MX (t) = G X (e
t ),(5)

where G X (s) is the p.g.f. of X .

(6) Example Let X have a negative binomial distribution with mass function f (k) =
( n+k−1

k )qk pn, k ≥ 0. By the negative binomial expansion,

G(s) =
∞∑

k=0
pn

(
n + k − 1

k

)
qksk =

(
p

1− qs

)n

, |s| < q−1.

Then X has moment generating function

M(t) =
(

p

1− qet

)n

, t < − log q. �

Let us consider an example in which X may take negative integer values.

(7) Example Let X have mass function

f (k) = 1

2
q |k|−1(1− q); k = ±1,±2, . . . ,
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where 0 < q < 1. Then X has p.g.f.

G(s) =
∑
k �=0

sk 1

2
q |k|−1(1− q)

= 1

2
(1− q)

(
s

1− qs
+ 1

s − q

)
, q < |s| < q−1.

Hence, X has m.g.f.

M(t) = 1

2
(1− q)

(
et

1− qet
+ 1

et − q

)
, log q < t < − log q.

In this case, M(t) exists in an interval including the origin, and (4) holds. �

The factorial moments (µ(k); k ≥ 1) also have a generating function, which is related to
the probability generating function as follows:

∑
k

µ(k)t k

k!
=

∑
k

E
(X (X − 1) . . . (X − k + 1))t k

k!
(8)

=
∑

k

∞∑
n= k

n!

(n − k)!

P(X = n)

k!
t k

=
∞∑

n= 0
P(X = n)

n∑
k=0

(n

k

)
t k

=
∑

n

P(X = n)(1+ t)n = G X (1+ t).

The change in the order of summation is justified because the terms in the sum are all
nonnegative.
Now let us make the important observation that both of these moment generating func-

tions are useful for dealing with sums of independent random variables for essentially the
same reasons that made the p.g.f. so useful. To see this, let X and Y be independent, and
set Z = X + Y . Then

MZ (t) = E(et(X+Y )) = MX (t)MY (t) by independence.(9)

Likewise,

G Z (1+ t) = E((1+ t)Z ) = G X (1+ t)GY (1+ t).(10)

Finally, we record the existence of yet another function that generates the moments of X ,
albeit indirectly.

(11) Definition If the function

κ(t) = log(E(eXt )) = log(MX (t))
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can be expanded in powers of t , in the form

κ(t) =
∞∑

r=1
κr tr/r !,(12)

then it is called the generating function of the cumulants (κr ; r ≥ 1). �

(13) Example If X is Poisson with parameter λ, then

log (MX (t)) = log (exp[λ(et − 1)]) = λ(et − 1) =
∞∑

r=1

λ

r !
tr .

Hence, for all r, κr = λ. �

6.5 Joint Generating Functions

Generating functions can be equally useful when we want to consider the joint behaviour
of a number of random variables. Not surprisingly, we need a joint generating function.

(1) Definition A random vector (X1, . . . , Xn), with joint mass function f (x1, . . . , xn),
has a joint probability generating function

G X (s) = G X1, . . . , Xn (s1, . . . , sn) =
∑

x1,x2,...,xn

sx1sx2 . . . sxn f (x1, . . . , xn). �

By Theorem 5.3.1, we obtain the following useful representation of G,

G X (s) = E
(

s X1
1 s X2

2 . . . s Xn
n

)
= E

(
n∏

i=1
s Xi

i

)
.

(2) Example A coin shows heads with probability p or tails with probability q = 1− p.
If it is tossed n times, then the joint p.g.f. of the number X of heads and the number of
tails is

G(s, t) = E(s X tY ) = tnE
((s

t

)X
)
= tn

(
q + p

s

t

)n
because X is binomial,

= (qt + ps)n. �

The fact that G is the nth power of (qt + ps) suggests that independence could have been
used to get this result. We use this idea in the next example.

(3) Example: de Moivre trials Each of a sequence of n independent trials results in a
win, loss, or draw, with probabilities α, β, and γ respectively. Find the joint p.g.f. of the
wins, losses, and draws, the so-called trinomial p.g.f.

Solution LetWi , Li , and Di be the respective indicators on the i th trial of a win, loss,
or draw. Then

E(x Wi yLi zDi ) = αx + βy + γ z.
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But the required joint p.g.f. is

G(x, y, z) = E
(

x
∑n

1 Wi y
∑n

1 Li z
∑n

1 Di

)
= [E(x Wi yLi zDi )]n by independence,

= (αx + βy + γ z)n. �

Knowledge of the joint p.g.f. entails knowledge of all the separate p.g.f.s because, for
example, if X and Y have joint p.g.f. G(s, t), then

G X (s) = E(s X ) = E(s X1Y ) = G(s, 1).(4)

Likewise,

GY (t) = G(1, t).(5)

Indeed, we can quickly obtain the p.g.f. of any linear combination of X and Y ; for example,
let Z = a X + bY , then

E(s Z ) = E(saX+bY ) = E(saX sbY ) = G(sa, sb).(6)

Further, the joint generating function also provides us with the joint moments when they
exist, in the same way as G X (s) provides the moments of X .

(7) Example Let X and Y have joint p.g.f. G(s, t) and suppose that X and Y have finite
variance. Then E(XY ) exists (by the Cauchy–Schwarz inequality) and

∂2G

∂s∂t
= ∂2

∂s∂t
E(s X sY ) = E(XY s X−1tY−1).

Hence,

E(XY ) = ∂2G

∂s∂t

∣∣∣∣
s=t=1

.(8)

Likewise,

E(X ) = ∂G

∂s

∣∣∣∣
s=t=1

, and E(Y ) = ∂G

∂t

∣∣∣∣
s=t=1

.

Quite often, we write Gst (s, t) for ∂2G/∂s∂t , and so on; in this form, the covariance of X
and Y is given by

cov (X, Y ) = Gst (1, 1)− Gs(1, 1)Gt (1, 1).(9) �

(10) Example 5.11 Revisited: Golf Recall that you play n holes of golf, each of which you
independently win, lose, or tie, with probabilities p, q , and r , respectively. The numbers
of wins, losses, and ties are X , Y , and Z , respectively, with X + Y + Z = n.

(a) Find ρ(X, Y ). (b) Find var (X − Y ).

Solution (a) By Example 3 above, we calculate

E(x X yY zZ ) = (px + qy + r z)n = G(x, y, z) say.
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Hence,

E(X ) = Gx (1, 1, 1) = np,

and

var (X ) = Gxx (1, 1, 1)+ Gx (1)− (Gx (1))
2 = np(1− p),

and

E(XY ) = Gxy(1, 1, 1) = n(n − 1)pq.

Therefore, the correlation between X and Y is

ρ(X, Y ) = cov (X, Y )

(var (X )var (Y ))
1
2

(11)

= n(n − 1)pq − n2 pq

(n2 p(1− p)q(1− q))
1
2

= −
(

pq

(1− p)(1− q)

) 1
2

.

You should compare the labour in this calculation with the more primitive techniques of
Example 5.11.
(b) Using (6) with a = 1, b = −1, we have, on setting W = X − Y ,

GW (s) = E(s X−Y ) = G(s, s−1, 1) = (ps + qs−1 + r )n.

Hence, dGW/ds = n(p − qs−2)(ps + qs−1 + r )n−1, and d2GW
ds2 = n(n − 1)(p − qs−2)2

(ps + qs−1 + r )n−2 + 2nqs−3(ps + qs−1 + r )n−1.
Therefore,

var (W ) = n(n − 1)(p − q)2 + 2nq + n(p − q)− n2(p − q)2

= n(p + q − (p − q)2). �

Finally, we record that joint generating functions provide a useful characterization of
independence.

(12) Theorem Let X and Y have joint p.g.f. G(s, t). Then X and Y are independent if
and only if

G(s, t) = G(s, 1)G(1, t).(13)

Proof If (13) holds, then equating coefficients of s j t k gives

P(X = j, Y = k) = P(X = j)P(Y = k),

as required. The converse is immediate by Theorem 5.3.8. �

(14) Example 5.5.8 Revisited: Eggs Recall that the number X of eggs is Poisson with
parameter λ, and eggs hatch independently with probability p. Let Y be the number that
do hatch, and Z the number that do not. Show that Y and Z are independent, and also that
ρ(X, Y ) = √p.
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Solution Conditional on X = x , the number Y of hatchings is binomial with p.g.f.

E(sY |X = x) = (ps + 1− p)x .(15)

Hence, by conditional expectation,

E(yY zZ ) = E(yY zX−Y ) = E
(

zXE
(( y

z

)Y
|X

))

= E
(

zX
( py

z
+ 1− p

)X
)

by (15)

= exp (λ(py + (1− p)z − 1)) since X is Poisson,

= eλp(y−1)eλ(1−p)(z−1).

Hence, Y and Z are independent by Theorem 12. Furthermore, we see immediately that
Y is Poisson with parameter λp.
To find ρ(X, Y ), we first find the joint p.g.f. of X and Y , again using conditional

expectation. Thus,

E(s X yY ) = E(s XE(yY |X )) = E(s X (py+ 1− p)X )= exp (λ(s(py+ 1− p)− 1)).
Hence, using (7), E(XY ) = λ2 p + λp, and so, using the first part, ρ(X, Y ) = √p. You
should compare this with the method of Example 5.5.8. �

(16) Example: Pairwise Independence Independent random variables X and Y each take
the values +1 or −1 only, and P(X = 1) = a, with P(Y = 1) = b. Let Z = XY . Show
that there are values of a and b such that X, Y, and Z are pairwise independent.

(17) Solution Consider the joint probability generating function of X and Z .

G(s, t) = E(s X t Z ) = E(s X t XY ) = E(E(s X t XY |X ))

= E

(
bs X t X + (1− b)

s X

t X

)

= a
(

bst + (1− b)
s

t

)
+ (1− a)

(
b

st
+ (1− b)

t

s

)

= abs2t2 + a(1− b)s2 + (1− a)(1− b)t2 + b(1− a)

st

= 1

st

(
as2(bt2 + 1− b)+ (1− a)(1− b)

b
(bt2 + 1− b)

+ b(1− a)− (1− b)2(1− a)b−1
)
,

which factorizes into a product of a function of s and a function of t if

b2 − (1− b)2 = 0,
that is if b= 1

2 . In this case, X and Z are independent. If a= 1
2 then Y and Z are in-

dependent, and a= b= 1
2 entails the pairwise independence of X, Y , and Z . �
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6.6 Sequences

In Section 4.5, we defined the convergence of a sequence of mass functions. This can be
usefully connected to the convergence of corresponding sequences of generating functions.
For sequences of probability generating functions, we have the following result, which we
give without proof.

(1) Theorem Let f (k) be a probability mass function with generating function

G(s) =
∞∑
0

sk f (k),

and suppose that for each n ≥ 1, fn(k) is a probability mass function with generating
function

Gn(s) =
∞∑
0

sk fn(k).

Then, as n →∞, fn(k)→ f (k) for all k, if and only if Gn(s)→ G(s) for all 0 < s < 1.

Wenowuse this to prove a result,whichwehave already shownbymore primitivemethods.

(2) Example Let (Xn; n ≥ 1) be a sequence of random variables such that Xn has a
binomial distribution with parameters n and λ/n, λ > 0. Then

E(s Xn ) =
(
1− λ

n
+ λ

n
s

)n

→ eλ(s−1) as n →∞.

This is the p.g.f. of a Poisson random variable, and so as n →∞,
P(Xn = k)→ e−λλk/k! �

It is often convenient to work with distributions and moment generating functions. In this
case the following result (for which we give no proof) is useful.

(3) Theorem Continuity Let {Fn(x); n ≥ 1} be a sequence of distribution functions with
corresponding moment generating functions {Mn(t) : n ≥ 1}. If F(x) is a distribution
having corresponding moment generating function M(t), then, as n →∞, Mn(t)→ M(t)
for all t , if and only if Fn(x)→ F(x), whenever F(x) is continuous. �

Additional conditions are required to link the convergence of a sequence of mass functions
or distributions and the convergence of their moments. The following theorem (for which
again we offer no proof) is for a sequence of distributions.

(4) Theorem Suppose that for each n ≥ 1, the distribution Fn(x) has moments
{µ j (n); j ≥ 1}, such that |µ j (n)| < a j <∞.
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(i) Let Fn(x)→ F(x), as n →∞, wherever F(x) is continuous. Then as n →∞, for
each j ,

µ j (n)→ µ j <∞,

and (µ j ; j ≥ 1) are the moments of F(x).
(ii) Conversely, for each j ≥ 1, as n →∞, suppose that

µ j (n)→ µ j <∞,

where {µ j ; 1≤ j} are the moments of a unique distribution F(x). Then, as n→∞,

Fn(x)→ F(x) wherever F(x) is continuous.

There is a corresponding result for sequences of mass functions.

These theorems find applications (for example) in the theory of random graphs, and other
combinatorial problems where moments are more tractable than distributions.

(5) Example Let Xn have the binomial distribution with parameters n and λ/n. Then, by
Example 6.2.11,

µ(k) =
{

n!
(n−k)!

(
λ
n

)k

0

1 ≤ k ≤ n

k > n

}
→ λk,

as n →∞. But, by Example 6.2.12, these are the factorial moments of the Poisson distri-
bution. Hence, as n →∞,P(Xn = k)→ e−λλk/k!, whichwe proved directly in Example
6.6.2, and earlier in Example 4.10. �

(6) Example: Matching Again Recall that we are assigning n distinct letters randomly
to n matching envelopes, and X is the number of matched pairs (of letter and envelope)
that result. Consider the kth factorial moment of X .

µ(k) = E(X (X − 1) . . . (X − k + 1); 1 ≤ k ≤ n.

Let I j be the indicator of the event that the j th envelope contains the matching letter. Then
the sum

S =
∑

j1< j2<...< jk

I j1 . . . I jk(7)

is just the number of ways of choosing a set of size k from the set of matching pairs.
Another way of writing this is as ( X

k ). Hence,

µ(k)

k!
= E

(X (X − 1) . . . (X − k + 1))
k!

(8)

= E
((

X

k

))
= E(S)

=
(

n

k

)
E(I j1 . . . I jk )
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=
(

n

k

)
P (a given set of k all match)

=
(n

k

)(1
n
· 1

n − 1 . . .
1

n − k + 1
)
= 1

k!
.

Hence,

µ(k) =
{
1;

0;

k ≤ n

k > n,

}
→ 1 for all k

as n →∞. But these are the factorial moments of the Poisson distribution with parameter
1, and so as n →∞

P(X = k)→ 1

ek!
.(9) �

We conclude with an example that leads into the material of Chapter 7.

(10) Example 6.3.6 Revisited Recall that the p.g.f. of Tn (where Tn is the number of
uniform random variables required to give a sum greater than n) is

G(s) = 1+ (s − 1)
(
1+ s

n

)n

.

What happens as n →∞? How do you interpret this?
Solution From (6.3.12), as n →∞,

E(sTn )→ 1+ (s − 1)es

or, equivalently,

E(etTn )→ 1+ (et − 1)eet
.

It follows that

P(Tn = k)→ 1

(k − 1)! −
1

k!
.

The limiting factorial moments have a simple form for

E((1+ t)Tn )→ 1+ te1+t = 1+
∞∑

k=1

e

(k − 1)! t
k .

Hence, in the limit µ(k) = ek, k ≥ 1.
To interpret this, we return to the original definition

Tn = min
{

k :
n∑
1

Xi > n

}
= min

{
k :

n∑
1

(
Xi

n

)
> 1

}
,

where each Xi/n is uniformly distributed on {1/n, 2/n, . . . , 1}. However, the limit of
this sequence of uniform mass functions as n →∞ is not the mass function of a discrete
random variable.
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Intuitively, you may feel that it is approaching the distribution of a variable that is
uniformly distributed over the interval [0, 1]. This vague remark can in fact be given a
meaning if we introduce new objects – namely, continuous random variables. This is the
subject of the next two chapters; after much technical development, it can be shown that
the limit of Tn above is indeed the number of independent random variables, each uniform
on [0, 1], required to produce a sum greater than 1.

6.7 Regeneration

Many interesting and important sequences of random variables arise as some process
evolves in time. Often, a complete analysis of the process may be too difficult, and we
seek simplifying ideas. One such concept, which recurs throughout probability, is the idea
of regeneration. Here is an illustration:

(1) Example: Maze You are trying to traverse an unknown labyrinth. You set off at a
constant speed from the clock by the portal, and each time a decision is required you
choose at random from the alternatives. It is dark, and you have no pencil and paper, so a
description of the process (i.e., your route) is impossible.
However, each time you arrive back at the portal, you can look at the clock and record Tr ,

the time at which you return to the clock for the r th time; T0 = 0 say. Now it is clear from
the setup that, when you set off for a second time (at time T1), your chance of following
any given route around the maze is the same as when you set off for the first time. Thus,
the time until your second return, which is T2 − T1, has the same distribution as T1 and is
independent of T1. The same is true of every subsequent interval between successive visits
to the portal. These times (Tn; n ≥ 0) are regenerative in the sense that the distribution
of your paths starting from Tn is the same as the distribution starting from Tm , for all m
and n.
Of course, if you leave pebbles at junctions, or take a ball of string, or make a map, then

this is no longer true. �

Here is another archetypal illustration.

(2) Example: Renewal A machine started at T0 = 0 uses a bit that wears out. As soon
as it wears out, at time T1, it is replaced by a similar bit, which in turn is replaced at T2.
Assuming that the machine performs much the same tasks as time passes, it seems reason-
able to assume that the collection (Xn; n ≥ 1), where Xn = Tn − Tn−1, are independent
and identically distributed. The replacement (or renewal) times are regenerative. �

In fact, we have already used this idea of restarting from scratch; see, for example, Exam-
ples 4.4.9, 4.19, and 5.4.13.
Here is another elementary illustration.

Example Three players A, B, and C take turns rolling a fair die in the order
ABC AB . . . until one of them rolls a 5 or a 6. Let X0 be the duration of the game
(i.e., the number of rolls). Let A0 be the event that A wins, and let Ar be the event that
A wins after the r th roll. Let Wi , i ≥ 1 be the event that the game is won on the i th roll.
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Of course,

A0 = W1 ∪ {W c
1 ∩W c

2 ∩W c
3 ∩ A3},where P(W1) = 1

3
.

Now, as usual, we denote the indicator of any event E by I (E), and so

E(s X0 I (W1)) = 1

3
s.

Next we observe that if the first three rolls fail to yield 5 or 6, then the process regenerates
(in the sense discussed above), so X0 = 3+ X3, where X3 has the same distribution as
X0. Hence,

E(s X0 I (A3)) = E(s3+X3 I (A3)) = s3E(s X0 I (A0)).

Therefore, we can write

E(s X0 I (A0)) = E
(
s X0

{
I (W1)+ I

(
W c
1 ∩W c

2 ∩W c
3 ∩ A3

)})
= 1

3
s + 8

27
s3E(s X0 I (A0)).

Hence,

E(s X0 I (A0)) =
1

3
s

1− 8

27
s3
.

Likewise, in an obvious notation,

E(s X0 I (B0)) =
2

9
s2

1− 8

27
s3
,

and

E(s X0 I (C0)) =
4

27
s3

1− 8

27
s3
.

Hence,

E(s X0 ) = E(s X0 (I (A0)+ I (B0)+ I (C0))) = 4s3 + 6s2 + 9s

27− 8s3
. �

Now we consider a more general case.
Let H be some phenomenon (or happening) that may occur or not at any time n =

1, 2, 3, . . . Let Hn be the event that H occurs at time n, and define Xn to be the time
interval between the (n − 1)th and nth occurrences of H . Thus,

X1 = min {n > 0: Hn occurs}
X1 + X2 = min {n > X1: Hn occurs}
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Figure 6.2 A delayed renewal process. Here, X1 = T1 = 3; X2 = 2, X3 = 5, X4 = 1, . . .

and so on. We suppose that (Xn; n ≥ 2) are independent and identically distributed ran-
dom variables with mass function ( f (k); k ≥ 1) and p.g.f. G(s). The first interval X1 is
independent of (Xn; n ≥ 2), but its mass function may or may not be the same as that of
X2. This gives rise to two cases:

Case (O) The ordinary case. The mass function of X1 is ( f (k); k ≥ 1), the same as X2.

Case (D) The delayed case. The mass functions of X1 is (d(k); k ≥ 1), and
E(s X1 ) = D(s).

These two cases admit a conventional interpretation: in the ordinary case, we suppose
that H0 occurred, so X1 has the same mass function as the other intervals; in the delayed
case, H0 did not occur, so X1 may have a different mass function.
The mathematical structure described above is known as a recurrent event process, or

alternatively as a discrete renewal process. The important point about such a process is that
each time H occurs, the process regenerates itself, in the sense discussed above. Figure 6.2
displays a realization of a renewal process.
Now Examples 1 and 2 make it clear that there are two essentially different types of

renewal process. In Example 1, there is always a chance that you do traverse the maze (or
encounter the Minotaur), and so do not return to the entrance. That is,

P(X2 <∞) < 1.
Such a process is called transient. However, all machine bits wear out eventually, so in

(2) we have

P(X2 <∞) = 1.
Such a process is called persistent (or recurrent).
Now define the probabilities un = P(Hn), n ≥ 1. A natural question is to ask whether

this distinction between persistence and transience can also be observed in the properties
of un . (The answer is yes, as we will see.)
It is customary to make a further distinction between two different types of persistent

renewal process.

Definition If E(X2) = ∞, then the process is said to be null; if E(X2) <∞, then the
process is said to be nonnull.

Note that E(X2) is sometimes known as the mean recurrence time of the process. �

Ordinary renewal is just a special case of delayed renewal, of course, but it is conve-
nient to keep them separate. We therefore define u0 = 1 and un = P(Hn), in the ordinary
case; and v0 = 0, and vn = P(Hn), in the delayed case. These have respective generating
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functions, U (s) =∑∞
0 unsn and V (s) =∑∞

1 vnsn . [Remember that U (s) and V (s) are
not probability generating functions in the sense in which we use that term.]
Now we have the following:

(3) Theorem (i) U (s) = 1

1− G(s)

(ii) V (s) = D(s)

1− G(s)
.

Proof By conditional probability, in Case (O),

un =
n∑

k=1
P(Hn|X1 = k)P(X1 = k).

However, given Hk , the probability of any later occurrence of H is as if the process started
at k. That is to say

P(Hn|X1 = k) = P(Hn|Hk) = P(Hn−k) = un−k, n ≥ k.(4)

Hence,

un =
n∑

k=1
un−k f (k).

Because the right-hand sum is a convolution, its generating function is the product of the
two generating functions U (s) and G(s), whence

U (s)− 1 = U (s)G(s).(5)

Likewise, in Case (D),

vn =
n∑

k=1
P(Hn|X1 = k)P(X1 = k) =

n∑
k= 1

P(Hn|X1 = k) d(k)

=
n∑

k=1
un−kd(k) by (4).

Hence,

V (s) = U (s)D(s) = D(s)

1− G(s)
by (5). �(6)

Thus, given G(s) [and D(s) in the delayed case] we can in principle find P(Hn), the
probability that H occurs at time n, by expanding U (s) in powers of s.
Conversely, given V (s) [and U (s) in the delayed case] we can find G(s) and D(s), and

also decide whether the process is transient or persistent.

(7) Corollary If U (1) <∞, then the process is transient. Otherwise, it is persistent.

Proof This follows immediately from Theorem 3(i). �
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(8) Example: Coincidences Suppose that a number c of independent simple symmetric
random walks are started simultaneously from the origin. Let H be the “happening” that
they are all at the origin, so H2n is the event that all the c walks are at 0 on the 2nth step.
Show that H is persistent when c = 2, but H is transient for c ≥ 3.

Solution For c = 2, we recall that

P(H2n) = (u2n)
2 =

(
1

4n

(
2n

n

))2

=
(
1− 1

2

)2 (
1− 1

4

)2
· · ·

(
1− 1

2n

)2

>

(
1− 1

2

)2 (
1− 1

3

)(
1− 1

4

)
. . .

(
1− 1

2n − 1
)(

1− 1

2n

)

= 1

4n
on successive cancellation.

Hence, H is persistent as
∑

n P(H2n) diverges.
For c ≥ 3, we have similarly that

P(H2n) =
(
1

4n

(
2n

n

))c

=
((
1− 1

2

)2 (
1− 1

4

)2
· · ·

(
1− 1

2n

)2)c/2

<

(
1

2
.
2

3
.
3

4
.
4

5
· · · 2n − 1

2n
.
2n

2n + 1
)c/2

=
(

1

2n + 1
)c/2

.

Hence, H is transient as
∑

n(1/(2n + 1))c/2 <∞. �

(9) Example: Stationary Renewal Let X > 0 have p.g.f. G(s). Show that if E(X ) <∞,
then

H (s) = 1

E(X )
1− G(s)

1− s

is the p.g.f. of a nonnegative random variable.
Now consider the delayed case of a recurrent event process in which E(s X2 ) = G(s)

and E(s X1 ) = H (s). Show that for all n

P(Hn) = 1

G ′(1)
.(10)

Solution From (6.1.6), we have that H (s) is a power series with nonnegative coeffi-
cients. Furthermore, by L’Hôpital’s rule,

H (1) = lim
s↑1
−G ′(s)
−E(X ) = 1
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Hence, H (s) is a p.g.f. Finally, if D(s) = H (s) in (6), then

V (s) = 1

E(X2)(1− s)
,

and the result follows. �

6.8 RandomWalks

Recall that if (Xi ; i ≥ 1) are independent and identically distributed, then Sn = So +∑n
1 Xi is a random walk. Because generating functions have been so useful in handling

sums of random variables, we may expect them to be exceptionally useful in analysing
random walks. If X has p.g.f. G(z), then trivially we have, when S0 = 0.

Gn(z) = E(zSn ) = (G(z))n.
It follows that we can define the function H by

H (z, w) =
∞∑

n= 0
wnGn(z) = (1− wG(z))−1.(1)

This bivariate generating function tells us everything about Sn in principle, as P(Sn = r )
is the coefficient of zrwn in H (z, w). However, the analytical effort required to work at
this level of generality is beyond our scope. We proceed by considering simple examples.

(2) Example: Simple Symmetric Random Walk Let (Sn =
∑n

1 Xi ; n ≥ 0) be a simple
symmetric random walk, with S0 = 0. Let Hn be the event that Sn = 0. Because steps
of the walk are independent and identically distributed, it follows that visits to the origin
form an ordinary renewal process. Here, un = P(Sn = 0).
Define the first passage times,

Tj = min {n > 0 : Sn = j |S0 = 0},
and the generating functions, U (s) =∑∞

0 unsn and G j (s) = E(sTj ).
Find U (s) and G0(s), and show that the simple symmetric random walk is persistent

null.

Solution We give two methods of finding U (s) and G j (s). For the first, define

T ∗j = min {n: Sn = j − 1|S0 = −1}
and let T̂1 be a random variable having the same distribution as T1, but independent of
T1. Because the steps of the walk are independent, and symmetrically and identically
distributed, it follows that

E(sT1 ) = E(sT−1 ),(3)

T2 = T1 + T̂1,(4)

and

E(sT ∗2 ) = E(sT2 ) = E(sT1+T̂1 )(5)

= (G1(s))
2, by independence.(6)
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Hence, by conditional expectation,

G1(s) = E(E(sT1 |X1)) = 1

2
E(sT1 |X1 = 1)+ 1

2
E(sT1 |X1 = −1)(7)

= 1

2
s + 1

2
E(s1+T ∗2 ) = 1

2
s + 1

2
s(G1(s))

2 by (6).

One root of (7) is a probability generating function, so this root is G1(s), namely,

G1(s) = (1− (1− s2)
1
2 )/s.

Now, using conditional expectation again,

G0(s) = E(E(sT0 |X1))(8)

= 1

2
E(sT0 |X1 = 1)+ 1

2
E(sT0 |X1 = −1)

= 1

2
sE(sT1 )+ 1

2
sE(sT−1 ) = sG1(s) by (3)

= 1− (1− s2)
1
2 .

Hence,

U (s) = (1− s2)−1/2 by Theorem 6.7.3.(9)

Alternatively, we could observe that S2n = 0 if and only if the walk has taken n steps
in each direction. They may be taken in any order so

u2n =
(
2n

n

)(
1

2

)2n

.(10)

Now recall that by the negative binomial theorem

∞∑
0

(
2n

n

)(
1

2

)2n

xn = (1− x)
−1
2 ,(11)

and (9) and (8) follow.
Setting s = 1 shows that G0(1) = 1 (and U (1) = ∞) so H is persistent. However,

d

ds
G0(s) = s

(1− s2)
1
2

,

and setting s = 1 shows that H is null; the expected number of steps to return to the origin
is infinite as we know already, recall Example 5.6.27. �

Now that we have the generating functionsU (s) and G0(s), we can provide slicker deriva-
tions of earlier results. For example,

G0(s) = 1− (1− s2)
1
2 = 1− (1− s2)U (s).
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Hence, equating coefficients of s2k gives (5.18.1)

f2k = u2k−2 − u2k .(12)

Also,

s
d

ds
G0(s) = s2(1− s2)−

1
2 = s2U (s)

and so equating coefficients again gives (5.18.6)

2k f2k = u2k−2.(13)

See Problem 41 for another simple application of this. Here is a trickier application.

(14) Example: TruncatedWalk Let (Sn; n ≥ 1) be a simple symmetric randomwalk with
S0 = 0, and let T = min {n > 0 : Sn = 0}. Let T ∧ 2m = min {T, 2m} and show that

E(T ∧ 2m) = 4mu2m = 2E(|S2m |).(15)

Solution We establish (15) by showing that all three terms have the same generating
function. Equality then follows by the uniqueness theorem. First,

∞∑
0

4mu2ms2m = 2s
∞∑
1

2ms2m−1u2m = 2s
d

ds
U (s) = 2s2

(1− s2)3/2
.

Second, recalling (13) and (5.18.2),

E(T ∧ 2m) =
m∑

k=1
2k f2k + 2mP(T > 2m) =

m∑
k=1

u2k−2 + 2mu2m .

Hence,

∑
s2mE(T ∧ 2m) =

∑
m

s2m
m−1∑
k=0

u2k + s
∑

m

2ms2m−1u2m

= s2U (s)

1− s2
+ sU ′(s) using (6.1.10)

= 2s2

(1− s2)
3
2

.

Finally, using the hitting time theorem (5.6.17),

∑
m

s2mE(|S2m |) = 2
∑

m

s2m
m∑

k=1
2kP(S2m = 2k)

= 2
∑

m

s2m
m∑

k=1
2m f2k(2m)

= 2s
d

ds

∑
m

s2m
m∑

k=1
f2k(2m)
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= 2s
d

ds
(G2(s)+ G4(s)+ G6(s)+ . . .)

= 2s
d

ds

(G1(s))2

(1− (G1(s))2)
by Example (2)

= s
d

ds
((1− s2)−

1
2 − 1) = s2

(1− s2)
3
2

. �

As a final example of the use of generating functions in random walks, we establish yet
another arc-sine law.

(16) Example: Arc-Sine Law for Leads Let (Sn; n ≥ 0) be a simple symmetric random
walk with S0 = 0. Of the first 2n steps, let L2n denote the number that do not enter the
negative half-line. Show that

P(L2n = 2k) = 4−n

(
2k

k

)(
2n − 2k

n − k

)
.(17)

Solution Define the generating functions

G2n(s) = E(sL2n ) and H (s, t) =
∞∑

n=0
t2nG2n(s).(18)

Let T be the number of steps until the walk first revisits zero, and recall that

F(s) = E(sT ) =
∞∑
1

s2r f (2r ) = 1− (1− s2)
1
2 .(19)

Now using conditional expectation

E(sL2n ) = (E(E(sL2n |T )
=

n∑
r = 1

E(sL2n |T = 2r ) f (2r )+ E(sL2n |T > 2n)
∞∑

r = n+1
f (2r ).

Now, depending on the first step,

P(LT = T ) = 1

2
= P(LT = 0),

and visits to zero constitute regeneration points for the process L2n . Hence, wemay rewrite
(18) as

G2n(s) =
n∑

r=1
G2n−2r

(
1

2
(s2r + 1)

)
f (2r )+

∞∑
r=n+1

f (2r )

(
1

2
(s2n + 1)

)
.

Multiplying by t2n and summing over n yields

H (s, t) = 1

2
H (s, t)(F(st)+ F(t))+ 1

2
.
1− F(st)

1− t2s2
+ 1

2
.
1− F(t)

1− t2
,

by the convolution theorem. Now substituting for F(.) from (19) gives

H (s, t) = ((1− s2t2)(1− t2))−
1
2 .
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The coefficient of t2ns2k in this is (17). Now use Exercise 5.18.8 to produce the arc-sine
distribution. �

6.9 Review and Checklist for Chapter 6

All randomvariables have a probability distribution, andmany of them also havemoments.
In this chapter, we introduced two miraculous devices to help us with many of the chores
involved in handling and using probabilities and moments.

Probability generating function of X: p.g.f.

G X (s) =
∑

n

P(X = n)sn = Es X .

Moment generating function of X: m.g.f.

MX (t) =
∑

n

P(X = n)ent = Eet X .

You can think of these functions as organizers that store a collection of objects that
they will regurgitate on demand. Remarkably, they will often produce other information if
suitably stimulated; thus, the p.g.f. will produce the moments (if any exist), and the m.g.f.
will produce the probability distribution (in most cases). We used them to study sums of
independent random variables, branching processes, renewal theory, random walks, and
limits. They have these properties:

Connections:

MX (t) = G X (e
t ) and G X (s) = MX (log s).

Tails:

T (s) =
∞∑

n=0
snP(X > n) = 1− G X (s)

1− s
, when X ≥ 0.

Uniqueness:

fX (k) = G(k)
X (0)/k!.

Moments:

µ(k) = G(k)
X (1) and EXk = M (k)

X (0)
µ(k) = kT (k−1)(1).

[Where µ(k) is the kth factorial moment.]

Sums and random sums: For independent (Xn; n ≥ 1),

Es X1+···Xn =
n∏

r=1
G Xr (s); E exp(t(X1 + · · · Xn)) =

n∏
r=1

MXr (t).

For independent (Xn; n ≥ 1) and independent nonnegative integer valued N ,

Es X1+···X N = G N (G X (s)); E exp (t(X1 + · · · + X N )) = G N (MX (t)).
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Joint generating functions:

GX(s) = E
n∏

r=1
s Xr

r

MX(t) = E

[
exp

(
n∑

r=1
tr Xr

)]

Independence: X and Y are independent if and only if

E(x X yY ) = G X (x)GY (y), for all x, y, or

E[exp(s X + tY )] = MX (s)MY (t), for all s, t.

Branching: If the family size p.g.f. is G(s), then

Gm+n(s) = Es Zm+n = Gm(Gn(s)) = Gn(Gm(s)).

The probability η of ultimate extinction is the smallest positive root of G(x) = x .

Special generating functions:

Binomial distribution (q + ps)n

Uniform distribution on {0, 1, . . . , n} 1−sn+1
(n+1)(1−s)

Geometric distribution ps
1−qs

Poisson distribution eλ(s−1)

Negative binomial distribution ( ps
1−qs )

n

Logarithmic distribution log(1−sp)
log(1−p)

Checklist of Terms for Chapter 6

6.1 probability generating function
tail generating function

6.2 uniqueness theorem
factorial moments

6.3 sums and random sums
branching process
extinction probability

6.4 moment generating function
cumulant generating function

6.5 joint probability generating function
factorization and independence

6.6 continuity theorem
6.7 renewal process

persistent
transient
null, nonnull

6.8 simple random walk
arc-sine law for leads
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Finally, we note that we have occasionally used elementary ideas from calculus in this
chapter, and we need to do so more frequently in Chapter 7. We therefore include a brief
synopsis of the basic notions.

Appendix: Calculus

Fundamental to calculus is the idea of taking limits of functions. This in turn rests on the
idea of convergence.

Convergence Let (xn; n ≥ 1) be a sequence of real numbers. Suppose that there is a
real number a such that |xn − a| is always ultimately as small as we please; formally,

|xn − a| < ε for all n > n0,

where ε is arbitrarily small and n0 is finite. �

In this case, the sequence (xn) is said to converge to the limit a. We write either

xn → a as n →∞ or lim
n→∞ xn = a.

Now let f (x) be any function defined in some interval (α, β), except possibly at the point
x = a.
Let (xn) be a sequence converging to a, such that xn �= a for any n. Then ( f (xn); n ≥ 1)

is also a sequence; it may converge to a limit l.

Limits of Functions If the sequence ( f (xn)) converges to the same limit l for every
sequence (xn) converging to a, xn �= a, then we say that the limit of f (x) at a is l. We
write either

f (x)→ l as x → a, or lim
x→a

f (x) = l. �
Suppose now that f (x) is defined in the interval (α, β), and let limx→a f (x) be the limit

of f (x) at a. This may or may not be equal to f (a). Accordingly, we define:

Continuity The function f (x) is continuous in (α, β) if, for all a ∈ (α, β),
lim
x→a

f (x) = f (a). �
Now,given a continuous function f (x),we are often interested in twoprincipal questions

about f (x).

(i) What is the slope (or gradient) of f (x) at the point x = a?
(ii) What is the area under f (x) lying between a and b?

Question (i) is answered by looking at chords of f (x). For any two points a and x , the
slope of the chord from f (a) to f (x) is

s(x) = f (x)− f (a)

x − a
.
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If s(x) has a limit as x → a, then this is what we regard as the slope of f (x) at a. We call
it the derivative of f (x), and say that f (x) is differentiable at a.

Derivative The derivative of f (x) at a is denoted by f ′(a), where

f ′(a) = lim
x→a

f (x)− f (a)

x − a
. �

We also write this as

f ′(a) = d f

dx

∣∣∣∣
x = 0

.

In this notation d f/dx = d f (x)/dx is the function of x that takes the value f ′(a) when
x = a.
If we can differentiate the derivative f ′(x), then we obtain the second derivative denoted

by f (2)(x). Continuing in this way, the nth derivative of f (x) is f (n)(x) = dn f
dxn .

For question (ii), let f (x) be a function defined on [a, b]. Then the area under the curve
f (x) in [a, b] is denoted by ∫ b

a
f (x)dx,

and is called the integral of f (x) from a to b. In general, areas below the x-axis are counted
as negative; for a probability density, this case does not arise because density functions
are never negative.
The integral is also defined as a limit, but any general statements would take us too far

afield. For well-behaved positive functions, you can determine the integral as follows. Plot
f (x) on squared graph paper with interval length 1/n. Let Sn be the number of squares
lying entirely between f (x) and the x-axis between a and b. Set In = Sn/n2. Then

lim
n→∞ In =

∫ b

a
f (x)dx .

The function f (x) is said to be integrable.
Of course, we almost never obtain integrals by performing such a limit. We almost

always use a method that relies on the following, most important, connection between
differentiation and integration.

Fundamental Theorem of Calculus

Let f (x) be a continuous function defined on [a, b], and suppose that f (x) is integrable.
Define the function Fa(x) by

Fa(x) =
∫ x

a
f (t)dt.

Then the derivative of Fa(x) is f (x); formally,

F ′a(x) = f (x).
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This may look like sorcery, but actually it is intuitively obvious. The function F ′a(x) is the
slope of Fa(x); that is, it measures the rate at which area is appearing under f (x) as x
increases. Now just draw a picture of f (x) to see that extra area is obviously appearing at
the rate f (x), so F ′a(x) = f (x). We omit any proof.

Summary of elementary properties

(i) f ′(x) = d f/dx = f ′. It follows that

If f is constant, then f ′ = 0.
d

dx
(c f + g) = c f ′ + g′, for constant c.

d

dx
( f g) = f ′g + f g′.

d

dx
f (g) = f ′(g)g′.

(ii) F(x) = ∫ x
−∞ f (t)dt . It follows that

If f is constant, then F(b)− F(a) =
∫ b

a
f (t)dt ∝ b − a.

If f < g, then
∫ b

a
f dx <

∫ b

a
g dx .∫ b

a
(c f + g)dx = c

∫ b

a
f dx +

∫ b

a
g dx .∫ b

a
f ′gdx +

∫ b

a
f g′dx =

∫ b

a
( f g)′dx = f (b)g(b)− f (a)g(a).

(iii) log x = ∫ x
1 (1/y)dy.

Functions of More Than One Variable

We note briefly that the above ideas can be extended quite routinely to functions of more
than one variable. For example, let f (x, y) be a function of x and y. Then

(i) f (x, y) is continuous in x at (a, y) if limx→a f (x, y) = f (a, y).
(ii) f (x, y) is continuous at (a, b) if lim(x,y)→(a,b) f (x, y) = f (a, b).
(iii) f (x, y) is differentiable in x at (a, y) if

lim
x→a

f (x, y)− f (a, y)

x − a
= f1(a, y)

exists. We denote this limit by ∂ f/∂x . That is to say, ∂ f/∂x is the function of x and
y that takes the value f1(a, y) when x = a. Other derivatives, such as ∂ f/∂y and
∂2 f/∂x∂y, are defined in exactly the same way.
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Finally, we note a small extension of the fundamental theorem of calculus, which is
used more often than you might expect:

∂

∂x

∫ g(x)

f (u, y)du = dg(x)

dx
f (g(x), y).

WORKED EXAMPLES AND EXERCISES

6.10 Example: Gambler’s Ruin and First Passages

Let Sn = a +∑n
i=1 Xi be a simple random walk with a ≥ 0.

(a) Suppose that 0 ≤ Sn ≤ K , and that the walk stops as soon as either Sn = 0 or Sn = K .
(In effect, this is the gambler’s ruin problem.) Define Ta0 = min {n: Sn = 0}, and find
E(sTa0 ) = Fa(s) (say).

(b) Now suppose that K = ∞, and define Ta0 = min{n : Sn = 0}. (In effect, this is the
gambler’s ruin with an infinitely rich opponent.) Find E(sT10 ) = F1,0(s) (say).

Solution (a) Of course, Ta0 is defective in general because the walk may stop at K .
This makes no difference to the fact that, by conditional expectation, for 0 < a < K ,

Fa(s) = E(E(sTa0 |X1)) = pE(sTa0 |X1 = 1)+ qE(sTa0 |X1 = −1)(1)

= psE(sTa+1,0 )+ qsE(sTa−1,0 ) = ps Fa+1(s)+ qs Fa−1(s).

Because the walk stops at 0 or K ,

FK (s) = 0 and F0(s) = 1.(2)

The difference equation (1) has auxiliary equation psx2 − x + qs = 0, with roots
λ1(s) = (1+ (1− 4pqs2)

1
2 )/(2ps)

λ2(s) = (1− (1− 4pqs2)
1
2 )/(2ps).

Hence, in the by now familiar way, the solution of (1) that satisfies (2) is

Fa(s) = λK
1 λ

a
2 − λa

1λ
K
2

λK
1 − λK

2

.(3)

(b) When the walk is unrestricted it is still the case, by conditional expectation, that

F1,0(s) = E(E(sT10 |X1)) = psE(sT20 )+ qs.(4)

However, using the same argument as we did above for the symmetric random
walk yields E(sT20 ) = (E(sT10 ))2. Substituting in (4) shows that F1,0(s) is either λ1(s)
or λ2(s). However, λ1(s) is not the p.g.f. of a nonnegative random variable and
so

F1,0(s) = λ2(s) = (1− (1− 4pqs2)
1
2 )/(2ps).(5)
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(6) Exercise Let TaK = min {n: Sn = K }.
Show that

E(sTaK ) = λa
1 − λa

2

λK
1 − λK

2

.

(7) Exercise What is the p.g.f. of the duration of the game in the gambler’s ruin problem?
(8) Exercise What is E(sTa0 ) for the unrestricted random walk?
(9) Exercise For the unrestricted random walk started at a > 0, find the probability that the walk

ever visits 0 and E(Ta0|Ta0 <∞).
(10) Exercise Let Sn be a simple random walk with S0 = 0. Let T = min {n > 0: Sn = 0}. Show

that E(sT ) = 1− (1− 4pqs2)
1
2 . What is E(T |T <∞)?

6.11 Example: “Fair” Pairs of Dice

You have the opportunity to play a game of craps with either “Lucky” Luke or “Fortunate”
Fred. Whose dice shall you play with? Luke’s two dice are perfectly regular cubes, but
the faces bear unorthodox numbers:

Luke explains that, when rolled, the sum of his two dice has the same mass function as the
sum of two conventional fair dice; he uses these to ensure that no one can surreptitiously
switch to unfair dice.
Fred’s two dice are conventionally numbered, but are irregular cubes. Fred explains that

these have been cleverly biased so that, when rolled, the sum has the same mass function
as two fair dice; their irregular shape ensures that no one can secretly switch to unfair dice.
Assuming you want to play at the usual odds, whose dice should you use? (Sadly, your

own dice were confiscated by a casino last week.)

Solution Let X and Y be the scores of two fair dice. The p.g.f. of their sum is

E(s X+Y ) = E(s X )E(sY ) =
(
1

6
(s + s2 + s3 + s4 + s5 + s6)

)2

= s2

36
(1+ 2s + 3s2 + 4s3 + 5s4 + 6s5 + 5s6 + 4s7 + 3s8 + 2s9 + s10)

= G(s) (say).
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Now the sum of Luke’s dice L1 + L2 has p.g.f.

E(sL1+L2 ) = 1

6
(s + 2s2 + 2s3 + s4)

1

6
(s + s3 + s4 + s5 + s6 + s8) = G(s)

onmultiplyingout the brackets. SoLuke’s claim is correct.However,G(s) canbe factorized
as

36G(s) = s2(1+ s)2(1− s + s2)2(1+ s + s2)2,

where 1+ s + s2, 1− s + s2 are irreducible, having complex roots. Hence, there are only
two possibilities for the generating functions of Fred’s dice:
either

(i) E(s F1 ) = 1

2
s(1+ s)(1− s + s2)2

and

E(s F2 ) = s

18
(1+ s)(1+ s + s2)2;

or (ii) the dice are fair:

E(s F1 ) = E(s F2 ) = 1

6
s(1+ s)(1+ s + s2)(1− s + s2)

= 1

6
(s + s2 + s3 + s4 + s5 + s6).

However, (1+ s)(1− s + s2)2 = 1− s + s2 + s3 − s4 + s5 and the negative coefficients
ensure that 12s(1+ s)(1− s + s2)2 is not a p.g.f. The only remaining possibility is that the
dice are fair, which palpably they are not.
This shows that the sum of two biased dice cannot have the same mass function as the

sum of two fair dice. Thus, Fred’s claim is incorrect; his dice are as crooked as yours
probably were.
You should play with Luke’s dice.

(1) Exercise You have two fair tetrahedral dice whose faces are numbered conventionally 1, 2, 3,
4. Show how to renumber the faces so that the distribution of the sum is unchanged.

(2) Exercise Yet another regular Platonic solid is the dodecahedron with 12 pentagonal faces.
(a) Write down the generating function of the sum of two fair dodecahedra with faces numbered 1

to 12 inclusive.
(b) Show that two such dodecahedral dice can be biased in such a way that their sum has the same

distribution as the sum of the fair dice.
Hint: Let

f (x) = x + x12 + (2−
√
3)(x2 + x11)+ (5− 2

√
3)(x3 + x10)

+ (7− 4
√
3)(x4 + x9)+ (10− 5

√
3)(x5 + x8)+ (11− 6

√
3)(x3 + x7)

and g(x) = (x + x4 + x7 + x10)(1+√3x + x2). Consider f (x)g(x).
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(3) Exercise Show that it is not possible to weight two conventional dice in such a way that the
sum of the numbers shown is equally likely to take any value between 2 and 12 inclusive.

(4) Exercise Is it possible to re-number two fair dice so that their sum is equally likely to take any
value between 2 and 12 inclusive?

(5) Exercise Can the sum of three biased dice have the same mass function as the sum of three fair
dice?

Remark Some results of this example were recorded by SG Landry, LC Robertson
and RM Shortt in the American Mathematical Monthly, 1988.

6.12 Example: Branching Process

Let Zn be the size at time n of the ordinary branching process defined in Example 6.3.16.
Thus the r th individual in the nth generation (that is, at time n) is replaced by a family of
size X (r, n + 1), where the X (r, n + 1) are independent and identically distributed, with
mean µ, variance σ 2, and cumulant generating function

κ(t) = log (E[exp(t X (1, 1))]).(1)

Show that

E(Zn) = µn.(2)

Show also that

var (Zn) = var (Z1)(E(Z1))n−1 + (E(Z1))2var (Zn−1)(3)

and hence find an expression for var (Zn) in terms of µ and σ , when µ �= 1.

Solution First, recall the basic identity of branching processes: namely, given Zn−1,

Zn =
Zn−1∑
r=1

X (r, n).(4)

Now let the cumulant generating function of Zn be κn(t). Then by conditional expectation,

κn(t) = log (E(et Zn )) = log (E(E(et Zn |Zn−1)))(5)

= log
(
E

(
E exp

[
t

Zn−1∑
r=1

X (r, n)

]
|Zn−1

))
by (4)

= log (E[(E(et X (1.1)))Zn−1 ]) = log (E([eκ(t)]Zn−1 ))
= κn−1(κ(t)).

Now expanding κn−1(κ(t)) using (6.4.12) gives

κn−1(κ(t)) = κ(t)E(Zn−1)+ 1

2
(κ(t))2var (Zn−1)+ · · ·(6)

= µtE(Zn−1)+ 1

2
σ 2E(Zn−1t2 + 1

2
µ2var (Zn−1)t2 + O(t3)
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on expanding κ(t) using (6.4.12). Hence, equating coefficients of t and t2 in (5) and (6)
now yields

E(Zn) = µE(Zn−1)(7)

and

var (Zn) = σ 2µn−1 + µ2var (Zn−1).(8)

Iterating (7) gives (2), and equation (8) is just (3), as required. To solve the difference
equation (8), we note first that Aµ2n is a solution of the reduced equation

var (Zn) = µ2var (Zn−1).

By inspection, a particular solution of (8), when µ �= 1, is given by σ 2µn−1/(1− µ).
Imposing the initial condition var (Z1) = σ 2 now shows that whenµ �= 1, (8) has solution

var (Zn) = σ 2µn−1 1− µn

1− µ .(9)

(10) Exercise Find var (Zn) when µ = 1.
(11) Exercise Show that for n > m, E(Zn Zm) = µn−mE(Z2m).

Deduce that when µ = 1,

ρ(Zm, Zn) =
(m

n

) 1
2
.

(12) Exercise Find an expression for ρ(Zm, Zn) when µ �= 1, and deduce that for µ > 1 as n,
m →∞, with n − m held fixed, ρ(Zm, Zn)→ 1.

(13) Exercise If r is such that r = E(r Z1 ), show that E(r Zn+1 |Zn) = r Zn . What is r?

6.13 Example: Geometric Branching

Let (Zn; n ≥ 0) be an ordinary branching process with Z0 = 1, and suppose that

E(s Z1 ) = 1− p

1− ps
.(1)

(a) Show that, for p �= 1
2 ,

E(s Zn ) = ρn − 1− ρs(ρn−1 − 1)
ρn+1 − 1− ρs(ρn − 1) ,(2)

where ρ = p/(1− p).
(b) Now let (Z∗n ; n ≥ 0) be an ordinary branching process with Z0 = 1, family size dis-

tribution given by (1), and such that at time n, for all n ≥ 1, one new particle is added
to the population independently of Zn .
Show that for p < 1

2

lim
n→∞E(s Zn |Zn > 0) = lim

n→∞E(s Z∗n ) = s(1− 2p)

1− p(1+ s)
.(3)
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Solution (a) As usual, let E(s Zn ) = Gn(s). We establish (2) by induction. Assuming
that (2) holds for n, it follows from Example 6.3.16 that

Gn+1(s) = Gn

(
1− p

1− ps

)

= (ρn − 1)(1− ps)− p(ρn−1 − 1)
(ρn+1 − 1)(1− ps)− p(ρn − 1) by the induction hypothesis

= ρn+1 − 1− ρs(ρn − 1)
ρn+2 − 1− ρs(ρn+1 − 1) .(4)

Because (2) is true for n = 1, by (1), the result does follow by induction.
(b) Let (Ẑn; n ≥ 1) be a collection of independent random variables such that Ẑn has

the same distribution as Zn . Now Z∗n is the sum of the descendants of the initial individual,
and the descendants of the fresh individual added at n = 1, and those of the next added
at n = 2, and so on. That is to say Z∗n has the same distribution as 1+ Ẑ1 + · · · + Ẑn .
Hence,

E(s Z∗n ) = s
n∏

r=1
Gr (s) = s(ρ − 1)

ρn+1 − 1− ρs(ρn − 1) by successive cancellation,(5)

→ s(ρ − 1)
ρs − 1 as n →∞

= s(1− 2p)

1− p(1+ s)
.

This is the generating function of a random variable with mass function

f (k + 1) =
(
1− p

1− p

)(
p

1− p

)k

.

For the other half of (3), we require the conditional generating function
E(s Zn |Zn > 0). Because P(Zn = 0) = Gn(0), this is given by

E(s Zn |Zn > 0) = Gn(s)− Gn(0)

1− Gn(0)
.(6)

Substituting for Gn(.) from (2), we find

E(s Zn |Zn > 0) =
(

ρn − 1− sρn + ρs

ρn+1 − 1− sρn+1 + ρs
− ρn − 1
ρn+1 − 1

)/(
1− ρn − 1

ρn+1 − 1
)

→ s(1− ρ)
1− ρs

as n →∞,

as required.

(7) Exercise Let Zn be an ordinary branching process with family size mass function P(X = k) =
2−(k+1); k ≥ 0. Show that

Gn(s) = n − (n − 1)s
n + 1− ns

; n ≥ 0.
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(8) Exercise (7) Continued Show that in this case (p = 1
2 ), we have

E
(

Zn

n
|Zn > 0

)
→ 1, as n →∞.

(9) Exercise (a) Let X be any nonnegative random variable such that E(X ) = 1. Show that
E(X |X > 0) ≤ E(X2).
(b) Deduce that if p > 1

2 ,E(Znρ
−n|Zn > 0) < 2p/(p − q).

(10) Exercise When p < q, find lim
n→∞E(s Z∗n t Z∗n+m ).

6.14 Example: Waring’s Theorem: Occupancy Problems

Let (Ai ; 1 ≤ i ≤ n) be a collection of events (not necessarily independent). Let X be the
number of these events that occur, and set pm = P(X = m), qm = P(X ≥ m), and

sm =
∑

i1<...<im

P(Ai1 ∩ . . . ∩ Aim ).

Show that

(a) sm = E
(

X

m

)
=

n∑
i=m

(
i

m

)
pi ;

(b) pm =
n∑

i=m

(−)i−m

(
i

m

)
si ;

and (c) qm =
n∑

i=m

(−)i−m

(
i − 1
m − 1

)
si .

Solution (a) Recall that I (A) is the indicator of the event A. Because

P(Ai1 ∩ . . . ∩ Aim ) = E(I (Ai1 ) . . . I (Aim ))

it follows that the sum sm is just the expected number of distinct sets of size m (of the
Ai ) that occur. But, given X = i , exactly ( i

m ) such distinct sets of size m occur. Hence, by
conditional expectation,

sm =
n∑
m

(
i

m

)
P(X = i) = E

(
X

m

)
.(1)

(b) Now define generating functions Gs(z) =
∑n

m=0 zmsm and Gq (z) =
∑n

m=0 zmqm .
By (1),

Gs(z − 1) =
n∑

m=0
(z − 1)msm =

n∑
m=0
(z − 1)mE

(
X

m

)
= E

(
X∑

m=0
(z − 1)m

(
X

m

))
(2)

= E((1+ z − 1)X ) = E(zX ) =
n∑

m=0
pm zm .

Now equating coefficients of zm proves (b).
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(c) By Theorem 3.6.7 or Theorem 6.1.5, we have

Gq (z) = 1− zG X (z)

1− z
.

Hence, by (2),

Gq (z)− 1
z

= Gs(z − 1)− 1
z − 1 .(3)

Equating coefficients of zm yields (c).

(4) Exercise Show that

sm =
n∑

i=m

(
i − 1
m − 1

)
qi .

(5) Exercise Let tm =
∑

i1<...<im
P(Ai1 ∪ . . . ∪ Aim ). Find expressions for sm , pm , and qm in terms

of (ti ; 1 ≤ i ≤ n).
(6) Exercise If r balls are placed at random in n cells, so that each ball is independently equally

likely to arrive in any cell, find the probability that exactly c cells are each occupied by exactly i
balls.

6.15 Example: Bernoulli Patterns and Runs

A coin is tossed repeatedly, heads appearing with probability p(= 1− q) on each toss.

(a) Let X be the number of tosses required until the first occasion when successive tosses
show HTH. Show that

E(s X ) = p2qs3

1− s + pqs2 − pq2s3
.(1)

(b) Let Y be the number of tosses required until the first occasion when three successive
tosses show HTH or THT. Show that

E(sY ) = pqs3(1− 2pqs + pqs2)

1− s + pqs2 − p2q2s4
.(2)

Solution (a) Consider the event that HTH does not appear in the first n tosses, and it
does then appear as a result of the next three. The probability of this is P(X > n)p2q .
This event is the union of the following two disjoint events:

(i) The last two tosses of the n were HT, in which case X = n + 1.
(ii) The last two tosses of the n were not H T , in which case X = n + 3.
The probabilities of these two events areP(X = n + 1)pq andP(X = n + 3), respectively.
Hence,

P(X > n)p2q = P(X = n + 1)pq + P(X = n + 3); n ≥ 0.(3)

Multiplying (3) by sn+3, summing over n, and recalling (6.1.7), yields

1− E(s X )

1− s
p2qs3 = pqs2E(s X )+ E(s X ).(4)

The required result (1) follows.
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(b) First, consider the event that neitherHTH nor THT have appeared in the first n tosses
and HTH then appears. This event is the union of three disjoint events:

(i) The last two tosses of the n were HT, so Y = n + 1, with the appearance of HTH;
(ii) The last two tosses of the n were TT, so Y = n + 2, with the appearance of THT;
(iii) Otherwise, Y = n + 3, with the appearance of HTH.

Let f 1(n) denote the probability that Y = n with the occurrence of HTH, and f 2(n) the
probability that Y = n with the occurrence of THT. Then from the above, we have

P(Y > n)p2q = f 1(n + 1)pq + f 2(n + 2)p + f 1(n + 3).(5)

Hence, multiplying by sn+3 and summing over n,

1− E(sY )

1− s
p2qs3 = pqs2G1(s)+ spG2(s)+ G1(s),(6)

where Gi (s) =∑
n sn f i (n); i = 1, 2.

Second, consider the event that neither HTH or THT have appeared in the first n tosses
and THT then occurs. Arguing as in the first case yields

P(Y > n)pq2 = f 2(n + 1)pq + f 1(n + 2)q + f 1(n + 3).(7)

Hence,

1− E(sY )

1− s
pq2s3 = pqs2G2(s)+ qsG1(s)+ G2(s).(8)

Now we also have

E(sY ) = G1(s)+ G2(s)(9)

so solving (6), (8), and (9) for E(sY ) yields (2) as required.

(10) Exercise When p = 1
2 , find E(X ) for all possible triples of the formHHH,HHT, etc. Comment

on your results.
(11) Exercise Show that E(X ) = 1/p + 1/(qp2).
(12) Exercise Show that E(Y ) = (1+ pq + p2q2)/(pq(1− pq)).
(13) Exercise Let Z be the number of tosses required for the first occurrence of HHH. Find E(s Z )

and show that

E(Z ) = 1

p
+ 1

p2
+ 1

p3
.

(14) Exercise LetW be the number of tosses required for the first appearance of eitherHHH or TTT.
Show that

E(sW ) = s3(p3 + q3 + qp(p2 + q2)s + p2q2s2)

1− pqs2 − pqs3 − p2q2s4
.

(15) Exercise Let V be the number of tosses required for the first appearance of either r consecutive
heads or ρ consecutive tails. Find E(sV ), and show that

E(V ) =
(

pr (1− p)

1− pr
+ qρ(1− q)

1− qρ

)−1
.

(16) Exercise Find the expected number of tosses required for the first appearance of HTHTH.
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6.16 Example: Waiting for Unusual Light Bulbs

The light bulbs in the sequence illuminating your room have independent and identically
distributed lifetimes, so the replacement times formanordinary renewal process (as defined
in Example 6.7.2). Suppose the lifetimes are (Xi ; i ≥ 1) with commonmass function f (k).
A bulb is called “unusual” if its life is shorter than a or longer than b, where a ≤ b. Let

T be the time at which a bulb is first identified as being an unusual bulb. Show that (for
integers a and b),

E(sT ) = E(Ias X1 )+ sbE(Ib)

1− E(s X1 I c
a I c

b )
.(1)

where Ia and Ib are the indicators of the events {X1 < a} and {X1 > b} respectively. That
is,

Ia = I {X1 < a}, with I c
a = 1− Ia,

and

Ib = I {X1 > b}, with I c
b = 1− Ib.

Solution Because Ia + Ib + I c
a I c

b = 1, we can write
E(sT ) = E(IasT )+ E(IbsT )+ E(I c

a I c
b sT ).(2)

Now on the event Ia, X1 = T because the first bulb failed before a and was identified as
unusual at X1. So

E(IasT ) = E(Ias X1 ).(3)

On the event I c
a I c

b , the process regenerates at the first replacement X1 ∈ [a, b], and so
T = X1 + T ′, where T ′ is independent of X1 and has the same distribution as T . So

E(I c
a I c

b sT ) = E(sT )E(I c
a I c

b s X1 ).(4)

Finally on the event Ib, the first light bulb is identified as unusual when it survives beyond
b, so

E(ST Ib) = sbE(Ib).(5)

Substituting (3), (4), and (5) into (2), gives (1).

(6) Exercise Find the expected time until a light bulb has a lifetime shorter than a. Evaluate this
when fX (k) = qpk−1, k ≥ 1.

(7) Exercise: Crossing the Road Successive cars pass at instants Xi seconds apart (i ≥ 1).
You require b seconds to cross the road. If the random variables (Xi ; i ≥ 1) are independent
and identically distributed, find your expected waiting time until you cross. Evaluate this when
fX (k) = qpk−1; k ≥ 1.

(8) Exercise Let L be the time until a light bulb has lasted longer than r . Show that

E(sL ) = srP(X > r )

1−
r∑
1

skP(X = k)
.
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(9) Exercise A biased coin is tossed repeatedly; on each toss, it shows a head with probability
p(= 1− q). Let W be the number of tosses until the first occasion when r consecutive tosses have
shown heads. Show that

E(sW ) = (1− ps)pr sr

1− s + qpr sr+1 .

(10) Exercise In n tosses of a biased coin, let Ln be the length of the longest run of heads, and set
πn,r = P(Ln < r ). Show that

1+
∞∑

n=1
snπn,r = 1− pr sr

1− s + qpr sr+1 .

6.17 Example: Martingales for Branching

Let Gn(s) be the probability generating function of the size Zn of the nth generation of
a branching process (as defined in example 6.3.17), where Z0 = 1 and var Z1 > 0. Let
Hn be the inverse function of the function Gn , and show that Mn = (Hn(s))Zn defines a
martingale with respect to (Zn; n ≥ 0).

Solution Because var Z1 > 0, the functionG(s) is strictly increasing on [0, 1). Hence,
likewise, so are all the functions Gn(s). By definition,

Gn(Hn(s)) = s,(1)

and

s = Gn+1(Hn+1(s)) = Gn(G(Hn+1(s)))

by (6.3.18). Hence, by (1), because Hn(s) is unique,

G(Hn+1(s)) = Hn(s).(2)

Finally, using (6.3.18) again,

E([Hn+1(s)])Zn+1 |Z0, . . . , Zn) = [G(Hn+1(s))]Zn = [Hn(s)]
Zn by (2).

Trivially, EMn = 1; it follows that Mn is a martingale.

(3) Exercise Show that ηZn is a martingale where η is the extinction probability defined in (6.3.20).
(4) Exercise If EZ1 = µ, show that Znµ

−n is a martingale.
(5) Exercise Let Zn be the size of the nth generation of the branching process in which the nth

generation is augmented by a random number In of immigrants who are indistinguishable from the
other members of the population, and such that the In are independent and identically distributed,
and independent of the process up to time n. If EIn = m, and the expected family size is not 1,
show that

Mn = µ−n

(
Zn − m

1− µn

1− µ
)

is a martingale.
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6.18 Example: Wald’s Identity

Let (Xn; n ≥ 1) be independent and identically distributed with M(t) = Eet X1 . Define

Sn =
n∑

r=1
Xr ,

and Yn = exp(t Sn)M(t)
−n, n ≥ 1, with Y0 = 1.

Suppose that T is a stopping time for Yn , with ET <∞, and |Sn| ≤ K <∞ for n < T .
Show that, whenever 1 ≤ M(t) <∞, Yn is a martingale and

E[exp(t ST )M(t)
−T ] = 1.

Solution From the independence of the Xn , it easily follows that Yn is a martingale.
Now

E(|Yn+1 − Yn||Y0, . . . , Yn) = YnE
(∣∣∣∣et Xn+1

M(t)
− 1

∣∣∣∣
)

≤ YnE(et Xn+1 + M(t))/M(t) = 2Yn.

Hence, for n < T ,

E(|Yn+1 − Yn||Y0, . . . , Yn) ≤ 2Yn ≤ 2e|t |K

M(t)n

≤ 2e|t |K .

Because ET ≤ K <∞, we can use the final part of the optional stopping theorem
5.7.14 to obtain EYT = 1, which is the required result.

(1) Exercise Let var X1 > 0, and letT be the smallestn such that either Sn ≤ −a < 0or Sn ≥ b > 0.
Show that ET ≤ K <∞.

(2) Exercise Assume there is some t �= 0 such that M(t) = 1, and let T be defined as in exercise
(1). Show that, approximately,

P(ST ≤ −a) � etb − 1
etb − e−ta

, and P(ST ≥ b) � 1− e−ta

etb − e−ta
.

Deduce also that P(ST ≤ −a) ≤ e−at , and P(ST ≥ b) ≤ e−bt .
(3) Exercise By differentiating E(Yn|Y0, . . . , Yn−1) = Yn−1 for t , and setting t = 0, show that the

following are martingales. (You may assume that it is justified to interchange the expectation and
differentiation.)
(a) Sn − nEX1
(b) (Sn − nEX1)2 − nvar X1
(c) (Sn − nEX1)3 − 3(Sn − nEX1)var X1 − nE(X1 − EX1)3

If you have a full pen and lots of paper, you can find as many more such martingales as you please.
(4) Exercise Let Sn be a simple random walk with P(X1 = 1) = p = 1− q = 1− P(X1 = −1).

Use Wald’s identity to show that, when a and b are integers,

EsT = λa
1λ

a
2(λ

b
1 − λb

1)+ λa
1 − λa

2

λa+b
1 − λa+b

2

,
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where

λ1,2 = 1± (1− 4pqs2)1/2

2ps
.

6.19 Example: Total Population in Branching

Let Xn be an ordinary branching process such that X0 = 1,EX1 = µ, var X1 = σ 2, and
Es X1 = G(s). If Yn = X0 + X1 + · · · + Xn and

Qn(s) = EsYn , 0 ≤ s ≤ 1,
show that

Qn+1(s) = sG(Qn(s)).(1)

Solution Note that eachmember of the first generation X1 gives rise to an independent
copy of the branching process. Conditional on X1, we may therefore write

X1 + · · · + Xn = Ỹ (1)
n−1 + Ỹ (2)

n−1 + · · · + Ỹ (X1)
n−1 ,

where Y (i)
n−1 has the same distribution as Yn−1, and has generating function Qn−1(s). Hence,

finally,

Es X0+X1+···Xn = sE(E(s X1+···+Xn |X1))
= sE((Qn−1)X1 )
= sG(Qn−1(s)).

(2) Exercise Deduce that if Y =∑∞
n=0 Xn , then Q(s) = EsY satisfies

Q(s) = sG(Q(s)), 0 ≤ s ≤ 1,

where s∞ ≡ 0. If µ < 1, show that

(a) Q(1) = 1.
(b) EY = (1− µ)−1.
(c) var Y = σ 2/(1− µ)3.

(3) Exercise Find Q(s) in the special case when G(s) = p
1−qs , p + q = 1. Discuss how Q(s) be-

haves in the two cases p < q and q < p.
(4) Exercise Suppose that G(s) = p/(1− qs), p + q = 1. Set Qn(s) = yn(s)/xn(s) in (1) to find

that xn(s) satisfies

xn(s) = xn−1(s)− spqxn−2(s),

with x0 = 1 and x1 = 1− qs. Deduce that

Qn(s) = 2ps
(λ− 2qs)λn−1 − (µ− 2qs)µn−1

(λ− 2qs)λn − (µ− 2qs)µn
,

where λ = 1+√1− 4spq, µ = 1−√1− 4spq.
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PROBLEMS

1 Let G(s) =∑∞
0 fX (k)sk , where fX (k) = P(X = k); k ≥ 0. Show that:

(a)
∞∑
0
P(X < k)sk = sG(s)/(1− s).

(b)
∞∑
0
P(X ≥ k)sk = (1− sG(s))/(1− s).

2 Find the probability generating function of each of the following distributions and indicate where
it exists.

(a) f (k) = 1

n
; 1 ≤ k ≤ n.

(b) f (k) = 1

2n + 1 ; − n ≤ k ≤ +n.

(c) f (k) = 1

k(k + 1) ; 1 ≤ k.

(d) f (k) =




1

2k(k + 1) for k ≥ 1
1

2k(k − 1) for k ≤ −1.

(e) f (k) = 1− c

1+ c
c|k|; k ∈ Z, 0 < c < 1.

3 Which of the following are probability generating functions, and when?
(a) exp (−λ(1− G X (s))), where λ > 0, and G X (s) is a p.g.f.

(b) sin
(πs

2

)
(c)

(
q

1− ps

)r

(d) (q + ps)r


 p + q = 1; p > 0, q > 0

(e) 1− (1− s2)
1
2

(f) α log(1+ βs)

4 If the random variable X has p.g.f. G(s), show that for constants a and b the random variable
aX + b has p.g.f. sbG(sa). For what values of s is this defined?

5 Let X have p.g.f. G(s). Describe a random variable Y , which has p.g.f. GY (s) = G(s)(2− G(s))−1.
For what values of s is this defined?

6 A loaded die may show different faces with different probabilities. Show that it is not possible to
load two traditional cubic dice in such a way that the sum of their scores is uniformly distributed
on {2, 3, . . . , 12}.

7 The three pairs of opposite faces of a fair die show 1, 2, and 3, respectively. The two faces of a fair
coin show 1 and 2, respectively.
(a) Find the distribution of the sum of their scores when tossed together.
(b) Is it possible to weight the die in such a way that the sum of the scores is uniform on {2, 3, 4, 5}?

8 Let X have p.g.f. G(s), and let E be the event that X is even. Show that

E(s X |E) = G(s)+ G(−s)

G(1)+ G(−1) .

9 Define the probability generating function of an integer valued random variable X , and show how
it may be used to obtain the mean µX , variance σ 2X , and third moment about the mean γX .
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(a) Let Y =∑N
i=1 Xi , where the Xi are independent integer valued random variables identically

distributed as X . Let µX = 0, and let N be an integer valued random variable distributed
independently of the Xi . Show that σ 2Y = µNσ

2
X , and γY = µNγX .

(b) Find σ 2Y when µX �= 0.
10 An unfair coin is tossed n times, each outcome is independent of all the others, and on each toss

a head is shown with probability p. The total number of heads shown is X . Use the probability
generating function of X to find:
(a) The mean and variance of X .
(b) The probability that X is even.
(c) The probability that X is divisible by 3.

11 Let the nonnegative random variable X have p.g.f. G X (s). Show that

G(s) = 1

E(X )
.
1− G X (s)

1− s

is the p.g.f. of a nonnegative random variable Y . When is G(s) = G X (s)?
12 Let G1(s) and G2(s) be probability generating functions, and suppose that 0 ≤ λ ≤ 1. Show that

λG1 + (1− λ)G2 is a p.g.f., and interpret this result.
13 In a multiple-choice examination, a student chooses between one true and one false answer to each

question. Assume the student answers at random, and let N be the number of such answers until
she first answers two successive questions correctly. Show that E(s N ) = s2(4− 2s − s2)−1. Hence,
find E(N ) and P(N = k). Now find E(N ) directly.

14 A number X of objects are ranked in order of beauty (with no ties). You pick one at random with
equal probability of picking any.
(a) If X − 1 has a Poisson distribution with parameter λ, show that the p.g.f. of the rank of the

object you pick is

s
1− eλ(s−1)

λ(1− s)
.

What is the mean rank of your object?
(b) What if X has the logarithmic distribution, fX (k) = cpk/(k + 1); k ≥ 1?

15 A biased coin is tossed N times, where N is a Poisson random variable with parameter λ. Show
that if H is the number of heads shown and T the number of tails, then H and T are independent
Poisson random variables. Find the mean and variance of H − T .

16 A biased coin is tossed N times, where N is a random variable with finite mean. Show that
if the numbers of heads and tails are independent, then N is Poisson. [You may want to use
the fact that all continuous solutions of f (x + y) = f (x) f (y) take the form f (x) = eλx for
some λ.]

17 Let Xn have a negative binomial distribution with parameters n and p(= 1− q). Show (using
generating functions) that if n →∞ in such a way that λ = nq remains constant, then lim

n→∞P(Xn =
k) = e−λλk/k!. Show that E(Xn) = nqp−1 and
var (Xn) = nqp−2.

18 The events (An ; n ≥ 1) are independent and P(An) = 1− exp(−λn). Define N =
min{n : An occurs}.
(a) Show that E(s N ) = s + (s − 1)

∞∑
n=1

exp

(
−

n∑
1
λk

)
sn .

(b) Find E(s N ) and E(N ), when λn = a + log n.
19 The probability of obtaining heads when a certain coin is tossed is p. The coin is tossed repeatedly

until a sequence of three heads is obtained. If pn is the probability that this event occurs in n throws,
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show that p0 = p1 = p2 = 0, p3 = p3, and

pn = p3(1− p)

(
1−

n−4∑
k=0

pk

)
if n ≥ 4.

Show that the generating function G(s) =∑∞
k=0 pksk is given by

G(s) = p3s3(1− ps)

1− s + p3(1− p)s4
.

Now find the expected number of throws of an unbiased coin needed to obtain three consecutive
heads.

20 Each packet of a certain breakfast cereal contains one token, coloured either red, blue, or green.
The coloured tokens are distributed randomly among the packets, each colour being equally
likely. Let X be the random variable that takes the value j when I find my first red token in
the j th packet which I open. Obtain the probability generating function of X , and hence find its
expectation.
More generally, suppose that there are tokens of m different colours, all equally likely. Let Y be

the random variable that takes the value j when I first obtain a full set, of at least one token of each
colour, when I open my j th packet. Find the generating function of Y , and show that its expectation
is m(1+ 1

2 + 1
3 + · · · + 1

m ).
21 A gambler repeatedly plays the game of guessing whether a fair coin will fall heads or tails when

tossed. For each correct prediction he wins £1, and for each wrong one he loses £1. At the start of
play, he holds£n (where n is a positive integer), and he has decided to stop play as soon as either (i)
he has lost all his money, or (ii) he possesses£K , where K is a given integer greater than n. Let p(n)
denote for 1 ≤ n ≤ K − 1 the probability that he loses all his money, and let p(0) = 1, p(K ) = 0.
Show that p(n) = 1

2 (p(n − 1)+ p(n + 1)); (1 ≤ n ≤ K − 1).

G(s) =
k−1∑
n=0

p(n)sn

then, provided s �= 1,

G(s) = 1

(1− s)2
(1− (2− p(1))s + p(K − 1)sK+1).

Hence, or otherwise, show that p(1) = 1− 1/K , p(K − 1) = 1/K and that, in general, p(n) =
1− n/K .

22 A class of particles behaves in the following way. Any particle in existence at time n is replaced
at time n + 1 by a random number of similar particles having probability mass function f (k) =
2−(k+1), k ≥ 0, independently of all other particles. At time zero, there is exactly one particle in
existence and the set of all succeeding particles is called its descendants.
Let the total number of particles that have ever existed by time n be Sn . Show that the p.g.f.

Gn(z) = E(zSn ) satisfies

Gn(z) = z

2− Gn−1(z)
for 0 ≤ z ≤ 1 and n ≥ 1.

Deduce that with probability one, the number of particles that ever exist is finite, but that as
n →∞,E(Sn)→∞.

23 Let G(s) be the generating function of the family size in an ordinary branching process. Let Zn

be the size of the population in the nth generation, and let Tn be the total number of individuals
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who have ever lived up to that time. Show that Hn(s, t), the joint generating function of Zn and Tn

satisfies Hn(s, t) = tG(Hn−1(s, t)).
24 Show that for each integer n, (s + n − 1)(s + n − 2) . . . s/n!, is the probability generating function

of some random variable X . Show that as n →∞,E(X )/ log n → 1.
25 Find the probability generating function of the distribution

P(X = k)=
(

a

1+ a

)λ
λ(λ+ 1 . . . (λ+ k − 1)

(1+ a)kk!
; k > 0,P(X = 0) =

(
a

1+ a

)λ
.

26 Let X and Y be independent Poisson random variables with parameters λ and µ respectively. Find
the joint probability generating function of X − Y and X + Y .
Find the factorial moments of X + Y and the cumulants of X − Y .

27 Let X be a binomial random variable with parameters n and p, and let Y be a binomial random
variable with parameters m and q(= 1− p). Find the distribution of X − Y + m, and explain why
it takes the form it does.

28 A series of objects passes a checkpoint. Each object has (independently) probability p of being
defective, and probability α of being subjected to a check which infallibly detects a defect if it
is present. Let N be the number of objects passing the checkpoint before the first defective is
detected, and let D be the number of these passed objects that were defective (but undetected).
Find:
(a) The joint p.g.f. of D and N .
(b) E(D/N ).
If the check is not infallible, but errs with probability δ, find the above two quantities in this case.

29 Let the sequence (ai ; i ≥ 0) be defined by

1

(2− s)n+1
=

∞∑
0

ai s
i .

Show that
∑n

i=0 ai = 1
2 , and interpret this result in terms of random variables.

[Hint: (1+ x)n−r = (1− x/(1+ x))r (1+ x)n .]
30 A two-dimensional randomwalk (Xn, Yn ; n ≥ 0) evolves in the following way. If (Xn, Yn) = (x, y),

then the next step is to one of the four points (x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1), with
respective probabilities α1, β1, α2, β2, where α1 + β1 + α2 + β2 = 1. Initially, (X0, Y0)= (0, 0).
Define T = min{n; Xn +Yn =m}.
Find the probability generating function of T .

31 In Problem 30, if α1 = β1 and α2 = β2, show that E(X2
n + Y 2

n ) = n.
Also, in Problem 30, if α1 = β1 = α2 = β2 = 1

4 ,
(a) Show that E(T ) = ∞.
(b) Show that the point at which the walk hits x + y = m is a proper random variable.
(c) Find its generating function E(s XT−YT ).

32 Use the identity t(1+ t)n−1 = (1+ t)n
∑∞

i=0(−t−1)i to prove that

(n

i

)
−
(

n

i + 1
)
+ · · · + (−)n−i

(n

n

)
=

(
n − 1
i − 1

)
.

33 Let the generating function of the family size in an ordinary branching process be G(s) = 1−
p(1− s)β ; 0 < p, β < 1. Show that if Z0 = 1

E(s Zn ) = 1− p1+β+···+β
n−1
(1− s)β

n
.
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34 Let the generating function of the family size of an ordinary branching process be G(s) = q + ps,
and let E(s Z0 ) = eλ(s−1). Let T = min{n; Zn = 0}. Show that

P(T = n) = e−λpn+1 − e−λpn
.

35 Let the number of tosses required for a fair coin to show a head be T . An integer X is picked at
random from {1, . . . , T } with equal probability 1

T of picking any one. Find G X (s).
36 Show that for α > 0, β > 0, α + β < 1,

G(s, t) = log(1− αs − βt)

log(1− α − β)
is a bivariate p.g.f. Find the marginal p.g.f.s and the covariance.

37 Let X and Y be independent with r th cumulants κ (X )r and κ (Y )r . Show that X + Y has r th cumulant
κ (X )r + κ (Y )r .

38 Let X have cumulants κr ; r ≥ 1 and moments µr ; r ≥ 1. Show that κ1 = E(X ), κ2 = var (X ), and
κ3 = µ3 − 3µ1µ2 + 2µ31.

39 Show that the joint probability mass function

f (x, y) = 1− λ− µ
µ

(
x + y − 1

x

)
λxµy ; x ≥ 0, y ≥ 1

has joint p.g.f.

G(s, t) = (1− λ− µ)t
1− λs − µt

.

What is cov (X, Y )?
40 Let Xm have generating function (p/(1− qs))m , where p = 1− q > 0. Show that as m → 0

E(s Xm |Xm > 0)→ log(1− qs)

log(1− q)
.

41 Prove the identity

n∑
k=0

(
2k

k

)
4−k = (2n + 1)

(
2n

n

)
4−n .

Now let Sn be a simple symmetric random walk with S0 = 0. Let vn be the expected number of
visits of the walk to zero, up to and including time n. Show that (including the initial visit)

v2n = v2n+1 = (2n + 1)
(
2n

n

)
2−2n .

42 Let (Sn ; n ≥ 0) be a simple random walk with S0 = 0. Let Rr be the number of steps until the walk
first revisits the origin for the r th time, and let T0r be the number of steps until the walk first visits
r . Show that

E(sT0r ) =
(
1

2qs

)r

E(s Rr ).
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Deduce that P(Rr = n) = (2q)rP(Tr = n − r ), and hence that, as n →∞
P(Rr = n)

P(R1 = n)
→ r.

[H. Kesten and F. Spitzer have shown that this remains true for a wider class of random walks.
(J. d’Anal. Math. Vol. 11, 1963).]

43 Let X be geometric with parameter p. Use the fact that qEs X = Es X−1 − p to deduce that
E(X − 1)k = qEXk for k ≥ 1.

44 If X has p.g.f. G(s), show that T (s) =∑n
s snP(X > n) = (1− G(s))/(1− s). Deduce that

EX (X − 1) . . . (X − k + 1) = kT (k−1)(1).



7
Continuous Random Variables

He talks at random: sure the man is mad.
W. Shakespeare, Henry VI

7.1 Density and Distribution

Hitherto, we have assumed that a random variable can take any one of only a countable
set of values. However, suppose your height is 5 feet or 6 feet (or somewhere in between).
Then, previously (however briefly), your height in feet has taken every value in [1, 5],
including

√
2, e, π , and so on. (Each value can be taken more than once because you

are taller in the morning than in the evening.) Thus, if X is the height of a randomly
selected member of the population, the state space of X is not countable. There are many
other simple examples of variables that may take any one of an uncountable number of
values; for example, the brightness of a randomly chosen star, the time until some cell
divides, the velocity of a comet, the direction of the wind, and so on. Think of some
yourself.
In view of these remarks, we are about to introduce a new class of random variables

such that the state space � is uncountable, and X (ω) may take any one of an uncountable
number of real values. However, before we embark on this task, it is as well to reassure
you that, despite their separate presentation, these new random variables share most of the
useful properties of discrete random variables. Also, many of these properties are proved
in exactly the same way as in the discrete case and (even better) we are able to use much
of the same notation.
Thus, as in the discrete case, we start with a probability function P(·) defined on a

collection F (the event space) of subsets of � (the sample space). Then we think of a
random variable X as a real valued function X (ω) defined for each ωε�.
Our first requirement (as in the discrete case) is a function that tells us about the relative

likelihoods of possible values of X . Happily, we already have such a function; recall the
following:

287
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(1) Definition The distribution function F of the random variable X is the function

F(x) = P(Ax ),(2)

where Ax is the event Ax = {ω : X (ω) ≤ x}, xεR. �
We usually write (2) as

F(x) = P(X ≤ x),(3)

and denote F by FX (x) when we want to stress the role of X.

Notice that for Definition 1 to be meaningful, the event Ax must be in F , so that we
know P(Ax ). Thus, X (·) only qualifies to appear in Definition 1 if AxεF for all x . This is
true throughout this book; the implications of this so-called measurability condition are
explored in more advanced books.

(4) Example: Uniform Distribution You devise an experiment in which the outcome is
equally likely to be any point Q in the interval [0, 1]. Thus, the sample space is the set
of points (Q : Qε[0, 1]). The event space F will include all intervals in [0, 1]; we omit
the proof that such an F exists, but you should rest assured that it does exist. Define the
random variable X (Q) to be the distance from the origin O to Q. From the nature of the
experiment, if

Aab = {Q : Qε(a, b)}, 0 ≤ a ≤ b ≤ 1,
then P(Aab) = b − a. Hence, X has distribution function sketched in Figure 7.1

FX (x) = P(A0x ) =


0 if x < 0
x if 0 ≤ x ≤ 1
1 if x > 1.

�

In the future, the underlying sample space will make few appearances. We tend to think
of the possible values of X as the sample space, as we did for discrete random variables.
(It can be proved that this is a permissible view.)

Figure 7.1 The distribution function FX (x) of a random variable X distributed uniformly on
(0, 1).
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Figure 7.2 The altitude AP is of length h.

(5) Example A point Q is picked at random in a triangle of area a, with base of length b.
Let X be the perpendicular distance from Q to the base. What is the distribution function
FX (x)? [See figure 7.2 for a sketch of the triangle].

Solution Let the height of the triangle AP be h. The event X > x occurs when Q lies
inside the triangle ABC. For reasons of symmetry,

P(Q ε ABC) = (area of ABC)/a =
(

h − x

h

)2
.

Hence,

FX (x) = P(X ≤ x) = 1− P(Q ε ABC) =



0 x < 0

1−
(

h − x

h

)2
0 ≤ x ≤ h

1 x > h.

�

We summarize the basic properties of F(x) in the following:

(6) Theorem Let X have distribution function F(x). Then 0 ≤ F(x) ≤ 1 for all x, and

P (x < X ≤ y) = F(y)− F(x) ≥ 0, for all x ≤ y.(7)

If h > 0, then(8)

lim
h→0

F(x + h) = F(x).

If P(|X | <∞) = 1, then(9)

lim
x→∞ F(x) = 1 and lim

x→−∞ F(x) = 0.
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In plain words, this theorem says that as x increases, F(x) is nondecreasing, continuous
on the right, and lies between 0 and 1. It can be shown conversely that any function with
these properties is the distribution function of some random variable.

Proof The first result follows from (2) because 0 ≤ P(Ax ) ≤ 1. To show (7), note that
{ω: x < X ≤ y} = Ay ∩ Ac

x = Ay\Ax .

Because Ax ⊆ Ay for x ≤ y, we have

P (x < X ≤ y) = P (Ay)− P(Ax ) = F(y)− F(x) ≥ 0
by the nonnegativity of P(·). To prove (8), we use the continuity of P(·), see (1.5.4.). Let
(hk ; k ≥ 1) be any sequence decreasing to zero, and let A(k) be the event that X ≤ x + hk .
Then

lim
h→0

F(x + h) = lim
k→∞

F(x + hk) = lim
k→∞

P(A(k))

= P( lim
k→∞

A(k)) = P(Ax ) = F(x),

as required. Finally, for (9),

lim
x→∞ F(x) = lim

n→∞P(An) = P(�) by (1.5.4).

The last part is proved similarly. �

Although the distribution function has not played a very active role so far in this book, it
now assumes a greater importance. One reason for this is Theorem 6 above, which shows
that F(x) really is a function that can tell us how likely X is to be in some simple subset
of the real line. Another reason is the following simple corollary of Example 5.

(10) Corollary If F(x) is continuous, then for all x P(X = x) = 0.

Proof

P (X = x) = lim
n→∞P

(
x − 1

n
< X ≤ x

)
by (1.5.4)

= lim
n→∞

(
F(x)− F

(
x − 1

n

))
by Theorem 6

= 0 because F is continuous. �

(11) Example Let X be uniformly distributed on (0, 1). Then

F(x) =


0 x ≤ 0
x 0 < x < 1
1 x ≥ 1

is clearly continuous, so that P(X = x) = 0 for all x . �
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If FX is continuous, then X is known as a continuous random variable. We now define a
particularly important class of continuous random variables.

(12) Definition Let X have distribution function F. If the derivative

d F

dx
= F ′(x)(13)

exists at all but a finite number of points, and the function f defined by

f (x) =
{

F ′(x)
0

,
where F ′(x) exists
elsewhere,

(14)

satisfies

F(x) =
∫ x

−∞
f (ν) dν,(15)

then X is said to be a continuous random variable with density f (x). �
It follows from (15) that if X has density f (x), then for C ⊆ R the
Key Rule is:

P (X ε C) =
∫

C
f (x)dx,

when both sides exist. [In line with the remark following (3), they exist if
{ω: X (ω) ε C}εF .]

Example 4Revisited: UniformDensity In Example 4, we found that if X was chosen
uniformly at random in [0, 1], then

FX (x) =


0 x < 0
x 0 ≤ x ≤ 1
1 x > 1.

It follows that X has a density

fX (x) =
{
1 0 < x < 1
0 otherwise. �

Figures 7.3 to 7.6 illustrate the density and distribution of random variables Y and Z ,
which are uniformly distributed on (a, b) and (a, b) ∪ (c, d), respectively.

Example (5) Revisited For the point Q picked at random in a triangle, where X is
the perpendicular distance from Q to the base, we found

FX (x) =



0 x < 0

1−
(

h − x

h

)2
0 ≤ x ≤ h

1 x > h.
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Figure 7.3 The density function f (y) of a random variable distributed uniformly on (a, b).

It follows that X has density

fX (x) =
{
2(h − x)/h2 0 < x < h
0 otherwise. �

There are continuous random variables that do not have a density, but none appear in this
text. Therefore, whenever X is said to be continuous here, it always follows that X has a
density f .
Let us consider a basic example. In the discrete case, the geometric distribution is of the

form F(x) = 1− qx , if x = 1, 2, . . . It is natural to consider the analogous distribution in
the continuous case, which turns out to be equally (if not more) important.

(16) Example: Exponential Density Let X have distribution

F(x) = max{0, 1− e−λx},
where λ > 0. Then F is continuous for all x , and also differentiable except at x = 0, so

F ′(x) =
{
0 if x < 0,
λe−λx if x > 0.

Figure 7.4 The distribution function F(y) of a random variable distributed uniformly on (a, b).
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fZ(z)

(d − c + b − a)−1

0 a b c d z

Figure 7.5 The density function of a random variable distributed uniformly on (a, b) ∪ (c, d),
where a < b < c < d.

Now let

f (x) =
{
λe−λx if x > 0,
0 x ≤ 0.

Then of course, for x > 0,

F(x) = 1− e−λx =
∫ x

0
λe−λvdv =

∫ x

∞
f (v)dv,

and, for x < 0,

F(x) = 0 =
∫ x

−∞
f (v)dv.

Hence, f (x) is a density of X . See Figures 7.7 and 7.8. �

Notice that F ′(0) does not exist, and also that the function

f (x) =
{
λe−λx x ≥ 0
0 x < 0

0

1

FZ(z)

a b c d z

Figure 7.6 The distribution function of a random variable distributed uniformly on
(a, b) ∪ (c, d), where a < b < c < d.
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Figure 7.7 The density of an exponential random variable with parameter λ; f (x) = λe−λx for
x ≥ 0.

would also satisfy F(x) = ∫ x
−∞ f (v)dv. This illustrates the fact that (15) does not uniquely

determine f (x) given F(x). However, this problem can only arise at a finite number of
points and (to some extent) it does not matter what value we give f (x) at any of these
exceptional points. Usually we make it zero, but consider the following:

(17) Example: Two-Sided Exponential Distribution Let X have distribution

F(x) =
{

peλx if x < 0
1− (1− p)e−λx if x ≥ 0,

where 0 < p < 1 and λ > 0. Then F(x) is continuous and

F ′(x) =
{
λpeλx if x < 0
λ(1− p)e−λx if x > 0.

Figure 7.8 The distribution of an exponential random variable with parameter
λ; F(x) = 1− e−λx for x ≥ 0.
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A suitable density is

f (x) =


λpeλx if x < 0
0 if x = 0
λ(1− p)e−λx if x > 0.

However, if p = 1
2 , it is tempting to set f (0) = λ

2 and write f (x) = 1
2λe−λ|x | for all x . The

point is that it really does not matter very much. �

Finally, we note the obvious facts that for any density f ,

f (x) ≥ 0,(18)

and if P(|X | <∞) = 1, then ∫ ∞

−∞
f (v)dv = 1.(19)

It is straightforward to see that any function with these properties is the density of some
random variable, and so any integrable nonnegative function can be used to form a density.

Example The function g(x) = x2 − x + 1 is easily seen to be nonnegative for all x ,
and ∫ +b

+a
g(v)dv = 1

3
(b3 − a3)− 1

2
(b2 − a2)+ b − a = c(a, b), say.

Hence, the function

f (x) =
{

c(a, b)−1g(x) if a < x < b
0 elsewhere

is a density function. �

(20) Example: Cauchy Distribution Show that for an appropriate choice of the constant
c(a, b), the function

f (x) =
{

c(a, b)(1+ x2)−1 if a < x < b
0 elsewhere

is a density function. Show that c(−∞,∞) = 1/π and that c(−1, 1) = c(0,∞) = 2/π .

Solution Trivially, f ≥ 0 if c ≥ 0. New recall that
d

dx
tan−1 x = (1+ x2)−1.

Thus,
∫ b

a f (x)dx = 1 if and only if c(a, b)−1 = tan−1 b − tan−1 a. In particular,

c(−∞,∞)−1 = π

2
+ π

2
= π,
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as required, and

c(−1, 1)−1 = π

4
+ π

4
= c(0,∞)−1.

�

In general then, given a nonnegative function g(x), the function

f (x) = g(x)

(∫ ∞

−∞
g(v)dv

)−1
is a density, if the integral exists. To discover whether it does, the following technique is
useful. If we can find a constant b such that for all n > 0,

∫ n
0 g(v)dv < b <∞, then∫ ∞

0
g(v)dv = lim

n→∞

∫ n

0
g(v)dv

exists by monotone convergence.

(21) Example: Normal Density Show that

f = c exp

(
−1
2

x2
)

for all x ε R

can be a density.

Solution For any n > 1,∫ n

−n
exp

(
−1
2
v2
)

dv < 2

(∫ 1

0
dv +

∫ n

1
e−vdv

)
< 2(1+ e−1).

Hence, c−1 = ∫∞
−∞ exp(− 1

2v
2)dv exists, and f is a density for this c. �

Remark In fact, it can be shown that

c−1 = (2π )1/2.(22)

The proof of this is not quite trivial; we give it in Example 8.3.8. Also, note that there
are other normal densities; the one in Example 21 is called the standard normal density
denoted by N (0, 1), and by

φ(x) = (2π )−1/2 exp(−1
2

x2).(23)

Its distribution is �(x), given by

�(x) =
∫ x

−∞
φ(v)dv.(24)

(25) Example: Gamma Distribution Show that for α, λ, x > 0, the function f (x) =
cλαxα−1e−λx can be a density. When α is a positive integer, show that c−1 = (α − 1)!
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Solution First, we show that the integral
∫∞
0 xα−1e−λx dx exists. Because

xα−1e−
1
2λx → 0 as x →∞, there is some m <∞ such that for x > m,

xα−1e−
1
2λx < 1. Hence, for n > m,∫ n

0
vα−1e−λvdv <

∫ m

0
vα−1e−λvdv +

∫ n

m
e−

1
2λvdv

<

∫ m

0
vα−1e−λvdv + 2λ−1e− 1

2λm = b (say).

Hence, c−1 = ∫∞
0 λαxα−1e−λx dx exists, and if α is a positive integer then repeated inte-

gration by parts gives c−1 = (α − 1)! ∫∞0 λe−λvdv = (α − 1)! �

This density is known as the gamma density with parameters α and λ. When α is not
an integer, the integral above defines a function of α known as the gamma function, and
denoted by

 (α) =
∫ ∞

0
λαvα−1e−λvdv =

∫ ∞

0
uα−1e−udu.(26)

The density function in this case is

f (x) = 1

 (α)
λαxα−1e−λx for x > 0.(27)

In particular, when λ = 1
2 and α = n

2 , the density

f (x) = 1

 ( n
2 )
λ

n
2 x

n
2−1e

−1
2 x(28)

is known as theχ2(n) density, and it is referred to as chi-squaredwith n degrees of freedom.
We conclude with another way of producing densities.

(29) Example: Mixtures Let f1(x) and f2(x) be density functions, and let f3(x) =
γ f1(x)+ (1− γ ) f2(x), where 0 ≤ γ ≤ 1 . Then f3(x) ≥ 0, and∫

f3 = γ

∫
f1 + (1− γ )

∫
f2 = 1.

Hence, f3 is a density, and is said to be a mixture of f1 and f2. �

For example, the two-sided exponential density of Example 17 may now be seen as a
mixture of f1 = λeλx (x < 0) and f2 = λe−λx (x > 0) with γ = p.

7.2 Functions of Random Variables

Suppose that X and Y are random variables such that Y = g(X ), where g(.) is some
given function. If we know the density of X , can we find the distribution of Y ? In
general terms, the answer is straightforward because, by the properties of densities and
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distributions,

F(y) = P(Y ≤ y) = P(g(X ) ≤ y) =
∫

C
fX (v)dv,(1)

where C = {v : g(v) ≤ y}. Then, if F(y) is continuous and differentiable, we can go on
to find the density of Y , if it exists. Here are some simple examples of this idea in practice.

(2) Example Let X be uniformly distributed on (0, 1) with density

f (x) =
{
1 if 0 < x < 1
0 otherwise.

If Y = −λ−1 log X , where λ > 0, what is the density of Y ?

Solution First, we seek the distribution of Y :

FY (y) = P(−λ−1 log X ≤ y) = P(log X ≥ −λy)

= P(X ≥ exp(−λy)) =
{
1− e−λy for y ≤ 0
0 otherwise.

Hence, the derivative exists except at y = 0, and

fY (y) =
{
λe−λy if y > 0
0 if y ≤ 0.

This is the exponential density with parameter λ. �

Some care is required if g(.) is not one–one.

(3) Example Let X be uniformly distributed on [−1, 1]. Find the density of Y = Xr for
nonnegative integers r .

Solution First, note that X has distribution function F(x) = 1
2 (1+ x) for−1 ≤ x ≤ 1.

Now, if r is odd, then the function g(x) = xr maps the interval [−1, 1] onto itself in one–
one correspondence. Hence, routinely:

P(Y ≤ y) = P(Xr ≤ y) = P(X ≤ y1/r ) = 1

2
(1+ y1/r ) for− 1 ≤ y ≤ 1,

and Y has density

f (y) = 1

2r
y
1
r −1, − 1 ≤ y ≤ 1.

If r is even, then g(x) = xr takes values in [0, 1] for x ∈ [−1, 1]. Therefore,
P(Y ≤ y) = P(0 ≤ Xr ≤ y) = P(−y1/r ≤ X ≤ y1/r ) = y1/r for 0 ≤ y ≤ 1.

Hence, Y has density

f (y) = 1

r
y
1
r −1, 0 ≤ y ≤ 1.
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Finally, if r = 0, then Xr = 1, FY (y) is not continuous (having a jump from 0 to 1 at
y = 1) and so Y does not have a density in this case. Obviously, Y is discrete, with
P(Y = 1) = 1. �

(4) Example Let X have the standard normal distribution with density

f (x) = (2π )− 1
2 exp

(
−1
2

x2
)
.

Find the density of Y = σ X + µ for given constants µ and σ �= 0. Also, find the density
of Z = X2.

Solution Adopting the by now familiar technique:

P(σ X + µ ≤ y) = P(σ X ≤ y − µ) =



P
(

X ≤ y − µ
σ

)
if σ > 0

P
(

X ≥ y − µ
σ

)
if σ < 0

(5)

=




FX

(
y − µ
σ

)
if σ > 0

1− FX

(
y − µ
σ

)
if σ < 0

Hence, differentiating (5) with respect to y,

fY (y) = 1

|σ | fX

(
y − µ
σ

)
= 1

(2πσ 2)
1
2

exp

(
−1
2

(
y − µ
σ

)2)
.(6)

Second,

P(X2 ≤ z) = P(X ≤ √z)− P(X ≤ −√z) = FX (
√

z)− FX (−
√

z).

Differentiating now gives

fZ (z) = 1

2
√

z
fX (
√

z)+ 1

2
√

z
fX (−

√
z) = 1√

2π z
exp

(
−1
2

z

)
.(7) �

Remark The density given by (6) is known as the normal density with parame-
ters µ and σ 2, sometimes denoted by N (µ, σ 2). The standard normal density of Exam-
ple 7.1.21 was N (0, 1) because φ(x) has µ = 0 and σ = 1.
The density given by (7) is the gamma density of (7.1.23) with parameters 1

2 and
1
2 .

This is known as the chi-squared density with parameter 1, sometimes denoted by χ2(1).
This is a special case of (7.1.28).

(8) Example: Inverse Functions Let X have distribution function F(x), where F(x) is
continuous and strictly increasing. Let g(x) be a function satisfying F(g) = x . Because
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F(x) is continuous and strictly increasing, this defines g(x) uniquely for every x in (0, 1).
The function g(.) is called the inverse function of F(.) and is often denoted by

g(x) = F−1(x).

Clearly, F is the inverse function of g, that is

g(F(x)) = F(g(x)) = x,(9)

and g(x) is an increasing function.

(a) Use this function to show that Y = F(X ) is uniformly distributed on (0, 1).
(b) Show that if U is uniform on (0, 1), then Z = F−1(U ) has distribution F(z).

Solution (a) As usual, we seek the distribution function

P(Y ≤ y) = P(F(X ) ≤ y) = P(g(F(X )) ≤ g(y)) = P(X ≤ g(y)) by (9)
= F(g(y)) = y by(9).

(b) Again,

P(F−1(U ) ≤ z) = P(F(g(U )) ≤ F(z)) = P(U ≤ F(z)) by (9)
= F(z).

�

Although we have introduced them separately, discrete and continuous variables do have
close links. Here are some examples to show this.

(10) Example: Step Functions Let X have distribution function F(x) and density f .
Define the function S : R→ Z by

S(X ) = k, if k ≤ X < k + 1,(11)

where k is any integer. Then S(X ) is an integer valued discrete random variable with mass
function

fS(k) = P(k ≤ X < k + 1) =
∫ k+1

k
f (v)dv.(12)

Obviously, P(S(X ) ≤ X ) = 1 and FS(x) ≥ FX (x), and

|S(X )− X | ≤ 1.(13) �

Now equation (13) shows that the integer valued S(X ) is, in some sense, a rough approxi-
mation to the continuous random variable X . It is easy to get much better approximations
as follows.

(14) Example: Discrete Approximation As usual, X has density f (x); suppose also that
X > 0. For fixed n, with 0 ≤ r ≤ 2n − 1 and k ≥ 0, define

Sn(X ) = k + r2−n if k + r2−n ≤ X < k + (r + 1)2−n.
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Then Sn(X ) is a discrete random variable taking values in (k + r2−n; k ≥ 0, 0 ≤ r ≤
2n − 1), with

P(Sn(X ) = k + r2−n) =
∫ k+(r+1)2−n

k+r2−n

f (v)dv.

Again, we have Sn(X ) ≤ X , but this time, by the construction,

|Sn(X )− X | ≤ 2−n.(15)

Thus, by choosing n large enough, we can find a discrete random variable Sn(X ) such that
|X − Sn(X )| is as small as we please. �

In fact, it can be shown that we can find a simple random variable (taking only a finite
number of values) that is arbitrarily close to X , but in a weaker sense than (15). (See
Problem 12.)

7.3 Simulation of Random Variables

A random variable is a mathematical concept (having no other existence) that is suggested
by the outcomes of real experiments. Thus, tossing a coin leads us to define an X (.) such
that X (H ) = 1, X (T ) = 0, and X is the number of heads. The coin exists, X is a concept.
A natural next step, having developed theorems about mathematical coins (e.g., the arc-
sine laws) is to test them against reality. However, the prospect of actually tossing a large
enough number of coins to check the arc-sine laws is rather forbidding.
Luckily, we have machines to do large numbers of boring and trivial tasks quickly,

namely, computers. These can be persuaded to produce many numbers (ui ; i ≥ 1) that
are sprinkled evenly and “randomly” over the interval (0, 1). The word randomly ap-
pears in quotations because each ui is not really random. Because the machine was pro-
grammed to produce it, the outcome is known in advance, but such numbers behave for
many practical purposes as though they were random. They are called pseudorandom
numbers.
Now if we have a pseudorandom number u from a collection sprinkled uniformly

in (0, 1), we can look to see if u < 1
2 , in which case we call it “heads”, or u > 1

2 in
which case we call it “tails.” This process is called simulation; we have simulated tossing
a coin.
Different problems produce different random variables, but computers find it easiest

to produce uniform pseudorandom numbers. We are thus forced to consider appropriate
transformations of uniform random variables, and therefore many of the results of Section
7.2 find concrete applications when we seek to simulate random variables. A natural first
question (before “how”) is why might we want to simulate such random variables? Some
examples should suffice to answer this question.

(1) Example: Epidemic An infection is introduced into a population. For each individual
the incubation period is a random variable X , the infectious period is a random variable Y ,
and the number of further individuals infected is a random variable N , depending on Y and
the behaviour of the infected individual. What happens? Unfortunately, exact solutions
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to such problems are rare and, for many diseases (e.g., the so-called “slow viruses” or
prions), X and Y are measured in decades so experiments are impractical. However, if we
could simulate X and Y and the infection process N , then we could produce one simulated
realization (not a real realization) of the epidemic. With a fast computer, we could do this
many times and gain a pretty accurate idea of how the epidemic would progress (if our
assumptions were correct). �

(2) Example: Toll Booths Motorists are required to pay a fee before entering a toll road.
How many toll booths should be provided to avoid substantial queues? Once again an
experiment is impractical. However, simple apparatus can provide us with the rates and
properties of traffic on equivalent roads. If we then simulate the workings of the booth and
test it with the actual traffic flows, we should obtain reasonable estimates of the chances
of congestion. �

Because of the ready availability of large numbers of uniform pseudorandom numbers,
interest is concentrated on finding transformations that then yield random variables of
arbitrary type. We have seen several in Section 7.2. Here is another idea.

Example: Composition The pseudorandom variable U is uniformly distributed on
(0, 1). Show how to simulate a random variable with density

fX = 1

4
(x−

1
2 + (1− x)−

1
2 ), 0 < x < 1.

Solution Recall that if U is uniform on (0, 1) then U 2 has density f1(x) = 1
2 x−

1
2 .

Next consider

P(1−U 2 ≤ x) = P(U ≥ (1− x)
1
2 ) = 1− (1− x)

1
2 .

Hence, 1−U 2 has density f2(x) = 1
2 (1− x)−

1
2 . Now toss a coin (real or simulated), and

write

X =
{

U 2 if it’s heads
1−U 2 if it’s tails.

Then

fX (x) = 1

2
f1(x)+ 1

2
f2(x) = 1

4
(x−

1
2 + (1− x)−

1
2 ),

as required. �

We describe other methods of simulation as the necessary ideas are developed.

7.4 Expectation

Random variables with a density may have an expected value, similar to random variables
with a mass function.
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(1) Definition Let X have density f (x). If
∫∞
−∞ |v| f (v)dv <∞, then X has an ex-

pected value, which is given by

E(X ) =
∫ ∞

−∞
v f (v)dv.(2)

�

(3) Example: Uniform Density Let X be uniformly distributed on (a, b). Then

E(X ) =
∫ b

a

v

b − a
dv = 1

2
(b − a). �

(4) Example: Exponential Density Let X have density f (x) = λe−λx for x ≥ 0. Then

E(X ) =
∫ ∞

0
vλe−λvdv = λ−1. �

(5) Example: Normal Density Let X have the N (µ, σ 2) density. Then

E(X ) = 1

σ (2π )
1
2

∫ ∞

−∞
v exp(−(v − µ)2/(2σ 2))dv

= 1

σ (2π )
1
2

∫ ∞

−∞
(v − µ) exp

(
−1
2

(
v − µ
σ

)2)
dv

+ µ

σ (2π )
1
2

∫ ∞

−∞
exp

(
−1
2

(
v − µ
σ

)2)
dv

= 1

(2π )
1
2

∫ ∞

−∞
u exp

(
−1
2

u2
)

du + µ

(2π )
1
2

∫ ∞

−∞
exp

(
−1
2

u2
)

du

on making the substitution u = (v − µ)/σ in both integrands. The first integrand is an
odd function, so the integral over R is zero. The second term is µ by Example 7.1.21 and
7.1.22. Hence, E(X ) = µ. �

Expectation may be infinite, as the next example shows.

(6) Example: Pareto Density Let X have density f (x) = (α − 1)x−α for x ≥ 1 and
α > 1. Then if α ≤ 2, the expected value of X is infinite because

E(X ) = lim
n→∞

∫ n

1

(α − 1)v
vα

dv = (α − 1) lim
n→∞

∫ n

1

1

vα−1
dv,

which diverges to∞ for α − 1 ≤ 1. However, for α > 2,

E(X ) =
∫ ∞

1

(α − 1)
vα−1

dv = (α − 1)
(α − 2) .

�

Then again, the expectation of X may not exist, as the next example shows.
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(7) Example: Cauchy Density Let X have density

f (x) = 1

π (1+ x2)
, −∞ < x <∞.

Because
∫ a
0 v(π (1+ v2))−1dv diverges as a a →−∞ and as a a →+∞, X does not

have an expected value. �

It is appropriate to give a moment to considering why we define E(X ) by Definition 1.
This definition is at least plausible, by analogy with the definition

E(X ) =
∞∑

v=−∞
v f (v),

in the discrete case. Of course, Definition 1 is much more than just a plausible
analogy, but a complete account of expectation is well beyond our scope. However,
we can use Example 7.2.14 to give a little more justification for Definition 1. Let
k + r2−n = a(k, r, n). Recall from (7.2.15) that |Sn − X | < 2−n. Now by definition, be-
cause Sn(X ) is discrete,

E(Sn(X )) =
∑
k,r

a(k, r, n)
∫ a(k,r+1,n)

a(k,r,n)
f (v)dv

=
∑
k,r

∫ a(k,r+1,n)

a(k,r,n)
(v f (v)+ (a(k, r, n)− v) f (v))dv.

Because |a(k, r, n)− v| < 2−n, it can be shown (with more work, which we omit) that

E(Sn(X )) =
∫ ∞

−∞
v f (v)dv + εn = E(X )+ εn,

where εn → 0 as n →∞. An explicit demonstration may be helpful here.

(8) Example Let X be uniform on (0, 1) with mean value E(X ) = 1
2 . Then Sn(X ) is

uniformly distributed on
{
0, 2−n, 2.2−n, 3.2−n, . . . , 1− 2−n

}
. Therefore,

E(Sn(X )) =
2n−1∑
r=0

r2−n.2−n = 1

2
(2n − 1)2−n

= E(X )− 2−(n+1)→ E(X ), as n →∞. �

Thus, our definitions of expectation for discrete and continuous variables are at least
consistent in some way. In more advanced books, a single definition of E(.) is given,
which is shown to yield our definitions as special cases.
Next we return to considering functions of random variables. Suppose we are given

random variables Y and X related by Y = g(X ).What is E(Y )?
If we know the density of X , then we may be able to find E(Y ) by first discovering

fY (y), if it exists. This is often an unattractive procedure. We may do much better to use
the following theorem, which we state without proof.



7.4 Expectation 305

(9) Theorem Let random variables X and Y satisfy Y = g(X ), where X has density
f (x). Then Y has an expected value if

∫∞
−∞ |g(v)| f (v)dv <∞, and in this case,

E(Y ) =
∫ ∞

−∞
g(v) f (v)dv.(10)

The proof of this is straightforward but long. An heuristic discussion of the type above
shows that if we represent the distribution of X as a limit of discrete distributions, and
then formally proceed to this limit in Theorem 4.3.4, equation (10) is the result. Again,
this only makes (10) plausible, it does not provide the proof, which is beyond our scope.
This important result implies that the useful consequences of Theorem 4.3.4 remain

true for random variables with a density. In particular, Theorem 4.3.6 remains true; the
proofs of most parts are just typographical variants of the proofs in the discrete case; just
replace

∑
by

∫
.

We describe one important and less trivial case in detail, namely, the analogy of Theo-
rem 4.3.11.

(11) Theorem: Tail integral Let the nonnegative random variable X have density f ,
distribution F, and finite expected value E(X ). Then

E(X ) =
∫ ∞

0
(1− F(x))dx .(12)

Proof For any finite y, we may integrate by parts to obtain∫ y

0
x f (x)dx = −x(1− F(x))|y0 +

∫ y

0
(1− F(x))dx .(13)

But we have

y(1− F(y)) = y
∫ ∞

y
f (x)dx ≤

∫ ∞

y
x f (x)dx → 0

as y →∞, because E(X ) <∞. Hence, we can let y →∞ in (13) to prove the
theorem. �

We can use this to prove a useful special case of Theorem 9.

(14) Example Let the nonnegative random variable X have density f , and let g(X ) ≥ 0.
Show that E(g(X )) = ∫∞

0 g(v) f (v)dv.

Solution

E(g(X )) =
∫ ∞

0
P(g(X )) ≥ v) dv by (12)

=
∫ ∞

0

∫
x :g(x)≥v

f (x)dxdv =
∫ ∞

0
f (x)

∫ g(x)

0
dvdx =

∫ ∞

0
f (x)g(x)dx,
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as required. The interchange in the order of integration is justified by a theorem on double
integrals, which we omit. �

The various moments of a random variable with a density are defined just as they were
for discrete random variables, that is to say: µk = E(Xk), and

σk = E((X − E(X ))k).

(15) Example: Normal Density Let X have the density N (0, σ 2). Find µk for all k.

Solution If k is odd, then xk exp(−x2/(2σ 2)) is an odd function. Hence, µk = 0 if k
is odd. If k = 2n, then integrating by parts gives

µ2n = 1

σ (2π )
1
2

∫ ∞

−∞
v2n exp (−v2/(2σ 2))dv

= 1

σ (2π )
1
2

(
−v2n−1σ 2 exp (−v2/(2σ 2))|∞−∞

+
∫ ∞

−∞
(2n − 1)σ 2v2n−2 exp (−v2/(2σ 2))dv

)

= (2n − 1)σ 2µ2n−2 = σ 2n (2n)!

2nn!

on iterating and observing that µ0 = 1. Hence, in particular, µ2 = σ 2. �

Finally, and thankfully, we are pleased to record that the expectation E(X ) of a continuous
random variable X has the same useful basic properties that we established for the discrete
case in Section 4.6. For convenience, we recall them here.

(16) Theorem Let a and b be constants, and let g and h be functions. Then:

(i) If g(X ) and h(X ) have finite mean, then

E(g(X )+ h(X )) = E(g(X ))+ E(h(X )).

(ii) If P(a ≤ X ≤ b) = 1, then a ≤ E(X ) ≤ b.
(iii) If h is nonnegative, then for a > 0,P(h(X ) ≥ a) ≤ E(h(X )/a).
(iv) Jensen’s inequality If g is convex then E(g(X )) ≥ g(E(X )).

Proof The proof is an exercise for you. When h(x) = x2 in (iii), we have:

Chebyshov’s inequality: P(|X | ≥ a) ≤ EX2/a2.(17) ��

7.5 Moment Generating Functions

In dealing with integer valued discrete random variables, we found the probability gen-
erating function exceptionally useful (see Chapter 6). It would be welcome to have such
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a useful workhorse available for random variables with densities. Of course, if X has a
density then P(X = x) = 0, so we cannot expect the probability generating function to be
of much use. Fortunately, another function will do the job.

(1) Definition If X has density f, then X hasmoment generating functionMX (t) given
by

MX (t) = E(etX ) =
∫ ∞

−∞
etv f (v)dv.(2) �

We are only interested in MX (t) for those values of t for which it is finite; this includes
t = 0, of course. It is particularly pleasant when MX (t) exists in a neighbourhood of zero,
but it is beyond our scope to explain all the reasons for this.

(3) Example: Uniform Density Let X be uniform on [0, a]. Find E(etX ). Where does it
exist?

Solution

E(et X ) =
∫ a

0

1

a
etvdv =

[
1

at
etv

]a

0

= eat − 1
at

.

This exists for all t , including t = 0, where it takes the value 1. �

(4) Example: Gamma Density Recall from (7.1.24) that the gamma function  (α) is
defined for any α > 0 and λ > 0 by

 (α) =
∫ ∞

0
xα−1λαe−λx dx .(5)

Hence,

f (x) = λα

 (α)
xα−1e−λx , x ≥ 0,

is the density of a random variable x . Find E(etX ). Where does it exist?

Solution

E(etX ) =
∫ ∞

0
etv λα

 (α)
vα−1e−λvdv = λα

 (α)

∫ ∞

0
vα−1e−(λ−t)vdv.

The integral exists if λ > t , and then making the substitution (λ− t)v = u gives

MX (t) =
(

λ

λ− t

)α ∫ ∞

0

uα−1

 (α)
e−udu =

(
λ

λ− t

)α
by (5),(6)

for −∞ < t < λ. �
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(7) Example: Normal Density Let X be a standard normal random variable. Then

√
2πMX (t) =

∫ ∞

−∞
exp

(
−1
2

x2 + t x

)
dx =

∫ ∞

−∞
exp

(
−1
2
(x − t)2 + 1

2
t2
)

dx

= e
1
2 t2

∫ ∞

−∞
exp

(
−1
2
v2
)

dv, setting x − t = v,

= e
1
2 t2
√
2π.

So MX (t) = e
1
2 t2 . Now by (7.2.4) if Y is N (µ, σ 2), MY (t) = eµt+ 1

2 σ
2t2 . �

You may ask, why is MX (t) called the moment generating function? The answer lies in
the following formal expansion.

E(etX ) = E

( ∞∑
k=0

Xktk

k!

)
=

∞∑
k=0

E
(Xk)t k

k!
=

∞∑
k=0

µk tk

k!
.(8)

Thus, provided the interchange of expectation and summation at (8) is justified, we see
that MX (t) is the (exponential) generating function of the moments µk .
Note that the word “exponential” is always omitted in this context, and that the required

interchange at (8) is permissible if MX (t) exists in an interval that includes the origin.
You may also ask, do we always know the density fX (x), if we know MX (t)? After all,

the probability generating function uniquely determines the corresponding mass function.
Unfortunately, the answer is no in general because densities not uniquely determined by
their moments do exist. However, none appear here; every density in this book is uniquely
determined by its moment generating function (if it has one). We state the following
inversion theorem without proof.

(9) Theorem If X has moment generating function M(t), where for some a > 0, M(t) <
∞ for |t | < a, then the distribution of X is determined uniquely.

Furthermore, M(t) =
∞∑

k=0
1
k! t

kE(Xk).

The moment generating function is especially useful in dealing with sequences of
random variables; the following theorem is the basis of this assertion. We state it without
proof.

(10) Theorem: Continuity Theorem Let (Fn(x); n ≥ 1) be a sequence of distribution
functions with corresponding moment generating functions (Mn(t); n ≥ 1) that exist for
|t | < b. Suppose that as n →∞ Mn(t)→ M(t) for |t | ≤ a < b, where M(t) is the m.g.f.
of the distribution F(x). Then, as n →∞, Fn(x)→ F(x) at each point x where F(x) is
continuous.

The main application of this theorem arises when M(t) = e
1
2 t2 and F(x) = �(x), as

we see in Chapter 8 when we come to the celebrated central limit theorem. Here is a
preliminary note.
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Note: The O–o Notation In considering limits of sequences of functions, we quite
often produce large and unwieldy expressions of which only one or two terms remain in the
limit. Rather than keep a precise record of the essentially irrelevant terms, it is convenient
to have a special compact notation for them.

Definition If g(n) and h(n) are two functions of n, then we write

h(n) = O(g(n)) as n →∞
if |h(n)/g(n)| < c for all large enough n and some finite constant c. �

For example, as n →∞,
n2 + log n = O(n2) with c = 2

and

n2 + n
3
2 = O(n2) with c = 2.

Observe that this is an abuse of notation (= being the abused symbol) because it does
not follow from these two examples that log n = n

3
2 . Also, if h(n) = O(g(n)) and k(n) =

O(g(n)), then h(n)+ k(n) = O(g(n)).
A similar definition holds for small values of the argument.

Definition If g(x) and h(x) are two functions of x, then we write h(x) = O(g(x)) as
x → 0, if |h(x)/g(x)| < c for all small enough x and some constant c. �

Often, an even cruder representation will suffice.

Definition If g(x) and h(x) are two functions of x, then we write h(x) =
o(g(x)) as x →∞, if limx→∞(h(x)/g(x)) = 0. Likewise, h(x) = o(g(x)) as x → 0 if
limx→0(h(x)/g(x)) = 0. �

For example, x2 = o(x) as x → 0 and x = o(x2) as x →∞. For another example,
x + x log x + x2 = o(1) as x → 0.

We use this new notation in the following famous result.

(11) Example: deMoivre–LaplaceTheorem For eachn ≥ 1, let Xn be a binomial random
variable with parameters n and p. Let q = 1− p, and define

Yn = Xn − np

(npq)
1
2

.

Show that as n →∞

P(Yn ≤ x)→ �(x) =
∫ x

−∞
(2π )−

1
2 e−y2/2dy.



310 7 Continuous Random Variables

Solution We use Theorem 10. First calculate the moment generating function

E(etYn ) = E

(
exp

(
t(Xn − np)

(npq)
1
2

))
=

[
E exp

(
t(X1 − p)

(npq)
1
2

)]n

(12)

=
[

p exp

(
qt

(npq)
1
2

)
+ q exp

(
−pt

(npq)
1
2

)]n

.

Next we expand the two exponential terms in (12) to give

E(etYn ) =
(
1+ t2

2n
+ O

(
n−

3
2

))n

.(13)

Now we recall the useful result that says that, for constant a,

lim
n→∞

(
1+ a

n
+ o(n−1)

)n
= ea.(14)

Applying this to (13) shows that

lim
n→∞E(etYn ) = e

1
2 t2,

which is the m.g.f. of the standard normal distribution, as required. [More demanding
readers should note that they can prove (14) by first taking logarithms.] �

The appearance of the normal distribution in these circumstances is one of the most
remarkable results in the theory of probability. The first proof, due to de Moivre, was
greatly improved by Laplace. Their methods were different from those used here, relying
on fairly precise direct estimates of the binomial probabilities.We outline amodern version
of their proof in Example 7.20.

7.6 Conditional Distributions

Just as in the discrete case, it is often necessary to consider the distribution of a random
variable X conditional upon the occurrence of some event A. By definition of conditional
probability, we have

FX |A(x) = P(X ≤ x |A) = P({ω: X ≤ x} ∩ A)/P(A)(1)
= P(X ≤ x ; A)/P(A), say.

(Obviously, A has to be in F , the event space.) The case that arises most commonly is
when A is an event of the form

A = {ω: a < X ≤ b};(2)

that is, we seek the distribution of X conditional on its lying in some subset of its range.

(3) Example Let a < b < c < d. Let X be uniform on (a, d), and let A = {ω: b <
X (ω) ≤ c}.
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Then, by (1),

P(X ≤ x |A) = P(X ≤ x ; b < X ≤ c)

P(b < X ≤ c)
=




x − b

d − a
/

(
c − b

d − a

)
if b < x ≤ c

0 otherwise

= x − b

c − b
for b < x ≤ c.

Thus, the distribution of X given A is just uniform on (b, c). More generally, it is easy
to see that a uniform random variable, constrained to lie in any subset A of its range, is
uniformly distributed over the subset A. �

BecauseP(X ≤ x |A) is a distribution, it may have an expectation. For example, suppose
that X has density f , and A is given by (2). Then, by (1),

P(X ≤ x |A) = F(x)− F(a)

F(b)− F(a)
for a < x ≤ b,(4)

and differentiating yields the conditional density

fX |A(x) =



f (x)

F(b)− F(a)
if a < x ≤ b

0 otherwise.
(5)

Notice that
∫ b

a fX |A(v)dv = 1, as it must. Then wemay define the conditional expectation

E(X |A) =
∫ b

a

v f (v)

F(b)− F(a)
dv(6)

= a +
∫ b

a

F(b)− F(v)

F(b)− F(a)
dv, on integrating by parts,

=
∫ ∞

0
(1− FX |A(v))dv

on using (4). Notice that this is in agreement with Theorem 7.4.11, as of course it must
be.

(7) Example: Exponential Density and Lack-of-Memory Let X be exponentially dis-
tributed with parameter λ. Show that

P(X > s + t |X > s) = e−λt = P(X > t).(8)

Find E(X |X > s) and E(X |X ≤ s).

Solution Trivially,

P(X > s + t |X > s) = P(X > s + t)/P(X > s) = e−λ(s+t)/e−λs = e−λt .
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Hence,

E(X |X > s) = s +
∫ ∞

0
e−λt dt = s + E(X ).(9)

We remark that the remarkable identity (8) is known as the lack-of-memory property of
the exponential distribution. Finally,

E(X |X ≤ s) =
∫ s

0

P(s ≥ X > v)

P(s ≥ X )
dv = 1

λ
− s

eλs − 1 .
�

7.7 Ageing and Survival

Many classic examples of continuous random variables arise as waiting times or survival
times. For instance, the time until the cathode-ray tube in your television fails, the time
until you are bitten by a mosquito after disembarking in the tropics, the time until a
stressed metal component fails due to fatigue. For definiteness, we consider the lifetime
T of some device or component. The device is said to fail at time T .
It is often useful to quantify the ageing process of a device; in particular, we may want

to compare a device of given age with a new one. (We are all familiar with the fact that it is
not necessarily always a good thing to replace a working component with a new one. This
fact is embodied in the popular saying: “If it works, don’t fix it”) Let T have distribution
F and density f . The following quantities turn out to be of paramount importance in
comparing devices of different ages.
The survival function

F(t) = 1− F(t) = P(T > t).(1)

The hazard function

H (t) = − log(1− F(t)).(2)

The hazard rate function

r (t) = f (t)

F(t)
= f (t)

1− F(t)
= dH (t)

dt
.(3)

The last equality explains why r (t) is called the hazard rate. Integrating (3) yields

exp

(
−
∫ t

0
r (s)ds

)
= F(t).(4)

Before we explain the significance of these quantities, you are warned that terminology
in the literature of ageing is quite chaotic. Note that:

(i) The survival function is also known as the survivor function, reliability function, or
hazard function.

(ii) The hazard function is also known as the log-survivor function.
(iii) The hazard rate function is also known as the failure rate function, mortality function,

or hazard function.

Beware!
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Now let At denote the event that T > t . Then

FT |At (s + t) = P(T ≤ s + t |T > t) = F(s + t)− F(t)

1− F(t)
.

This is the probability that the device fails during (t, t + s), given that it has not failed by
time t . Now

lim
s→0

1

s
FT |At (s + t) = (1− F(t))−1 lim

s→0
F(t + s)− F(t)

s
= f (t)

1− F(t)
= r (t).(5)

Thus, r (t) may be thought of as the “intensity” of the probability that a device aged t will
fail.

(6) Example: Exponential Life If T has an exponential density, then F(t) = e−λt ,

H (t) = λt , and r (t) = λ. This constant hazard rate is consonant with the lack-of-memory
property mentioned in Example 7.6.7. Roughly speaking, the device cannot remember
how old it is, and so the failure intensity remains constant. �

We see that intuitively there is a distinction between devices for which r (t) increases,
essentially they are “wearingout,” and those forwhich r (t) decreases, they are “bedding in.”
A simple and popular density in this context is the Weibull density, which can exhibit

both types of behaviour.

(7) Example: Weibull Life If T has density

f (t) = αtα−1 exp (−tα), t > 0, α > 0,

then it has distribution F(t) = 1− exp (−tα). Hence, F(t) = exp (−tα), and so

P(T > t + s|T > s)

P(T > t)
= exp (−(t + s)α + sα + tα),

which is> 1 or< 1 according as α < 1 or α > 1. [To see this, just consider the stationary
value of xα + (1− x)α − 1 at x = 1

2 .] Hence, if α < 1, the chance of lasting a further
time t (conditional on T > s) increases with s. However, if α > 1, this chance decreases
with s. �

The behaviour of r (t) is not the only measure of comparison between new and old devices.
There is a large hierarchy ofmeasures of comparison,whichwe display formally as follows
[in the notation of (1)–(3)].

(8) Definition

(i) If r (t) increases, then T is (or has) increasing failure rate, denoted by IFR.
(ii) If H (t)

t increases, then T is (or has) increasing failure rate average, denoted by IFRA.
(iii) If for all s ≥ 0, t ≥ 0,

H (s + t) ≥ H (s)+ H (t),

then T is new better than used, denoted by NBU.
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(iv) If for all t ≥ 0
E(T ) ≥ E(T − t |At ),

then T is new better than used in expectation, denoted by NBUE.
(v) If for all 0 ≤ s < t <∞

E(T − s|As) ≥ E(T − t |At ),

then T has (or is) decreasing mean residual life, denoted by DMRL. �

The random variable T may also be decreasing failure rate (DFR), decreasing failure rate
on average (DFRA), new worse than used (NWU), new worse than used in expectation
(NWUE), or increasing mean residual life (IMRL). All these are defined in the obvious
way, analogous to (i)–(v).

It can be shown that the following relationships hold between these concepts:

IFRA ⇒ NBU

IFR NBUE
DMRL

⇒
⇒

⇒

⇒

Some of these implications are trivial, and some are established in Example 7.17 below.
These ideas are linked to another concept, that of stochastic ordering.

7.8 Stochastic Ordering

As in Section 7.7, let T be a nonnegative random variable. In general, let R(s) be a random
variable whose distribution is that of T − s given that T > s, namely,

FR(x) = P(T − s ≤ x |T > s).(1)

We refer to R(s) as the residual life (of T at s).
The above example shows that if T has the exponential density, then its residual life is

also exponentially distributed with constant mean.
More generally, FR(s) may depend on s, and more significantly it may do so in a

systematic way; the following definition is relevant here.

(2) Definition Let X and Y be random variables. If

FX (x) ≥ FY (x) for all x,(3)

then X is said to be stochastically larger than Y . �

Now we can supply a connection with the ideas of the preceding section (7.7).

(4) Example If T is a random variable with residual life R(s), s > 0, show that T has
increasing failure rate if and only if R(s) is stochastically larger than R(t) for all s < t .
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Solution First, we find

P(R(t) > x) = P(T − t > x |T > t) = F(t + x)/F(t)(5)

= exp
(
−
∫ t+x

0
r (s)ds

)
exp

(∫ t

0
r (s)ds

)
by (7.7.4)

= exp
(
−
∫ t+x

0
r (s)ds

)
.

Differentiating (5) with respect to t , we have

∂

∂t
P(R(t) > x) = (r (t)− r (t + x)) exp

(
−
∫ t+x

t
r (s)ds

)
.(6)

Because exp (−∫ rds) is positive, and r (t)− r (t + x) is positive or negative according as
T is DFR or IFR, the result follows. �

Finally, we have the useful:

(7) Theorem If X is stochastically larger than Y, then E(X ) ≥ E(Y ).

Proof We prove this when X ≥ 0 and Y ≥ 0. (The general result is left as an exercise.)
From Theorem 7.4.11,

E(X ) =
∫ ∞

0
FX (x)dx ≥

∫ ∞

0
FY (x)dx by hypothesis,

= E(Y ). �

7.9 Random Points

Picking a point Q at random in the interval (0, 1) yielded the uniform density (of the
length OQ). It is intuitively attractive to consider problems that involve picking one or
more points at random in other nice geometric figures, such as discs, squares, triangles,
spheres, and so on. Indeed this idea is so natural that mathematicians had already started
doing this kind of thing in the eighteenth century, and one of the most celebrated articles
on the subject is that ofM.W. Crofton in the 1885 edition of theEncyclopaedia Britannica.
Such questions also have applications in statistics.
Confining ourselves to two dimensions for definiteness, suppose a point Q is picked at

random in a region R of area |R|. Then it is natural to let the probability P(S), that Q lies
in a set S ⊆ R, be given by

P(S) = |S||R| ,(1)

where, now, |S| denotes the area of S. It follows from the properties of area thatP(.) has the
required properties of a probability function, and we can proceed to solve various simple
problems using elementary geometry. The following is typical.

(2) Example A point Q is picked at random in the unit square. What is the probability ν
that it is nearer to the centre O of the square than to its perimeter?
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Solution By symmetry, we need to consider only the sector 0 ≤ y ≤ x ≤ 1
2 . Then the

point (x, y) is nearer to O than the perimeter if
√

x2 + y2 < 1
2 − x ; that is, if in this sector,

x <
1

4
− y2, for 0 ≤ y ≤ 1

2
(
√
2− 1).

Hence, the area is given by an integral and

ν = 8
∫ 1

2 (
√
2−1)

0

(
1

4
− y2 − y

)
dy = 4

3

√
2− 5

3
. �

An equally trivial but much more important example is the following.

(3) Example Let f = f (x) be an integrable function with 0≤ f (x) ≤ 1 for 0 ≤ x ≤ 1.
Let Q be picked at random in the unit square, and let Av be the set of points such that
0 ≤ x ≤ v and 0 ≤ y ≤ f (x). Then, from (1),

P(Q ∈ Av) =
∫ v

0
f (x)dx .(4) �

This trivial result has at least two important applications. The first we have met already in
Example 5.8.9.

(5) Example: Hit-or-Miss Monte Carlo Integration Let f (x) and Q be as defined in
Example 3, and declare Q a hit if Q lies below f (x), 0 ≤ x ≤ 1. Then the probability of a
hit is P(A1) =

∫ 1
0 f (x)dx . Now we pick a sequence of such points Q1, Q2, . . . and let Xn

be the number of hits. If points are picked independently, then Xn is a binomial random
variable with parameters n and P(A1), and we have shown that as n →∞, for ε > 0,

P
(
|n−1Xn −

∫ 1

0
f (x)dx | > ε

)
→ 0.

This therefore offers amethod for evaluating the integral
∫ 1
0 f (x)dx . In practice, onewould

be unlikely to use this method in one dimension, but you might well use the analogous
method to evaluate

∫
f (x)dx, where x is a vector in (say) 11 dimensions. �

(6) Example: Simulation With Q and f (x) defined as above, consider the probability
that Q lies in Av given that it is a hit. By definition, this has probability

P(Av|A1) =

∫ v

0
f (x)dx∫ 1

0
f (x)dx

.

By inspection, the function F(v) = P(Av|A1) is the distribution function of the x-
coordinate of Q given that it is a hit. This procedure therefore offers amethod of simulating
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a random variable X with density function

fX (x) = f (x)∫ 1

0
f (x)dx

.(7)

You can just pick a point Q and, if it is a hit, let its x-coordinate be X . �

A natural next step is to consider events defined jointly by a number of points picked
independently in a region R. One famous example is Sylvester’s problem: for four points
picked at random in R, what is the probability that one of them lies in the triangle formed
by the other three? This is too difficult for us, but we can consider an amusing simpler
problem to illustrate a few of the basic ideas.

(8) Example: Two Points in a Disc Let λ(r ) be the expected value of the distance L(r )
between two points Q1 and Q2, each distributed uniformly (and independently) over a
disc of radius r . Show that

λ(r ) = 128r

45π
.(9)

Solution This can be done by a brutal integration; here is a better way, discovered by
M.V. Crofton in 1885.
Consider a disc of radius x + h, which we may think of as a disc D of radius x ,

surrounded by an annulus A of width h. Then, if Q1 and Q2 are dropped at random on to
the disc of radius x + h, we have (using independence and the properties of the uniform
density) that

P(Q1 ∈ D ∩ Q2 ∈ D) =
(

πx2

π (x + h)2

)2
= 1− 4h

x
+ o(h).(10)

Also,

P(Q1 ∈ D ∩ Q2 ∈ A) = πx2

π (x + h)2

(
1− πx2

π (x + h)2

)
= 2h

x
+ o(h)

and P(Q1 ∈ A ∩ Q2 ∈ A) = o(h). Hence, by conditional expectation,

λ(x + h) = E(L(x + h)|Q1 ∈ D; Q2 ∈ D)

(
1− 4h

x
+ o(h)

)
(11)

+ 2E(L(x + h)|Q1 ∈ D; Q2 ∈ A)

(
2h

x
+ o(h)

)
+ o(h).

Now E(L(x + h)|Q1 ∈ D; Q2 ∈ A) is just the mean distance of a random point Q1 in a
disc of radius x , from a point Q2 on its circumference (plus a quantity that is o(h)). Hence,
taking plane polar coordinates with Q2 as origin:

E(L(x + h)|Q1 ∈ D; Q2 ∈ A) = 1

πx2

∫ π/2

−π/2

∫ 2x cos θ

0
v2dvdθ + o(h)

= 32x

9π
+ o(h).
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Returning to (11), note that E(L(x + h)|Q1 ∈ D; Q2 ∈ D) = λ(x); hence, rearranging
(11) and letting h → 0 gives

dλ(x)

dx
= lim

h→0
1

h

(
λ(x + h)− λ(x)

)
= −4

x
λ(x)+ 128

9π
.

Integrating this, and observing that λ(0) = 0, we have

λ(x) = 128x

45π
. �

Using the same idea, and with a lot more toil, we can find the density of L .
The next natural step is to pick lines (or other objects) at random and ask how they divide

up the region R in random tessellations or coverings. This is well beyond our scope, but
the trivial Example 7.18 illustrates some of the problems.

7.10 Review and Checklist for Chapter 7

We introduced the class of random variables having a density fX (x) and a distribution
FX (x). These take one of an uncountable number of values in R and are called
“absolutely continuous.” The familiar ideas of expectation, conditioning, functions,
and generating functions are explored in this new context, together with some applications.

SYNOPSIS OF FORMULAE:

Key Rule: P(X ∈ B) =
∫

x∈B
fX (x)dx .

Distribution and density:

FX (x) =
∫ x

−∞
fX (y)dy = P(X ≤ x).

For small h,P(x < X ≤ x + h) � fX (x)h, and if F(x) is differentiable d F
dx = f (x).

F(x) is nondecreasing; lim
x→−∞ F(x) = 0;

lim
x→+∞ F(x) =

∫ ∞

−∞
f (u)du = 1, if X is proper.

Mixture: If f and g are densities, then so is

h = λ f + (1− λ)g, 0 ≤ λ ≤ 1.
Functions: If continuous random variables X and Y are such that Y = g(X ) for some
function g(.) that is differentiable and strictly increasing, then

fY (y) = fX (g
−1(y))

d

dy
[g−1(y)],
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where g−1(.) is the inverse function of g. In general, we can write

fY (y) = d

dy

∫
x :g(x)≤y

fX (x)dx,

and proceed by ad hoc arguments.

Expectation: A random variable X has an expected value EX provided that∫∞
−∞ |x | fX (x)dx <∞, and then

EX =
∫ ∞

−∞
x fX (x)dx .

When X > 0,

EX =
∫ ∞

0
P(X > x)dx .

If random variables X and Y are such that Y = g(X ) and X is continuous, then Y has an
expected value if

∫∞
−∞ |g(x)| fX (x)dx <∞ and

EY = Eg(X ) =
∫ ∞

−∞
g(x) fX (x)dx .

Moments: In particular, if g(X ) = Xr , this yields the r th moment µr of X . When X > 0,

EXr =
∫ ∞

0
r xr−1P(X > x)dx .

When g(X ) = exp (t X ), this yields the m.g.f.,

MX (t) =
∫ ∞

−∞
etx fX (x)dx .

Conditioning: Any event B in � may condition a random variable X on �, leading to a
conditional distribution and density,

FX |B(x |B) = P(X ≤ x |B)
and

fX |B(x |B) = d

dx
FX |B(x |B),

when the derivative exists, with the

Key Rule:

P(X ∈ A|B) =
∫

x∈A
f (x |B)dx .

Such conditioned random variables may have an expectation if∫ ∞

−∞
|x | fX |B(x |B)dx <∞,
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Table 7.1. Continuous random variables and their associated characteristics

X f (x) EX var X m.g.f.

Uniform (b − a)−1, a ≤ x ≤ b 1
2 (b + a) 1

12 (b − a)2 ebt−eat

t(b−a)

Exponential λe−λx , x ≥ 0 λ−1 λ−2 λ/(λ− t)

Normal (2π )−1/2σ−1 exp
{
− 1
2

( x−µ
σ

)2}
, µ σ 2 exp (µt + 1

2σ
2t2)

N (µ, σ 2) −∞ < x <∞
Gamma xr−1e−λx λr

(r−1)! , x ≥ 0 rλ−1 rλ−2
(

λ

λ−t

)r

Laplace 1
2λ exp (−λ|x |) 0 2λ−2 λ2

λ2−t2

Cauchy {π (1+ x2)}−1

and then

E(X |B) =
∫ ∞

−∞
x fX |B(x |B)dx .

Table 7.1 gives some useful continuous random variables with their elementary properties.

Checklist of Terms for Chapter 7

7.1 distribution function
density
standard normal density φ(x)
mixture

7.2 functions
inverse function

7.3 simulation
composition

7.4 expected value
expectation of functions
tail integral for expectation

7.5 moment generating function
continuity theorem
O–o notation
de Moivre–Laplace theorem

7.6 conditional distribution
conditional density
conditional expectation
lack-of-memory property

7.7 hazard function
hazard rate

7.8 stochastically larger
7.9 geometrical probability
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WORKED EXAMPLES AND EXERCISES

7.11 Example: Using a Uniform Random Variable

The random variable U is uniformly distributed on (0, 1).

(a) Can you use U to get a random variable with density

f0(y) = 12
(

y − 1

2

)2
for 0 < y < 1?(1)

(b) Actually, you really want a random variable with density

f (x) = 3
((

x − 1

2

)2
+ 1

8
|1− 2x | 12

)
for 0 < x < 1,(2)

and in your pocket is a fair coin. Explain how the coin is useful.

Solution If g(U ) is a continuous increasing function, and Y = g(U ), then

FY (y) = P(g(U ) ≤ y) = P(U ≤ g−1(y)) = g−1(y) because U is uniform.

From (1), we have the distribution of interest

FY (y) =
∫ y

0
12

(
y − 1

2

)2
dy = 4

(
y − 1

2

)3
+ 1

2
.

Hence, if we find a function g(.) such that

g−1(y) = 4
(

y − 1

2

)3
+ 1

2
,

then g(U ) has the density (1) as required. Setting y = g(u) and solving

u = 4
(

g(u)− 1

2

)3
+ 1

2
,

we find immediately that

g(u) =
(

u

4
− 1

8

) 1
3

+ 1

2

is the required function g(.).
For the second part, we notice that

1

|1− 2x | 12
= 1

(1− 2x)
1
2

if 0 < x <
1

2
,

and that

f1(x) =
{
(1− 2x)−

1
2 if 0 < x < 1

2
0 elsewhere
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is a density function. By the method of the first part or by inspection, we see that

g1(U ) = 1

2
(1−U 2)

is a random variable with density f1(x). (To see this, just make the simple calculation

P(g1(U ) ≤ x) = P
(
1

2
(1−U 2) ≤ x

)
= P(U ≥ (1− 2x)

1
2 ) = 1− (1− 2x)

1
2 ,

and differentiate to get the density f1.)
Likewise,

f2(x) =
{
(2x − 1)− 1

2 = |1− 2x | 12 if
1

2
< x < 1

0 elsewhere

is a density function, and

g2(U ) = 1

2
(1+U 2)

is a random variable with density f2. (You can check this, as we did for g1 and f1.)
Now you take the coin and toss it three times. Let A be the event that you get either

three heads or three tails, B the event that you get two heads and a tail (in any order) and
C the event that you get two tails and a head (in any order). Define the random variable

X =




(
U

4
− 1

8

) 1
3

+ 1

2
if A occurs

1

2
(1+U 2) if B occurs

1

2
(1−U 2) if C occurs.

(3)

Then the density of X is just a mixture of the densities of g(U ), g1(U ), and g2(U ), namely,

fX (x) = 1

4
f0(x)+ 3

8
f1(x)+ 3

8
f2(x) = 3

(
x − 1

2

)2
+ 3

8
|1− 2x |− 1

2 ,

as required. [We defined a mixture in (7.1.29).]

(4) Exercise Explain how you would use U to get a random variable with density

f (x) = 3

4

(
1+ (2x − 1)2

)
if 0 < x < 1.

(5) Exercise Show that Y = γ (− logU )
1
β has a Weibull distribution.

(6) Exercise Let the random variable X be defined by

X =



(2U )

1
2 if U <

1

2

2− (2− 2U ) 12 if U ≥ 1

2
.

Show that X has a triangular density on [0, 2].
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(7) Exercise Find the densities of:
(a) tan(πU ).
(b) tan( π2U ).

7.12 Example: Normal Distribution

Let

φ(x) = (2π )− 1
2 e−x2/2;�(x) =

∫ x

−∞
φ(u)du.(1)

(a) Define the sequence of functions Hn(x); n ≤ 0, by

(−)n dnφ(x)

dxn
= Hn(x)φ(x); H0 = 1.(2)

Show that Hn(x) is a polynomial in x of degree n. What is H1(x)?
(b) Define Mills’ ratio r (x) by r (x)φ(x) = 1−�(x). Show that for x > 0

1

x
− 1

x3
< r (x) <

1

x
.(3)

Solution First, make the important observation that

dφ

dx
= d

dx
((2π )−

1
2 e−x2/2) = −xφ.(4)

(a) We use induction. First, by (2),

−Hn+1(x)φ(x) = + d

dx
(Hn(x)φ(x)) = H ′

n(x)φ(x)− Hn(x)xφ(x), by (4).

Hence,

Hn+1(x) = x Hn(x)− H ′
n(x)(5)

and, by (2) and (4), H1(x) = x . The result follows by induction as claimed.
(b) For the right-hand inequality, we consider

1−�(x) =
∫ ∞

x
φ(u)du ≤

∫ ∞

x

u

x
φ(u)du for x > 0,

= −1
x

∫ ∞

x
φ′(u)du by (4),

= 1

x
φ(x).
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For the left-hand inequality, we consider

1−�(x) =
∫ ∞

x
φ(u)du = −

∫ ∞

x

φ′(u)
u

du by (4)(6)

= −
[
φ(u)

u

]∞
x

−
∫ ∞

x

φ(u)

u2
du on integrating by parts,

= φ(x)

x
+
∫ ∞

x

φ′(u)
u3

du by (4),

= φ(x)

x
− φ(x)

x3
+
∫ ∞

x

3φ(u)

u4
du on integrating by parts,

≥ φ(x)

{
1

x
− 1

x3

}
.

Remark For large x , these bounds are clearly tight.

(7) Exercise The polynomials Hn(x) are known as Hermite (or Chebyshov–Hermite) polynomials.
Show that they are orthogonal with respect to φ(x) over R, which is to say that∫ ∞

−∞
Hn(x)Hm(x)φ(x)dx =

{
0 m �= n
n! m = n.

(8) Exercise Show that the exponential generating function of the Hn is

∞∑
n=0

Hn(x)
tn

n!
= etx− 1

2 t2 .

(9) Exercise Show that for x > 0

1

x
− 1

x3
< r (x) <

1

x
− 1

x3
+ 3

x5
.

(10) Exercise Let X have the Weibull distribution F(x) = 1− exp(−(λt)2). Show that

1

2
λ−2t−1 − 1

4
λ−4t−3 < E(X − t |X > t) <

1

2
λ−2t−1.

7.13 Example: Bertrand’s Paradox

(a) A point P is chosen at random inside a circular disc of radius a. What is the probability
that its distance from O , the centre of the disc, is less than d? Let X be the length of
the chord of the disc of which P is the midpoint. Show that P(X >

√
3a) = 1

4 .

(b) Now choose another chord as follows. A point Q is fixed on the circumference of the
disc and a point P is chosen at random on the circumference. Let the length of PQ be
Y . Show that P(Y >

√
3a) = 1

3 .

Solution (a) If P is less than d from the centre, then it lies inside the disc of radius d
with area πd2. Therefore, the required probability is

πd2/(πa2) = d2/a2.(1)
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Figure 7.9 Bertrand’s paradox. In this case, X <
√
3a because O P > 1

2a.

Now X >
√
3a if and only if the chord RQ subtends an angle greater than 2π

3 at the centre
of the disc. This occurs (see Figure 7.9) if and only if OP has length less than 1

2a.
Hence, by (1),

P(X >
√
3a) = (a/2)2

a2
= 1

4
.

(b) As in (a), we observe that Y >
√
3a if and only if PQ subtends an angle greater than

2π/3 at O . This occurs if and only if P lies on the dashed interval of the circumference
of the disc in Figure 7.10. Because this interval is one-third of the circumference, P(Y >√
3a) = 1

3 .

(2) Exercise In part (b), suppose that Q is picked at random as well as P . What is P(Y >
√
3a)?

(3) Exercise A point P is picked at random on an arbitrarily chosen radius of the disc. Let Z be
the length of the chord of which P is the midpoint. Show that P(Z >

√
3a) = 1

2 .

(4) Exercise A point Q is fixed on the circumference. The chord is drawn, which makes an angle
! with the tangent at Q, where ! is uniform on (0, π ). If the length of this chord is W , show that
P(W >

√
3a) = 1

3 .

Is it just a coincidence that this answer is the same as (b) above?

Figure 7.10 Bertrand’s paradox. In this case, Y >
√
3a.
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7.14 Example: Stock Control

Amanufacturer of bits and bobs has a shop. Each week it is necessary to decide howmany
bits to deliver to the shop on Monday, in light of the following information.

(i) Delivering y bits costs c per bit, plus a fixed delivery charge k.
(ii) Any bit unsold at the weekend has to be packed, stored, insured, and discounted over

the weekend, at a total cost of h per bit.
(iii) If the shop sells every bit before the weekend, then further customers that week are

supplied by post at the end of the week; this costs p per bit, due to postage, packing,
paperwork, and other penalties, and p > c.

(iv) The demand Z for bits each week is a random variable with density f (z) and distri-
bution F(z) where F(0) = 0.

If the manager seeks to minimize the expected costs of her decision and she has x bits in
the shop over the weekend, approximately how many bits should she order on Monday
morning?
Note that the customer pays the same whether the bit comes from the shop or factory.

Note also that the problem implicitly assumes that we are content with a continuous
approximation to what is actually a discrete problem.

Solution If nothing is delivered, then costs are

p(Z − x) if Z > x ;
h(x − Z ) if Z < x .

Hence, expected costs are

λ(x) = p
∫ ∞

x
(z − x) f (z)dz + h

∫ x

0
(x − z) f (z)dz.(1)

If y − x bits are delivered, to bring the stock of bits to y, then expected costs are

µ(x, y) = k + c(y − x)+ λ(y).(2)

Now

∂µ

∂y
= c + λ′(y) = c + hF(y)− p(1− F(y))

and

∂2µ

∂y2
= (h + p) f (y) ≥ 0.

Becauseµ′(0) < 0, andµ′(y) > 0 for large y, it follows thatµ(x, y) has a uniqueminimum
at the value ŷ such that

F(ŷ) = p − c

p + h
.(3)
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Thus, if any delivery is made, the expected total costs are minimized by choosing y = ŷ,
and the minimum is

µ(x, ŷ) = k + c(ŷ − x)+ λ(ŷ).
The only alternative is to have no delivery, with expected total cost λ(x). Hence, the
optimal policy is to have no delivery when x > ŷ or

λ(x) ≤ k + cŷ + λ(ŷ)− cx,

and to deliver ŷ − x when x < ŷ and

λ(x) > k + cŷ + λ(ŷ)− cx .

Now, if we set g(x) = λ(x)+ cx , we have

g′(x) = c − p + (h + p)F(x)

and

g′′(x) = (h + p)F(x) ≥ 0.
Because g′(0) < 0 and g′(ŷ) = 0, it follows that there is a unique point x̂ such that

g(x̂) = λ(x̂)+ cx̂ = k + cŷ + λ(ŷ).(4)

Hence, the optimal policy takes the simple form:

Deliver no bits if x ≥ x̂ , or
Deliver ŷ − x bits if x < x̂ ,

where ŷ satisfies (3) and x̂ satisfies (4).

(5) Exercise What is the optimal policy if the fixed delivery cost k is zero?
(6) Exercise Suppose that the postal deliveries also have a setup cost, so that posting y bits costs

m + py. If demand is exponentially distributed with distribution

F(x) =
{
1− e−λ(x−a); x ≥ a
0; x < a,

find the optimal delivery policy.

7.15 Example: Obtaining Your Visa

A certain consular clerk will answer the telephone only on weekdays at about 10.00 a.m.
On any such morning, it is an evens chance whether he is at his desk or not; if he is absent
no one answers, and days are independent. The line is never engaged.
If he is at his desk, the time T that he takes to answer the telephone is a random variable

such that

P(T ≤ t) =
{
0 t ≤ 1
1− t−1 t > 1.

(1)
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(a) If you telephone this clerk one morning, and do not hang up, what is the probability
that the telephone rings for at least a time s?

(b) You adopt the following procedure. Each day until you are successful you telephone
the clerk and hang up at time s if he has not answered by then.

Show that to minimize the expected time you spend listening to the ringing tone, you
should choose s to be the unique positive root s0 of log s = (s + 1)(s − 2).

Solution (a) Let R be the ringing time. Conditioning on whether the clerk is there or
not, we have

P(R > s) = 1

2
P(R > s| absent)+ 1

2
P(R > s| present)(2)

=
{
1 for s < 1
1

2
+ 1

2
.
1

s
for s ≥ 1, by (1).

(b) If your call is successful, then the expected time for which the telephone rings is

E(R|R < s) =
∫ s

0
P(R > x |R < s) dx by (7.4.12)(3)

=
∫ s

0

P(x < R < s)dx

P(R < s)
= 1+

∫ s

1

s

s − 1(x
−1 − s−1) dx

= s log s

s − 1 , s > 1.

The number of unsuccessful calls has a geometric mass function with parameter ρ =
1
2 (1− 1

s ), and expectation

1− ρ
ρ

=
1

2
(1+ 1

s
)

1

2
(1− 1

s
)
= s + 1

s − 1 .(4)

Hence, the expected time spent listening to the ringing tone is

ω(s) = s(s + 1)
s − 1 + s log s

s − 1 .(5)

Differentiating with respect to s gives ω′(s) = (s − 1)−2(s2 − s − 2− log s). Thus, a sta-
tionary value in (1,∞) occurs at a zero of s2 − s − 2− log s. That is where (s − 2)
(s + 1) = log s.

(6) Exercise Show that there is just one such zero, and by inspection of (5) this stationary value is
a minimum ωmin.

(7) Exercise Show that ω(s) ≤ 2s2/(s − 1) and deduce that ωmin ≤ 8.
(8) Exercise More generally, suppose that the clerk is in his office with probability p and that

P(T ≤ x) = F(x).
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Show that

E(R) = s

pF(s)
−
∫ s

0

F(x)

F(s)
dx .

When F(x) = x
1+x , show that

E(R) = (1+ s)((1− p)p−1 + s−1 log(1+ s)).

7.16 Example: Pirates

Expensive patented (or trade marked) manufactures are often copied and the copies sold
as genuine. You are replacing part of your car; with probability p you buy a pirate part,
with probability 1− p a genuine part. In each case, lifetimes are exponential, pirate parts
with parameter µ, genuine parts with parameter λ, where λ < µ. The life of the part you
install is T . Is T IFR or DFR? Does it make any difference if λ > µ? (See Section 7.7 for
expansions of the acronyms.)

Solution By conditional probability,

P(T > t) = F(t) = pe−µt + (1− p)e−λt .

Hence, setting q = 1− p, we have

r (t) = f (t)/F(t) = µp + λqe(µ−λ)t

p + qe(µ−λ)t
= λ+ p(µ− λ)

p + qe(µ−λ)t
.(1)

This decreases as t increases. Hence, your part has DFR.
It makes no difference if λ > µ. This is obvious anyway by symmetry, but also r (t)

given by (1) decreases as t increases if λ > µ.

(2) Exercise What happens if λ = µ?
(3) Exercise Suppose the part has survived for a time t after you install it.

(a) Show that the probability π that it is a pirate part is given by

π (t) = p

p + (1− p)e(µ−λ)t
.

(b) Find the limit of π (t) as t →∞, and explain why the answer depends on whether λ > µ or
λ < µ.

(4) Exercise Let X have density f and m.g.f. MX (θ ) = E(eθX ). Show that

d2

dθ2
log(MX (θ )) > 0.

[You have shown that MX (θ ) is log–convex, if you are interested.]
(5) Exercise Due to variations in the manufacturing process, the lifetime T is exponential with

parameter " where " has density f (λ). Use the preceding exercise to show that T is DFR.
(6) Exercise Let T" be a family of random variables indexed by a parameter ", where " is a

random variable with density f (λ). Let M(t) be the continuous mixture

M(t) = P(T" ≤ t) =
∫ ∞

0
FTλ (t) f (λ)dλ.
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Show that if FTλ (t) is DFR for all λ, then M(t) is DFR. [Hint: The Cauchy–Schwarz inequality says
that E(XY ) ≤ (E(X2)E(Y 2))

1
2 .]

7.17 Example: Failure Rates‡

Let T have distribution F(t).

(a) Show that T is IFRA if and only if, for all 0 ≤ α ≤ 1,
(F(t))α ≤ F(αt).(1)

(b) Show also that if T is IFRA, then it is NBU.

Solution (a) By definition, T is IFRA if H (t)/t = 1
t

∫ t
0 r (v)dv is increasing in t .

This is the same as saying that, for all 0 ≤ α ≤ 1,
1

αt

∫ αt

0
r (v)dv ≤ 1

t

∫ t

0
r (v)dv.

But, by (7.7.4), this is equivalent to

−1
α
log F(αt) ≤ − log F(t).(2)

Now (1) follows as required because ex is a monotone increasing function of x .
(b) Because H (t)/t is increasing in t , for all 0 ≤ α ≤ 1, we have H (αt) ≤ αH (t), and
H ((1− α)t) ≤ (1− α)H (t). Hence,

H (αt)+ H (t − αt) ≤ H (t).(3)

Setting αt = s gives condition (iii) in Definition 7.7.8 for NBU.

(4) Exercise Show that if T is IFR, then it is IFRA and DMRL.
(5) Exercise Show that if T is NBU or DMRL, then it is NBUE.
(6) Exercise Let T have a gamma density with parameters 2 and λ. Find H (t) and r (t). Is T IFR?

7.18 Example: Triangles

A point P is chosen at random along a rod of length l.

(a) The rod is bent at P to form a right angle, thus forming the two shorter sides of a
right-angled triangle. Let ! be the smallest angle in this triangle. Find E(tan!) and
E(cot!).

(b) The rod is now cut into two pieces at P . A piece is picked at random and cut in half.
What is the probability that the three pieces of the rod can form a triangle of any

kind? Show that, conditional on the event that a triangle can be formed, the probability
that it has no obtuse angle is 2(

√
2− 1).

‡ See Section 7.7 for expansions of the acronyms.
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Solution Without loss of generality, we can suppose the rod to be the unit interval, so
that the length OP is a random variable X uniformly distributed on [0, 1].

(a) Because ! is the smallest angle

tan! =




X

1− X
; 0 ≤ X <

1

2
1− X

X
;
1

2
≤ X ≤ 1.

Hence,

E(tan!) =
∫ 1

2

0

x

1− x
dx +

∫ 1

1
2

1− x

x
dx = 2 log 2− 1 � 0.39.(1)

For variety and instruction, we choose a different method of finding E(cot!). Let
Y = cot!. Then, for y ≥ 1,

F(y) = P(Y ≤ y) = P
(

1

tan!
≤ y

)

= P
(

X ≤ y

1+ y

⋂
X ≥ 1

1+ y

)

= FX

(
y

1+ y

)
− FX

(
1

1+ y

)

= + y − 1
y + 1 .

Hence, differentiating

fY (y) = 2

(y + 1)2 .(2)

Thus,

E(cot!) = E(Y ) =
∫ ∞

1

2y

(y + 1)2 dy = ∞.

(b) Suppose (without loss of generality) that the piece cut in half has length 1− X.Then, if
it exists, the triangle is isosceles with sides 12 (1− X ), 12 (1− X ), X. This is possible if
and only if 12 (1− X ) > 1

2 X,which occurs if and only if X < 1
2 ,which has probability

1
2 .

There is an obtuse angle (between the two sides of equal length) if and only if

1
2 X

1
2 (1− X )

>
1√
2
,

which occurs if and only if X >
√
2− 1.



332 7 Continuous Random Variables

Hence,

P (no obtuse angle | the triangle exists) =
P
(
{X <

√
2− 1} ∩ {

X < 1
2

})
P
(
X < 1

2

)
= P(X <

√
2− 1)

P
(
X < 1

2

) = 2(
√
2− 1).

(3) Exercise What is the distribution of the length X∧ (1− X ) of the shortest side of the triangle?
(4) Exercise The longest side is X∨ (1− X ). Show that

E {X ∧ (1− X )}
E {X ∨ (1− X )} =

1

3
,

where x ∧ y = min {x, y} and x ∨ y = max {x, y} .
(5) Exercise Find

E(sin!)
E(cos!)

.

(6) Exercise Show that the hypotenuse of the triangle has density

f (y) = 2y

(2y2 − 1) 12
,

1√
2
≤ y ≤ 1.

(7) Exercise Let X have density

fX (x) = 1

B(a, b)
xa−1(1− x)b−1; 0 < x < 1.

Show that E(cot!) is finite if and only if a > 1 and b > 1. [See Problem 7.3 for the definition of
B(a, b).]

7.19 Example: Stirling’s Formula

Let  (x) be the gamma function defined by

 (x) =
∫ ∞

0
t x−1e−t dt.(1)

(a) Show that

 (x) = x x− 1
2 e−x

∫ ∞

−x
1
2

(1+ ux−
1
2 )x−1e−ux

1
2 du.(2)

(b) Show that for fixed u the integrand converges to exp(− 1
2u2), as x →∞, and deduce

that, as x →∞,

 (x)ex x−x+ 1
2 →

∫ ∞

−∞
exp

(
−1
2

u2
)

du.(3)

You may assume that log(1+ x) = x − 1
2 x2 + O(x3) for |x | < 1.

Proof (a) Making the substitution t = x + ux
1
2 in (1) gives (2).
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(b) Let the integrand in (2) be f (x, u). Then for u < x
1
2 ,

log f (x, u) = −ux
1
2 + (x − 1) log(1+ ux

1
2 ) = −1

2
u2 − ux−

1
2 + O(x−1)(4)

→ −1
2

u2 as x →∞.

Now, if we were justified in saying that

lim
x→∞

∫
f (x, u)du =

∫
lim

x→∞ f (x, u) du,(5)

then (3) would follow from (2), (4), and (5). However, it is a basic result in calculus† that
if 0 ≤ f (x, u) ≤ g(u), where

∫∞
−∞ g(u)du <∞, then (5) is justified. All we need to do is

find a suitable g(u).
First, for x

1
2 > 1 and u ≥ 0,

eu f (x, u) = e−u(x1/2−1)(1+ ux
1
2 )x−1→ 0 as u →∞.

Hence, f (x, u) < M1e−u, u ≤ 0, for some constant M1. Second, for u < 0, the function
e−u f (x, u) has a maximum where

− (1+ x
1
2 )+ (x − 1)(u + x

1
2 )−1 = 0,

that is, at u = −1. Hence,
f (x, u) ≤ eu max

u<0

{
e−u f (x, u)

} = eu(1− x−
1
2 )x−1 exp(1+ x

1
2 )

→ eue
1
2 as x →∞.

Hence, for some constant M2, f (x, u) < M2eu, u < 0. Therefore, f (x, u) < Me−|u| for
some M , and we have our g(u).

(6) Exercise Show that limn→∞ n!enn−n− 1
2 = (2π ) 12 .

(7) Exercise Let (Sn ; n ≥ 0) be a simple random walk with S0 = 0. Given that S2n = 0, find the
probability Pb that Sr = b for some r such that 0 ≤ r ≤ 2n. Show that if n →∞ and b →∞ in
such a way that b = yn

1
2 , then Pb → e−y2 .

(8) Exercise: de Moivre–Laplace Theorem Let Sn be binomial with parameters n and p. Define

Yn = Sn − np

(npq)
1
2

, q = 1− p, and yk = k − np

(npq)
1
2

.

Show that as n →∞

P(Sn = k) =
(

n

2πk(n − k)

) 1
2 (np

k

)k
(

nq

n − k

)n−k

(1+ o(1)).

Deduce that as n →∞

P(Yn = yk) =
(

1

(2πnpq)
1
2

exp

(
−1
2

y2k

)) (
1+ O

(
n−

1
2
))

†The Dominated Convergence Theorem.
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Conclude that for fixed finite a and b, as n →∞,

P(a < Yn < b)→ 1

(2π )
1
2

∫ b

a
e−

1
2 y2dy = �(b)−�(a).

(9) Exercise Let (Sn ; n ≥ 0) be a simple random walk with S0 = 0.Given that S2n = 2 j, show that
the probability that the last visit to the origin was at the 2r th step is

fr = j

n − r

(
n + j

r

)(
n − j

r

)/(
2n

2r

)
, 0 ≤ x < n.

Show that if r, j, and n all increase in such a way that r
n → x, j/

√
n → y, then

lim
r→∞ fr = y√

πx

1

(1− x)
3
2

exp

(−xy2

1− x

)
, 0 < x < 1.

Remark The result of Exercise 6, which is known as Stirling’s formula, was estab-
lished by de Moivre in 1730. The formula actually proved by Stirling in 1730 was

n!

(
n + 1

2

)−(n+ 1
2 )

en+ 1
2 → (2π )

1
2 , as n →∞.(10)

(11) Exercise Prove (10).

PROBLEMS

1 Let f (x) = c(α, β)(x − α)(β − x).
For what values of x and c(α, β) can f be a density function?

2 Let X have distribution F(x). Show that P(X = x) > 0 if and only if F(x) is discontinuous at x .
3 The beta function B(a, b) is given by B(a, b) = ∫ 1

0 v
a−1(1− v)b−1dv; a > 0, b > 0. The beta dis-

tribution has density

f (x) = 1

B(a, b)
xa−1(1− x)b−1 for 0 < x < 1.

If X has the beta distribution, show that E(X ) = B(a + 1, b)/B(a, b).What is var (X )?
4 For what value of c is f = c(sin x)α(cos x)β ; 0 < x < π/2, a density function?
5 What is the distribution function of the random variable having the beta density with a = b = 1

2 ?
6 Let X have the density f = exp(−x − exp(−x)) for x ∈ R. What is the distribution function of X?
7 Let X be exponentially distributed with parameter λ. What is the density of Y = eaX? For what

values of λ does E(Y ) exist?
8 Let X have the gamma density with parameters α and λ. Show that

µk = α(α + 1) . . . (α + k − 1)λ−k, and var(X ) = α

λ2
.

9 Let X have the standard normal density, and a > 0. Show that

P(X > x + ax−1|X > x)→ e−a as x →∞.

10 (a) Let X have the standard normal density. Show that |X | has distribution function F = 2�(x)− 1,
for x > 0.
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(b) Let X have distribution F(x).What is the distribution of |X |? What is the density of |X | if it
exists?

11 An elastic string has modulus of elasticity λ and natural length l0. A mass m is attached to one end,
the other being fixed. The period of oscillation of the mass when slightly displaced is 2π

√
ml0/λ.

Suppose that the modulus of elasticity is uniformly distributed on [a, b]. What is the density and
expectation of the period?

12 Let X have density f (x). Construct a simple random variable Sn(X ) such that given ε >

0,P(|Sn(X )− X | > ε) < 2−n . (Assume X is proper.)
13 If X is exponentially distributed find the m.g.f. of X , E(et X ).
14 A point Q is chosen at random inside an equilateral triangle of unit side. Find the density of the

perpendicular distance X to the nearest side of the triangle.
15 For what value of c is E((X − c)2) least?
16 Suppose a machine’s lifetime T has hazard rate λ

√
t, where λ > 0. Find P(T > t).

17 Suppose that X has distribution function

F(x) = 1− exp
(
−
∫ x

0
g(u)du

)

for some function g(.). Show that this is possible if and only if g(u) ≥ 0 and ∫∞0 g(u)du = ∞.
18 What are the cumulants of the normal density?
19 What are the cumulants of the exponential density?
20 You have two independent random variables, each uniform on (0, 1). Explain how you would use

them to obtain a random variable X with density

f (x) = 3

5

(
1+ x + 1

2
x2
)

for 0 ≤ x ≤ 1.

21 Define I (a, b) = ∫∞
0 exp(−a2u2 − b2u−2)du for a, b > 0. Show that:

(a) I (a, b) = a−1 I (1, ab); (b) ∂ I
∂b = −2I (1, ab); (c) I (a, b) =

√
π

2a e−2ab.

22 Use the result of Problem 21 to find the m.g.f. of the following densities:
(a) f (x) = αx−

1
2 exp(−β/x − γ x) for x > 0;β, γ > 0.What is α?

(b) f (x) = (2πx3)−
1
2 exp(−(2x)−1) for x > 0.

23 Let X be a standard normal random variable. What is the density of X−2?
24 Let X be a standard normal random variable. Find the m.g.f. and density of X2.
25 What is the moment generating function of the two-sided exponential density? Where is it defined?
26 Let U be uniform on (0, 1). Show that, if [a] denotes the integer part of a, and 0 < p < 1,

X = 1+
[

logU

log(1− p)

]

has a geometric distribution.
27 Let U be uniform on (0, 1). Show how to use U to simulate a random variable with density

f (x) = 24

25

(
1+ 1

2

(
x − 1

2

)2)
; 0 ≤ x ≤ 1.

28 Let P and Q be two points chosen independently and uniformly in (0, a). Show that the distance
between P and Q has density 2(a − x)a−2 for 0 < x < a.

29 Continuous mixture Let f (θ, x) be the exponential density with parameter θ for 0 ≤ x . Let
g(θ ) = νe−νθ for θ ≥ 0, ν > 0. Show that ∫∞0 f (θ, x)g(θ )dθ is a density.

30 Let Xn be a Poisson randomvariable with parameter n. Show that as n →∞,P(Xn ≤ n +√nx)→
�(x).
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31 LetU be uniform on (0, 1). Show how to simulate a random variable X with the Pareto distribution
given by F(x) = 1− x−d ; x > 1, d > 1.

32 Let Xα have gamma density with parameters α and 1, so fα(x) = xα−1e−x

(α−1)! . Let φα(x) be the density

of Yα = (Xα − α)α− 1
2 . Show that as α→∞, φα(x)→ φ(x), where φ(x) is the standard normal

density.
33 Let X have mean µ and variance σ 2. Show that P(|X − µ| ≤ aσ ) ≥ 1− a−2, for any a > 0. Let Z

be a standard normal random variable, and define Y = α + βZ + γ Z2. Find the mean and variance
of Y , and show that

P
(
|Y − α − γ | ≤ 1

2
α

)
≥ 1− 4α−2(β2 + 2γ 2).

34 Verify the assertions of Theorem 7.4.16.
35 Use the indicator function I (X > x) to show that, for a random variable X that is nonnegative,

(a) EX =
∫ ∞

0
P(X > x) dx .

(b) EXr =
∫ ∞

0
r xr−1P(X > x) dx .

(c) EeθX = 1+ θ
∫ ∞

0
eθxP(X > x) dx .

(d) When X ≥ 0 is integer valued,
∞∑

k=0
skP(X > k) = 1− G X (s)

1− s
.

36 Let X be a standard normal random variable with density φ(x) and distribution �(x). Show that
for x > 0,

x

x2 + 1φ(x) ≤ 1−�(x) ≤
1

x
φ(x).

[Hint: Consider f (x) = xe−x2/2− (x2 + 1)[1−�(x)].]
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Jointly Continuous Random Variables

Some instances of correlation are quite whimsical: thus cats which are
entirely white and have blue eyes are generally deaf.

Charles Darwin, Origin of Species

8.1 Joint Density and Distribution

It is often necessary to consider the joint behaviour of several randomvariables, whichmay
each take an uncountable number of possible values. Just as for discrete random vectors,
we need to define a variety of useful functions and develop the appropriate machinery to
set them to work. For simplicity in definitions and theorems, we start by considering a
pair of random variables (X, Y ) taking values in R

2. This theoretical outline can be easily
extended to larger collections of random variables (X1, X2, . . . , Xn) taking values in R

n ,
with a correspondingly greater expenditure of notation and space.
As usual, we should start with a sample space �, an event space F , and a probability

function P, such that for all x and y

Axy = {ω: X ≤ x, Y ≤ y} ∈ F .
Then

F(x, y) = P(Axy) = P(X ≤ x, Y ≤ y)(1)

is the joint distribution function of X and Y . In fact, we suppress this underlying structure,
and begin with random variables X and Y having joint distribution F(x, y) given by (1).
A special class of such jointly distributed random variables is of great importance.

(2) Definition Let F(x, y) be a joint distribution. Suppose that ∂2F
∂x∂y exists and is

nonnegative, except possibly on a finite collection of lines in R
2. Suppose further that

the function f (x, y) defined by

f (x, y) =


∂2F

∂x∂y
where this exists

0 elsewhere,

337
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satisfies

F(x, y) =
∫ x

−∞

∫ y

−∞
f (u, v) du dv.(3)

Then X and Y , being random variables having the (joint) distribution F, are said to
be (jointly) continuous with (joint) density function f (x, y). �

The words “joint” and “jointly” are often omitted to save time and trees. Sometimes we
write fX,Y (x, y) and FX,Y (x, y) to stress the role of X and Y , or to avoid ambiguity.

(4) Example: Uniform Distribution Suppose you pick a point Q at random in the rect-
angle R = (x, y : 0 < x < a, 0 < y < b). Then from the properties of the uniform distri-
bution [see (7.8.1)], we have

F(x, y) =




1 if x ≥ a, y ≥ b
xy

ab
if 0 ≤ x ≤ a, 0 ≤ y ≤ b

y

b
if x ≥ a, 0 ≤ y ≤ b

x

a
if 0 ≤ x ≤ a, y ≥ b

0 elsewhere.

(5)

Differentiating wherever possible gives

∂2F

∂x∂y
=



1

ab
if 0 < x < a, 0 < y < b

0 if x < 0 or x > a
or y < 0 or y > b.

(6)

Hence, the function

f (x, y) =


1

ab
if 0 < x < a, 0 < y < b

0 otherwise
(7)

satisfies (3), and is the density of X and Y . It is uniformly distributed over the rectangle R.
Furthermore, if A is a subset of R with area |A|, then using (7.8.1) (and a theorem about
double integrals), we have

P((X, Y ) ∈ A) = |A|
ab
=

∫ ∫
(x,y)∈A

f (x, y) dxdy.(8) �

In fact, a version of the useful relationship (8) holds true for all densities f (x, y). This is
important enough to state formally as a theorem, which we do not prove.
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(9) Theorem If X and Y have density f (x, y) and P((X, Y ) ∈ A) exists, then it is
given by the Key Rule:

P((X, Y ) ∈ A) =
∫ ∫

(x,y)∈A
f (x, y) dxdy.

Note that the condition that the probability exists is equivalent to saying that {ω:
(X (ω), Y (ω)) ∈ A} ∈ F . This is another demonstration of the fact that, although we can
just about suppress (�,F,P) at this elementary level, further rigorous progress is not
possible without bringing the underlying probability space into play. The attractive result
(9) may then be proved.
Here is a simple example of Theorem 9 in use.

(10) Example Let X and Y have density

f (x, y) =
{
8xy if 0 < y < x < 1
0 elsewhere.

What are P(2X > 1, 2Y < 1) and P(X + Y > 1)? Find F(x, y).

Solution Notice that the constraints 2X > 1, 2Y < 1 require that (X, Y ) ∈ S, where
S is the square with vertices ( 12 , 0), (1, 0), (

1
2 ,

1
2 ), (1,

1
2 ). Hence,

P(2X > 1, 2Y < 1) = 8
∫ 1

1
2

∫ 1
2

0
f (x, y) dydx = 8

∫ 1

1
2

x dx
∫ 1

2

0
y dy = 3

8
.

Likewise, X + Y > 1 if (X, Y ) ∈ T , where T is the triangle with vertices ( 12 ,
1
2 ), (1, 0),

(1, 1). Hence,

P(X + Y > 1) = 8
∫ 1

1
2

∫ x

1−x
xy dy dx = 5

6
.

Finally,

F(x, y) =
∫ y

0

∫ x

v

8uv du dv = 2x2y2 − y4. �

The geometric problems of Section 7.9 can now be reformulated and generalized in this
new framework. Obviously, “picking a point Q at random in some region R” is what we
would now describe as picking (X, Y ) such that X and Y are jointly uniform in R. More
generally, we can allow (X, Y ) to have joint density f (x, y) in R.

Example:More Triangles The random variables X and Y have joint density

f (x, y) =
{

cxa if x < 1, y < 1, x + y > 1, a > −1,
0 otherwise.

(a) What is c?
(b) What is F(x, y)?



340 8 Jointly Continuous Random Variables

(c) Show that it is possible to construct a triangle with sides X, Y, 2− X − Y , with prob-
ability one.

(d) Show that the angle opposite to the side of length Y is obtuse with probability

p0 = c
∫ 1

0

xa+1 − xa+2

2− x
dx .

(e) When a = 0, show that p0 = 3− 4 log 2.

Solution (a) Because
∫ ∫

f (x, y) dx dy = 1, this entails

c−1 =
∫ 1

0
xa

∫ 1

1−x
dy dx = (a + 2)−1.

(b) Using (3) gives

F(x, y) =
∫ x

1−y

∫ y

1−u
cua dv du = a + 2

a + 1 yxa+1 + xa+2 − a + 2
a + 1 xa+1

+ 1

a + 1(1− y)a+2.

(c) Three such lengths form a triangle if X + Y > 2− X − Y, X + 2−
X − Y > Y , and Y + 2− X − Y > X . But these constraints are just those that
define the region in which f (x, y) is nonzero and

∫ ∫
f dx dy = 1.

(d) if θ is the angle opposite Y , then

cos θ = X2 + (2− X − Y )2 − Y 2

2X (2− X − Y )
< 0,

if θ is an obtuse angle. Hence, in this case,

Y >
X2 − 2X + 2
2− X

= g(X ), say.

Now g(x) ≥ 1− x (with equality only at x = 0). Hence, p0 is given by

P(θ is obtuse) = P(Y > g(X )) =
∫ 1

0

∫ 1

g(x)
f (x, y) dydx

= c
∫ 1

0
(1− g(x))xa dx = c

∫ 1

0

x − x2

2− x
xa dx .

(e) When a = 0,

p0 = 2
∫ 1

0

x − x2

2− x
dx = 2

∫ 1

0

2x − x2

2− x
+ 2− x

2− x
− 2

2− x
dx = 3− 4 log 2. �

Next we record that, as a result of (1) and Theorem 9, f (x, y) and F(x, y) have the
following elementary properties, analogous to those of f and F in the discrete case.
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First, F(x, y) is obviously nondecreasing in x and y. More strongly, we have

0 ≤ P(a < X ≤ b, c ≤ Y ≤ d)(11)
= P(a < X ≤ b, Y ≤ d)− P(a < X ≤ b, Y ≤ c)
= F(b, d)− F(a, d)− F(b, c)+ F(a, c).

Second, if X and Y are finite with probability 1, then

1 =
∫ ∞

−∞

∫ ∞

−∞
f (u, v) du dv = lim

x,y→∞ F(x, y).(12)

Third, knowledge of F(x, y) and f (x, y)will also provide uswith the separate distributions
and densities of X and Y . Thus, the marginals are:

FX (x) = P(X ≤ x) = lim
y→∞P(X ≤ x, Y ≤ y) =

∫ ∞

−∞

∫ x

−∞
f (u, v) dudv,(13)

and

fX (x) = d

dx
FX (x) =

∫ ∞

−∞
f (x, v) dv.(14)

Likewise,

fY (y) =
∫ ∞

−∞
f (u, y) du(15)

and

FY (y) = lim
x→∞ F(x, y).(16)

Here are some examples to illustrate these properties. Note that in future we will specify
f (x, y) only where it is nonzero.

(17) Example Verify that the function f (x, y) = 8xy for 0 < y < x < 1 is a density. For
what value of c is f (x, y) = cxy for 0 < x < y < 1, a density? Find the density of X in
the second case.

Solution Because f > 0 and∫ 1

0

∫ x

0
8xy dydx =

∫ 1

0
4x3 dx = 1,

f is indeed a density. By symmetry, c = 8 in the second case also, and we have

fX (x) =
∫ 1

0
8xy dy = 4x(1− x2). �

(18) Example The function H (x, y) = 1− e−(x+y) for x > 0, y > 0, is nondecreasing in
x and y, and 0 ≤ H ≤ 1. Is it a distribution?
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Solution No, because ∂2H
∂x∂y exists and is negative in x > 0, y > 0. Alternatively, note

that

H (1, 1)− H (1, 0)− H (0, 1)+ H (0, 0) = 2e−1 − 1− e−2 < 0,

which cannot (as it should) be the value of P(0 < X ≤ 1, 0 < Y ≤ 1). �

(19) Example: Bivariate Normal Density Verify that when σ, τ > 0,

f (x, y) = 1

2πστ (1− ρ2) 12
exp

[
− 1

2(1− ρ2)
(

x2

σ 2
− 2ρxy

στ
+ y2

τ 2

)]

is a density for |ρ| < 1, and find the marginal densities fX (x) and fY (y).

Solution From (14), if f (x, y) is a density, we have

fX (x) =
∫ ∞

−∞
f (x, y) dy

= 1

2πστ (1− ρ2) 12
∫ ∞

−∞
exp

[
− 1

2(1− ρ2)
((

y

τ
− ρx

σ

)2
+ x2

σ 2
− ρ2x2

σ 2

)]
dy

Now setting
y

τ
− ρx

σ
= u, and recalling that

∫ ∞

−∞
exp

(
− u2

2(1− ρ2)
)
τ du = (2π (1− ρ2)) 12 τ

yields

fX (x) = 1

(2π )
1
2 σ
exp

(
− x2

2σ 2

)
.

This is the N (0, σ 2) density, and so f satisfies (12) and is nonnegative. It is therefore a
density. Interchanging the roles of x and y in the above integrals shows that fY (y) is the
N (0, τ 2) density. See Example 8.20 for another approach. �

8.2 Change of Variables

We have interpreted the random vector (X, Y ) as a random point Q picked inR
2 according

to some density f (x, y), where (x, y) are the Cartesian coordinates of Q. Of course, the
choice of coordinate system is arbitrary; we may for some very good reasons choose to
represent Q in another system of coordinates (u, v), where (x, y) and (u, v) are related
by u = u(x, y) and v = v(x, y). What now is the joint density of U = u(X, Y ) and V =
v(X, Y )?
Equally, given a pair of random variables X and Y , our real interest may well lie in

some function or functions of X and Y . What is their (joint) distribution?
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Aswe have remarked above, at a symbolic or formal level, the answer is straightforward.
For U and V above, and A = {x, y: u(x, y) ≤ w, v(x, y) ≤ z} then, by Theorem 8.1.9,

FU,V (w, z) =
∫ ∫

A
fX,Y (x, y) dx dy.

The problem is to turn this into a more tractable form.
Fortunately, there are well-known results about changing variables within a multiple

integral that provide the answer. We state without proof a theorem for a transformation T
satisfying the following conditions. Let C and D be subsets of R

2. Suppose that T given
by

T (x, y) = (u(x, y), v(x, y))

maps C one–one onto D, with inverse T−1 given by

T−1(u, v) = (x(u, v), y(u, v)),

which maps D one–one onto C . We define the so-called Jacobian J as

J (u, v) = ∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
,

where the derivatives are required to exist and be continuous in D. Then we have the
following result.

(1) Theorem Let X and Y have density f (x, y), which is zero outside C. Then U =
u(X, Y ) and V = v(X, Y ) have joint density

fU.V (u, v) = fX,Y (x(u, v), y(u, v))|J (u, v)| for (u, v) ∈ D.

Here are some examples of this theorem in use.

(2) Example Suppose Q = (X, Y ) is uniformly distributed over the circular disc of radius
1. Then X and Y have joint density

f (x, y) = 1

π
for x2 + y2 ≤ 1.(3)

However, it seems more natural to use polar rather than Cartesian coordinates
in this case. These are given by r = (x2 + y2)

1
2 and θ = tan−1(y/x), with in-

verse x = r cos θ and y = r sin θ . They map C = {x, y: x2 + y2 ≤ 1} one–one onto
D = {r, θ : 0 ≤ r ≤ 1, 0 < θ ≤ 2π}.
In this case,

J (r, θ ) = ∂x

∂r

∂y

∂θ
− ∂x

∂θ

∂y

∂r
= r cos2 θ + r sin2 θ = r.

Hence, the random variables R = r (X, Y ) and ! = θ (X, Y ) have joint density given by

fR,!(r, θ ) = r

π
for 0 ≤ r ≤ 1, 0 < θ ≤ 2π.(4)

Notice that f (r, θ ) is not uniform, as was f (x, y). �
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(5) Example Let Q = (X, Y ) be uniformly distributed over the ellipse C with boundary
satisfying

x2

a2
+ y2

b2
= 1,

of area |C |. What is P(X > Y, X > −Y )?

Solution Here the transformation x = ar cos θ and y = br sin θ maps the ellipse one–
one onto the circular disc with radius 1. Furthermore, J = abr , Now X and Y have density

f (x, y) = 1

|C | , for (x, y) ∈ C,

so R and ! have joint density

f (r, θ ) = abr

|C | , for 0 ≤ r < 1, 0 < θ ≤ 2π.
Hence, |C | = πab, and

P(X > Y, X >− Y ) = P
(
−1< Y

X
< 1

)
=P

(
−1< b

a
tan!< 1

)
= 1

π
tan−1

a

b
,

because ! is uniform on (0, 2π ). �

8.3 Independence

Asusual, independence is an extremely important property; its definition is bynowfamiliar.

(1) Definition Jointly distributed random variables are independent if, for all x and y,

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y).

In terms of distributions, this is equivalent to the statement that

F(x, y) = FX (x)FY (y).(2) �

For random variables with a density, it follows immediately by differentiating that

f (x, y) = fX (x) fY (y)(3)

if X and Y are independent. Using the basic property of densities (Theorem 8.1.9) now
further shows that, if C = (x, y: x ∈ A, y ∈ B) and X and Y are independent, then∫ ∫

C
f (x, y) dxdy =

∫
A

fX (x) dx
∫

B
fY (y) dy.(4)

(Assuming of course that the integrals exist.)
Finally, if the random variables U and V satisfy U = g(X ), V = h(Y ), and X and Y

are independent, then U and V are independent. To see this, just let

A = (x : g(x) ≤ u) and B = (g: h(y) ≤ v),(5)

and the independence follows from (4) and (2). An important and useful converse is the
following.
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(6) Theorem If X and Y have density f (x, y), and for all x and y it is true that

f (x, y) = fX (x) fY (y),

then X and Y are independent.

The proof follows immediately from a standard theorem on multiple integrals (just
consider

∫ x
−∞

∫ y
−∞ f (u, v) du dv) and we omit it.

(7) Example: Uniform Distribution Let X and Y have the uniform density over the unit
circular disc C , namely,

f (x, y) = π−1 for (x, y) ∈ C.

(a) Are X and Y independent?
(b) Find fX (x) and fY (y).
(c) If X = R cos!, and Y = R sin!, are R and ! independent?

Solution (a) The set {x, y: x ≤ −1/√2, y ≤ −1/√2} lies outside C , so

F

(
− 1√

2
,− 1√

2

)
= 0.

However, the intersection of the set {x : x ≤ −1/√2} with C has nonzero area, so

FX

(
− 1√

2

)
FY

(
− 1√

2

)
> 0.

Therefore, X and Y are not independent.
(b) By (8.1.14),

fX (x) =
∫ 1

−1
f (x, y) dy = 1

π

∫ (1−x2)
1
2

−(1−x2)
1
2

dy = 2

π
(1− x2)

1
2 .

Likewise,

fY (y) = 2

π
(1− y2)

1
2 .

(c) By Example 8.2.4, R and ! have joint density

fR,!(r, θ ) = r

π
, for 0 ≤ r < 1, 0 < θ ≤ 2π.

Hence,

f!(θ ) =
∫ 1

0
f (r, θ ) dr = 1

2π
; 0 < θ ≤ 2π,
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and

fR(r ) =
∫ 2π

0
f (r, θ ) dθ = 2r ; 0 ≤ r ≤ 1.

Hence, f (r, θ ) = f!(θ ) fR(r ), and so R and ! are independent. �

Example: Bertrand’s ParadoxAgain Suppose we choose a random chord of a circle
C radius a, as follows. A point P is picked at random (uniformly) inside C . Then a line
through P is picked independently of P at random [i.e., its direction ! is uniform on
(0, 2π )]. Let X be the length of the chord formed by the intersection of this line with the
circle. Show that

P(X > a
√
3) = 1

3
+
√
3

2π
.

Solution Let R be the distance from the centre of the circle to P; by the above, R
has distribution given by P(R/a ≤ r ) = r2; 0 ≤ r ≤ 1. Now X > a

√
3, if and only if

2R sin! < a, as you can see by inspecting Figure 8.1. Hence,

P(X > a
√
3) = 2

π

∫ π/2

0
P
(

R <
a

2 sin θ

)
dθ

= 2

π

∫ π/6

0
dθ + 2

π

∫ π/2

π/6

1

4
cosec2θ dθ = 1

3
+
√
3

2π
.

Compare this with the results of Example 7.13. �

(8) Example: Normal Densities Let X and Y be independent with common density
f (x) = k exp (− 1

2 x2) for all x .

(a) Show that k = (2π )− 1
2 .

(b) Show that X2 + Y 2 and tan−1(Y/X ) are independent random variables.
(c) If a > 0 < b < c and 0 < α < 1

2π , find the probability that b < (X
2 + Y 2)

1
2 < c and

1
4π < tan−1(Y/X )< 1

2π , given that (X
2+ Y 2)

1
2 <a, Y >0, and tan−1(Y/X )< 1

3π .

Figure 8.1 Bertrand’s paradox.
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Solution Because X and Y are independent, they have joint density

f (x, y) = k2 exp

(
−1
2
(x2 + y2)

)
.

Make the change of variables to polar coordinates, so that by Theorem 8.2.1 the random
variables R = (X2 + Y 2)

1
2 and ! = tan−1(Y/X ) have joint density

f (r, θ ) = k2r exp

(
−1
2

r2
)

for 0 ≤ r <∞, 0 < θ ≤ 2π.

Hence, R has density

fR(r ) = r exp

(
−1
2

r2
)

for 0 ≤ r <∞,

and ! has density

f!(θ ) = k2 for 0 < θ ≤ 2π.
It follows immediately that

(a) k2 = (2π )−1.
(b) f (r, θ ) = fR(r ) f!(θ ), so that! and R are independent by Theorem 6. Hence,! and

R2 are independent.
(c) Finally, note that

P
(
1

4
π < ! <

1

2
π, 0 < ! <

1

3
π

)
= P

(
1

4
π < ! <

1

3
π

)
= π

12
(9)

and

P(b < R < c, R < a) =



FR(c)− FR(b) if c < a
FR(a)− FR(b) if b < a ≤ c
0 otherwise

= FR((a ∧ c) ∨ b)− FR(b),(10)

where x ∧ y = min {x, y} and x ∨ y = max {x, y}. Now, because R and ! are indepen-
dent,

P
(

b < R < c,
1

4
π < ! <

1

2
π |R < a, 0 < ! <

1

3
π

)

= P(b < R < c, R < a)

P(R < a)

P
(
1

4
π < ! <

1

2
π, 0 < ! <

1

3
π

)

P
(
0 < ! <

1

3
π

)

= 1

4FR(a)
(FR((a ∧ c) ∨ b)− FR(b)), by (9) and (10). �
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8.4 Sums, Products, and Quotients

We now return to the question of the distribution of functions of random vectors, and take
a brief look at some particularly important special cases. Of these, the most important is
the sum of two random variables.

Theorem Let X and Y have joint density f (x, y). Show that if Z = X + Y , then

fZ (z) =
∫ ∞

−∞
f (u, z − u) du,(1)

and that if X and Y are independent, then

fZ (z) =
∫ ∞

−∞
fX (u) fY (z − u) du.(2)

Proof First notice that by (8.3.3) the result (2) follows immediately from (1) when X
and Y are independent. Turning to the proof of (1), we give two methods of solution.

I Let A be the region in which u + v ≤ z. Then

P(Z ≤ z) =
∫ ∫

(u,v)∈A
f (u, v) du dv =

∫ ∞

−∞

∫ z−u

−∞
f (u, v) dvdu

=
∫ ∞

−∞

∫ z

−∞
f (u, w − u) dwdu on setting v = w − u.

Now differentiating with respect to z gives fZ (z) =
∫∞
−∞ f (u, z − u) du.

II This time we use the change of variable technique of Section 8.2. Consider the
transformation z = x + y and u = x , with inverse x = u and y = z − u. Here J = 1. This
satisfies the conditions of Theorem 8.2.1, and soU = u(X, Y ) and Z = z(X, Y ) have joint
density f (u, z − u). We require the marginal density of Z , which is of course just (1). �

(3) Example Let X and Y have the bivariate normal distribution of Example 8.1.19,

f (x, y) = 1

2πστ (1− ρ2)1/2 exp
(
− 1

2(1− ρ2)
(

x2

σ 2
− 2ρxy

στ
+ y2

τ 2

))
.

Find the density of aX + bY for constants a and b.

Remark: Note from 8.3.6 that X and Y are independent if and only if ρ = 0.

Solution The joint density of U = aX and V = bY is

g(u, v) = 1

ab
f
(u

a
,
v

b

)
.
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Hence, by the above theorem, the density of Z = U + V = aX + bY is

fZ (z) =
∫ ∞

−∞

1

ab
f

(
u

a
,

z − u

b

)
du.(4)

Rearranging the exponent in the integrand we have, after a little manipulation,

−1
2(1− ρ2)

(
u2

a2σ 2
− 2ρu(z − u)

abστ
+ (z − u)2

b2τ 2

)

= −1
2(1− ρ2)

(
α

(
u − β

α
z

)2
+ z2

α
− (1− ρ2)

a2b2σ 2τ 2

)
,

where

α = 1

a2σ 2
+ 2ρ

abστ
+ 1

b2τ 2
, and β = ρ

abστ
+ 1

b2τ 2
.

Setting u = v + β

α
z in the integrand, we evaluate

∫ ∞

−∞
exp

(
− αv2

2(1− ρ2)
)

dv =
(
2π (1− ρ2)

α

) 1
2

.

Hence, after a little more manipulation, we find that

fZ (z) = 1

(2πξ 2)
1
2

exp

(
− z2

2ξ 2

)
,

where ξ 2 = a2σ 2 + 2ρabστ + b2τ 2. That is to say, Z is N (0, ξ 2). �

One important special case arises when ρ = 0, and X and Y are therefore independent.
The above result then shows we have proved the following.

(5) Theorem Let X and Y be independent normal random variables having the densities
N (0, σ 2) and N (0, τ 2). Then the sum Z = aX + bY has the density N (0, a2σ 2 + b2τ 2).
(See Example 8.20 for another approach.) �

Next we turn to products and quotients.

(6) Theorem Let X and Y have joint density f (x, y). Then the density of Z = XY is

f (z) =
∫ ∞

−∞

1

|u| f
(

u,
z

u

)
du,(7)

and the density of W = X

Y
is

f (w) =
∫ ∞

−∞
|u| f (uw, u) du.
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Proof We use Theorem 8.2.1 again. Consider the transformation u = x and z = xy, with
inverse x = u and y = z/u. Here,

J (u, z) =
∣∣∣∣∣
1 0
−z

u2
1

u

∣∣∣∣∣ = u−1.

This satisfies the conditions of Theorem 8.2.1, and so U = X and Z = XY have joint
density

f (u, z) = 1

|u| f
(

u,
z

u

)
.(8)

The result (7) follows immediately as it is the marginal density of Z obtained from f (u, z).
Alternatively, it is possible to derive the result directly by the usual plod, as follows:

P(XY ≤ z) = P
(

X > 0, Y ≤ z

X

)
+ P

(
X < 0, Y ≥ z

X

)

=
∫ 0

−∞

∫ ∞

z/u
f (u, v) dv du +

∫ ∞

0

∫ z/u

−∞
f (u, v) dv du

=
∫ 0

−∞

∫ z

−∞
f

(
u,

t

u

)
dt

(−u)
du +

∫ ∞

0

∫ z

−∞
f

(
u,

t

u

)
dt

u
du

=
∫ z

−∞

∫ ∞

−∞
f

(
u,

t

u

)
du

|u|dt.

The required density is obtained by comparison of this expression with (7.1.15).
Now we turn to the quotient W = X/Y . First, let V = 1/Y . Then, by definition,

FX,V (x, v) = P(X ≤ x, V ≤ v) = P
(

X ≤ x, Y ≥ 1

v

)
=

∫ x

−∞

∫ ∞

1/v
f (s, t) dsdt.

Hence, on differentiating, the joint density of X and Y−1 is given by

fX,V (x, v) = 1

v2
f

(
x,
1

v

)
.

Now W = X V , so by the first part,

fW (w) =
∫ ∞

−∞

1

|u|
u2

w2
f
(

u,
u

w

)
du =

∫ ∞

−∞
|v| f (vw, v) dv

on setting u = vw in the integrand. Alternatively, of course, you can obtain this by using
Theorem 8.2.1 directly via the transformation w = x/y and u = y, or you can proceed
via the routine plod. �

As usual, here are some illustrative examples.

(9) Example Let X and Y be independent with respective density functions fX (x) =
xe−

x2

2 for x > 0 and fY (y) = π−1(1− y2)−
1
2 for |y| < 1.

Show that XY has a normal distribution.
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Solution When X and Y are independent, we have f (x, y) = fX (x) fY (y), and The-
orem 6 takes the special form

f (z) =
∫ ∞

−∞

1

|u| fX (u) fY

( z

u

)
du =

∫
u>z

1

|u|ue−
u2

2 π−1
(
1− z2

u2

)− 1
2

du

= 1

π

∫ ∞

z

e−
u2

2

(u2 − z2)
1
2

u du.

Now we make the substitution u2 = z2 + v2 to find that

f (z) = 1

π
e−

z2

2

∫ ∞

0
e−

v2

2 dv = e−
z2

2

(2π )
1
2

,

which is the N (0, 1) density. �

(10) Example Let X and Y have density f (x, y) = e−x−y for x > 0, y > 0.
Show that U = X/(X + Y ) has the uniform density on (0, 1).

Solution To use Theorem 6, we need to know the joint density of X and V = X + Y .
A trivial application of Theorem 8.2.1 shows that X and V have density f (x, v) = e−v

for 0 < x < v <∞. Hence, by Theorem 6,

f (u) =
∫ ∞

0
ve−vdv, for 0 < uv < v

= 1 , for 0 < u < 1.

Alternatively, we may use Theorem 8.2.1 directly by considering the transformation

u = x

x + y
, v = x + y,

with

x = uv, y = v(1− u)

and |J | = v. Hence, U = X/(X + Y ) and V = X + Y have density f (u, v) = ve−v , for
v > 0 and 0 < u < 1. The marginal density of U is 1, as required. �

8.5 Expectation

Suppose that the random variable Z = g(X, Y ) has density f (z). Then, by definition,

E(Z ) =
∫ ∞

−∞
z f (z) dz

provided that E(|Z |) <∞. However, suppose we know only the joint density f (x, y) of
X and Y . As we have discovered above, finding the density of g(X, Y ) may not be a trivial
matter. Fortunately, this task is rendered unnecessary by the following result, which we
state without proof.
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(1) Theorem If X and Y have joint density f (x, y) and∫ ∞

−∞

∫ ∞

−∞
|g(u, v)| f (u, v) dudv <∞,

then

E(g(X, Y )) =
∫ ∞

−∞

∫ ∞

−∞
g(u, v) f (u, v) dudv.(2)

This useful result has the same pleasing consequences as did the corresponding result
(Theorem 5.3.1) for discrete random variables.

(3) Corollary Let X and Y have finite expectations. Then

(i) E(a X + bY ) = aE(X )+ bE(Y ), for any constants a and b.
(ii) If P(X ≤ Y ) = 1, then E(X ) ≤ E(Y ).

Suppose further that E(X2) and E(Y 2) are finite. Then

(iii) E(X ) ≤ E(|X |) ≤ (E(X2))
1
2 ,

(iv) E(XY ) ≤ (E(X2)E(Y 2))
1
2 .

Recall that this last result is the Cauchy–Schwarz inequality.
Finally, suppose that E(g(X )) and E(h(Y )) are finite, and that X and Y are independent.

Then

(v) E(g(X )h(Y )) = E(g(X ))E(h(Y )).

We omit the proofs of these results. Generally speaking, the proofs follow the same
line of argument as in the discrete case, with the difference that those proofs used results
about rearrangement of sums, whereas these proofs use standard results about multiple
integrals.

Definition Some important expectations deserve special mention. Just as we did for
discrete random variables, we define the covariance as

cov (X, Y ) = E((X − E(X ))(Y − E(Y ))),

and the correlation as

ρ(X, Y ) = cov (X, Y )

(var (X )var (Y ))
1
2

. �

Remark When X and Y are independent, then it follows from Corollary 3(v) that
cov (X, Y ) = ρ(X, Y ) = 0, but not conversely. There is an important exception to this, in
that bivariate normal random variables are independent if and only if ρ(X, Y ) = 0. See
Examples 8.11 and 8.20 for details

(4) Example Let ! be uniformly distributed over (0, α). Find cov (sin!, cos!), and
show that for α = kπ, (k �= 0), sin! and cos! are uncorrelated and not independent.
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Solution Routine calculations proceed thus:

E(sin! cos!) = 1

α

∫ α

0

1

2
sin 2θdθ = 1

4α
(1− cos 2α),

and E(sin!) = (1/α)(1− cosα), and E(cos!) = (1/α) sinα. Hence,

cov (sin!, cos!) = 1

4α
(1− cos 2α)− 1

α2
sinα(1− cosα).

This covariance is zero whenever α = kπ, (k �= 0), and so for these values of α, ρ = 0.
However, sin! and cos! are not independent. This is obvious because sin! = cos(π2 −
!), but we can verify it formally by noting that

P
(
sin! >

3

4
, cos! >

3

4

)
= 0 �= P

(
sin! >

3

4

)
P
(
cos! >

3

4

)
. �

Generating functions have been so useful above that it is natural to introduce them again
now. Because we are dealing with jointly continuous random variables, the obvious can-
didate for our attention is a joint moment generating function.

(5) Definition Let X and Y be jointly distributed. The joint moment generating func-
tion of X and Y is

MX,Y (s, t) = E(es X+tY ). �

If this exists in a neighbourhood of the origin, then it has the same attractive properties
as the ordinary m.g.f. That is, it determines the joint distribution of X and Y uniquely,
and also it does yield the moments, in that

∂m+n

∂sm∂tn
M(s, t)

∣∣∣∣
s=t=0

= E(XmY n).(6)

Furthermore, just as joint p.g.f.s factorize for independent discrete random variables,
it is the case that joint m.g.f.s factorize for independent continuous random variables.
That is to say,

MX,Y (s, t) = MX (s)MY (t)(7)
if and only if X and Y are independent.

We offer no proofs for the above statements, as a proper account would require a wealth
of analytical details. Nevertheless, we will use them freely, as required.

(8) Example Let X and Y have density (x, y) = e−y, 0 < x < y <∞. Then

MX,Y (s, t) =
∫ ∞

0

∫ ∞

x
esx+t y−ydydx = ((1− t)(1− s − t))−1.
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Hence, differentiating, we obtain

∂M

∂s

∣∣∣∣
s=t=0

= 1, ∂M

∂t

∣∣∣∣
s=t=0

= 2, ∂
2M

∂s∂t

∣∣∣∣
s=t=0

= 3.

Thus, cov (X, Y ) = 1. �

(9) Example Let X and Y be independent and identically distributed normal random
variables. Let M = 1

2 (X + Y ) and V = (X − M)2 + (Y − M)2. Show that M and V are
independent.

Solution We will use an obvious extension of (7). Let E(X ) = µ and var (X ) = σ 2.
Then consider the joint moment generating function of M, X − M , and Y − M :

E(exp (s M + t(X − M)+ u(Y − M)))

= E
(
exp

(
1

2
(s + t + u)X + 1

2
(s − t − u)Y

))

= exp
(
µ

2
(s + t + u)+ σ 2

8
(s + t + u)2

)
exp

(
µ

2
(s− t − u)+ σ 2

8
(s− t − u)2

)
,

because X and Y are independent,

= exp
(
µs + σ 2

4
s2
)
exp

(
σ 2

4
(t + u)2

)
.(10)

Hence, M is independent of the random vector (X − M, Y − M), and so M is independent
of V . �

Remark This remarkable property of the normal distribution extends to any inde-
pendent collection (Xi ; 1 ≤ i ≤ n) of N (µ, σ 2) random variables, and is known as the
independence of sample mean and sample variance property.

(11) Example Let X and Y be independent and identically distributed with mean zero,
variance 1, and moment generating function M(t), which is thrice differentiable at 0.
Show that if X + Y and X − Y are independent, then X and Y are normally distributed.

Solution By the independence of X and Y ,

M(s + t)M(s − t) = E(e(s+t)X )E(e(s−t)Y ) = E(es(X+Y )+t(X−Y ))(12)
= E(es(X+Y ))E(et(X−Y )),

by the independence of X + Y and X − Y

= (M(s))2M(t)M(−t),

using the independence of X and Y again. Next we note that, by the conditions of the
problem, M ′(0) = E(X ) = 0 and M ′′(0) = E(X2) = 1. Now differentiating (12) twice
with respect to t , and then setting t = 0 gives

M(s)M ′′(s)− (M ′(s))2 = (M(s))2(M(0)M ′′(0)− (M ′(0))2)
= (M(s))2(E(X2)− (E(X ))2) = (M(s))2.
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Integrating this differential equation once gives

M ′(s)
M(s)

= s

and integrating again yields M(s) = exp( 12s2). Because this is the moment generating
function of the N (0, 1) density, it follows that X and Y have this density. �

Weare of course already aware fromChapter 6 that generating functions are of considerable
value in handling sums of independent random variables.

(13) Example Let (X1, . . . , Xn) be independent having the N (0, 1) density. Show that
Y =∑n

i=1 X2
i has a χ

2(n) density.

Solution With a view to using moment generating functions, we first find

E(etX2
1 ) =

∫ ∞

−∞

1

(2π )
1
2

exp

(
tx2 − 1

2
x2
)

dx = 1

(1− 2t)
1
2

.

Hence,

E(etY ) = (E(etX2
1 ))n by independence(14)

= 1

(1− 2t)
n
2

and by (7.1.28) and (7.5.6), this is the m.g.f. of the χ2(n) density. Hence, by Theorem
7.5.9, Y has a χ2(n) density. �

Many results about sums of random variables can now be established by methods which,
if not trivial, are at least straightforward.

(15) Example Let (Xk ; k ≥ 1) be independent and identically distributed exponential ran-
dom variables, with parameter λ. Then for Sn =

∑n
k=1 Xk ,

E(etSn ) = (E(etX1 ))n by independence

=
(

λ

λ− t

)n

by Example 7.5.4,

and so Sn has a gamma distribution by (7.5.6). �

8.6 Conditional Density and Expectation

Suppose that X and Y have joint density f (x, y), and we are given the value of Y . By
analogy with the conditional mass function that arises when X and Y are discrete, we
make the following definition.
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(1) Definition If X and Y have joint density f (x, y), then the conditional density of
X given Y = y is given by

fX |Y (x |y) =



f (x, y)

fY (y)
if 0 < fY (y) <∞

0 elsewhere.
(2)

�

We observe immediately that fX |Y (x |y) is indeed a density, because it is nonnegative and∫ ∞

−∞
fX |Y (x |y) dx =

∫ ∞

−∞

f (x, y)

fY (y)
dx = 1

fY (y)
· fY (y) = 1.

The corresponding conditional distribution function is

FX |Y (x, y) =
∫ x

−∞
fX |Y (u|y) du = P(X ≤ x |Y = y),

and we have the Key Rule

P(X ∈ A|Y = y) =
∫

x∈A
fX |Y (x |y) dx .(3)

(4) Example Let (X, Y ) be the coordinates of the point Q uniformly distributed on a
circular disc of unit radius. What is fY |X (y|x)?

Solution Recall that for the marginal density fX (x) = (2/π )(1− x2)
1
2 . Hence, by

definition,

fY |X (y|x) = f (x, y)

fX (x)
= 1

π

π

2(1− x2)
1
2

= 1

2
(1− x2)−

1
2 for |y| < (1− x2)

1
2 .

This conditional density is uniform on (−(1− x2)
1
2 , (1− x2)

1
2 ), which is consistent with

our earlier observations about conditioning of uniform densities. �

(5) Example Let X and Y be independent and exponential with parameter λ. Show that
the density of X conditional on X + Y = v is uniform on (0, v).

Solution To use (1), we need to take some preliminary steps. First note that the joint
density of X and Y is f (x, y) = λ2e−λ(x+y) for x > 0, y > 0.
Next we need the joint density of X and X + Y so we consider the transformation u = x

and v = x + y, with inverse x = u and y = v − u, so that J = 1. Hence, by Theorem
8.2.1,

fU,V (u, v) = λ2e−λv for 0 < u < v <∞.
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It follows that

fV (v) =
∫ v

0
λ2e−λv du = λ2ve−λv,

and so by definition

fU |V (u|v) = f (u, v)

fV (v)
= 1

v
for 0 < u < v.

This is the required uniform density. �

This striking result is related to the lack-of-memory property of the exponential density.
Now, because fX |Y (x |y) is a density it may have an expected value, which naturally

enough is called conditional expectation.

(6) Definition If
∫

R
|x | fX |Y (x |y) dx <∞, then the conditional expectation of X

given Y = y is given by

E(X |Y = y) =
∫

R

x fX |Y (x |y)dx . �

(7) Example (5) Revisited If X and Y are independent and exponential, then we showed
that the density of X given X + Y = v is uniform on (0, v). Hence,

E(X |X + Y = v) = 1

2
v.

�

Actually, this is otherwise obvious because, for reasons of symmetry,

E(X |X + Y = v) = E(Y |X + Y = v),

and trivially E(X + Y |X + Y = v) = v. Hence the result follows, provided it is true that
for random variables X , Y and V , we have

E(X + Y |V = v) = E(X |V = v)+ E(Y |V = v).(8)

In fact, this is true as we now show.

(9) Theorem Let X, Y , and V have joint density f (x, y, v). Then (8) holds.

Proof The joint density of W = X + Y and V is
∫∞
−∞ f (w − u, u, v) du.

Then, by definition,

E(X + Y |V = v) = 1

fV (v)

∫ ∞

−∞

∫ ∞

−∞
w f (w − u, u, v) dudw.

Now consider the transformation x = w − u and y = u, with inverse w = x + y and
u = y, so that J = 1. Changing the variables in the double integral accordingly and using
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standard results about such double integrals shows that

E(X + Y |V = v) = 1

fV (v)

∫ ∞

−∞

∫ ∞

−∞
(x + y) f (x, y, v) dx dy

= 1

fV (v)

∫ ∞

−∞
x fX,V (x, v) dx + 1

fV (v)

∫ ∞

−∞
y fY,V (y, v) dy

= E(X |V = v)+ E(Y |V = v). �

Next, we make the important observation that by writing

ψ(y) = E(X |Y = y)(10)

we emphasize the fact that the conditional expectation of X given Y is a function of Y . If
the value of Y is left unspecified, we write

ψ(Y ) = E(X |Y )
on the understanding that when Y = y, ψ(Y ) takes the value E(X |Y = y) defined above.
It is therefore natural to think of E(X |Y ) as a random variable that is a function of Y .

(A more rigorous analysis can indeed justify this assumption.) Just as in the discrete case,
its expected value is E(X ).

(11) Theorem The expected value of ψ(Y ) is E(X ); thus, EX = E(E(X |Y )).

Proof Because ψ(Y ) is a function of Y , we can calculate its expected value in the usual
way as

E(ψ(Y )) =
∫ ∞

−∞
ψ(y) fY (y) dy

=
∫ ∞

−∞

∫ ∞

−∞
x fX |Y (x |y) fY (y) dx dy by Definition 6

=
∫ ∞

−∞

∫ ∞

−∞
x f (x, y) dx dy = E(X ). �

We recall an earlier example.

(12) Example Let X and Y have density f (x, y) = 8xy for 0 < y < x < 1.
Find E(X |Y ) and E(Y |X ).

Solution Because

fX (x) =
∫ x

0
8xy dy = 4x3,

and

fY (y) =
∫ 1

y
8xy dx = 4y(1− y2),
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we have fX |Y (x |y) = 2x/(1− y2), y < x < 1. Hence,

E(X |Y ) =
∫ 1

Y

2x2

(1− Y )2
dx = 2

3

(
1− Y 3

1− Y 2

)
.

Likewise, fY |X (y|x) = 2y/x2 0 < y < x and, therefore,

E(Y |X ) =
∫ X

0

2y2

X2
dy = 2

3
X. �

The identity in Theorem 11 can also be used to calculate probabilities by the simple device
of letting X be the indicator of the event of interest.

(13) Example Let U and Y have density f (u, y). What is P(U < Y )?

Solution Let X be the indicator of U < Y . Then

P(U < Y ) = E(X ) = E(E(X |Y )) by Theorem 11

= E
(∫ Y

−∞
f (u|Y ) du

)
=

∫ ∞

−∞

∫ y

−∞
f (u, y) dudy by (2).

Of course, we could have written this down immediately by Theorem 8.1.9. �

(14) Example: Bivariate Normal Let X and Y have the bivariate normal density

f (x, y) = 1

2πστ (1− ρ2) 12
exp

(
− 1

2(1− ρ2)
(

x2

σ 2
− 2ρxy

στ
+ y2

τ 2

))
.(15)

(a) Find the conditional density of X given Y = y.
(b) Find E(et XY ), and hence find the density of Z = X1Y1 + X2Y2, where (X1, Y1) is

independent of (X2, Y2) and each has the density (15).

Solution (a) From Example 8.1.19, we know that Y has the N (0, τ 2) density. Hence,

fX |Y (x |y) = f (x, y)

fY (y)
= 1

σ (2π (1− ρ2)1/2) exp
(
− 1

2(1− ρ2)
( x

σ
− ρy

τ

)2)
.

Hence, the conditional density of X given Y = y is N (ρσy/τ, σ 2(1− ρ2)). Note that if
ρ = 0, then this does not depend on y, which is to say that X is independent of Y .
(b) By part (a), the conditional moment generating function of X given Y is

MX |Y (t) = exp
(
ρσY

τ
t + 1

2
σ 2(1− ρ2)t2

)
.
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Hence, by conditional expectation,

E(etXY ) = E(E(etXY |Y )) = E(MX |Y (tY ))

= E
(
exp

[(
ρσ

τ
t + 1

2
σ 2(1− ρ2)t2

)
Y 2

])

= 1

(1− 2ρστ t − σ 2τ 2(1− ρ2)t2) 12
using Example 8.5.13,

and so X1Y1 + X2Y2 has moment generating function,

M(t) = (1− 2ρστ t − σ 2τ 2(1− ρ2)t2)−1

= 1− ρ
2

1

1+ στ (1− ρ)t +
1+ ρ
2

1

1− στ (1+ ρ)t .

Hence, Z = X1Y1 + X2Y2 has an asymmetric bilateral exponential density,

f (z) =



1+ ρ
2

exp (−στ (1+ ρ)z) if z > 0

1− ρ
2

exp (στ (1− ρ)z) if z < 0.
(16)

�

We note without proof that ψ(Y ) has the useful properties that we recorded in the discrete
case. Among the most important is that

E(Xg(Y )|Y ) = g(Y )ψ(Y )(17)

for any function g(Y ) of Y .
Finally, we stress that conditional expectation is important in its own right, it should

not be regarded merely as a stage on the way to calculating something else.
For example, suppose that X and Y are random variables, and we want to record the

value of X . Unfortunately, X is inaccessible to measurement, so we can only record the
value of Y . Can this help us to make a good guess at X?
First, we have to decide what a “good” guess g(Y ) at X is. We decide that g1(Y ) is a

better guess than g2(Y ) if

E[(g1(Y )− X )2] < E[(g2(Y )− X )2].(18)

According to this (somewhat arbitrary) rating, it turns out that the best guess at X given
Y is ψ(Y ) = E(X |Y ).

(19) Theorem For any function g(Y ) of Y ,

E[(X − g(Y ))2] ≥ E[(X − ψ(Y ))2].

Proof Using (17), we have

E[(X − ψ)(ψ − g)] = E[(ψ − g)E(X − ψ |Y )] = 0.(20)

Hence,

E[(X − g)2] = E[(X − ψ + ψ − g)2] = E[(X − ψ)2]+ E[(ψ − g)2] by (20)
≥ E[(X − ψ)2]. �
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We conclude this section by recording onemore useful property of conditional densities,
which may be called the continuous partition rule. The proof is an easy exercise. For
continuous random variables X and Y ,

fX (x) =
∫

R

fX |Y (x |y) fY (y) dy.(21)

8.7 Transformations: Order Statistics

We introduced the change of variable technique in Section 8.2. We return to this topic to
consider a particularly important class of transformations, namely, those that are linear.
Thus, let the random vector (X1, . . . , Xn) have joint density f (x1, . . . , xn). Suppose that
for 1 ≤ i, j ≤ n, and some constants ai j ,

Yi =
n∑

j=1
ai j Xi .(1)

What can be said about the joint density of (Y1, . . . , Yn)?
In Section 8.2, we required such transformations to be invertible, and we make the

same restriction here. Therefore, we suppose that the matrix A = (ai j ) has an inverse
A−1 = (bi j ) = B. A sufficient condition for this is that the determinant det A is not zero.
Then we have the following useful result, which we state without proof.

(2) Theorem Suppose that (X1, . . . , Xn) has density fX (x1, . . . , xn), and that (Y1, . . . , Yn)
is related to (X1, . . . , Xn) by

Yi =
n∑

j=1
ai j X j and Xi =

n∑
j=1

bi j Y j ,

where B A = I , the identity matrix, and det A �= 0. Then the density of (Y1, . . . , Yn) is
given by

fY (y1, . . . , yn) = 1

|det A| fX (x1(y1, . . . , yn) . . . xn(y1, . . . , yn))(3)

= |det B| fX (x1, . . . , xn).

(4) Example: Normal Sample Let (X1, . . . , Xn) be independent N (0, 1) random vari-
ables, and define

Y j =
n∑

j=1
x j ai j for 1 ≤ j ≤ n,(5)

where the matrix A = (ai j ) is an orthogonal rotation with det A = 1 and, denoting the
transpose of A by AT ,

AAT = I = AT A.
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(a) Show that (Y1, . . . , Yn) are independent N (0, 1) random variables.
(b) Deduce that the sample mean

X = 1

n

n∑
1

Xi

and the sample variance

s2 = 1

n − 1
n∑

i=1
(Xi −X)2

are independent, and that (n − 1)s2 has a χ2 density. �

Solution (a) It is convenient to use the standard notation for vectors and matrices in
problems of this type. Thus, we write xT for the transpose of x , where

x = (x1, . . . , xn) = yAT from (5).(6)

Furthermore,

n∑
i=1

x2i = xxT = yAT AyT = yyT =
n∑

i=1
y2i .

Hence, by (3), (Y1, . . . , Yn) have density

fY = 1

(2π )
n
2
exp

(
−1
2

n∑
i=1

y2i

)
.(7)

Because this factorizes, (Y1, . . . , Yn) are independent with the N (0, 1) density.
(b) Now let (ai j ) be any rotation such that a1 j = n−

1
2 , giving

Y1 =
n∑

j=1

1√
n

X j =
√

n X.

Then

(n − 1)s2 =
n∑

i=1
X2

i − 2X
n∑

i=1
Xi + nX

2

=
n∑

i=1
X2

i − nX
2

=
n∑

i=1
Y 2

i − Y 2
1 =

n∑
2

Y 2
i .

Hence, s2 is independent ofX, by the independence of Y1 and (Y2, . . . , Yn). Finally, because
each Yi is N (0, 1), (n − 1)s2 has a χ2(n − 1) density by Example 8.5.13. See Problem
8.43 for another way to do this. �
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A particularly important linear transformation is the one that places (X1, . . . , Xn) in non-
decreasing order. Thus,

Y1 = smallest of X1, . . . , Xn

Y2 = second smallest of X1, . . . , Xn
...

Yn = largest of X1, . . . , Xn.

We assume that each Xk has a density f (xk), so that the chance of ties is zero. It is
customary to use the special notation

Yk = X (k),

and then X (1), X (2), . . . , X (n) are known as the order statistics of X1, . . . , Xn . Now the
above transformation is linear, but not one–one. It is in fact many–one; to see this, suppose
that y1 < y2<. . .< yn . Then the outcomes

X1 = y1, X2 = y2, . . . , Xn = yn

and

X2 = y1, X1 = y2, . . . , Xn = yn

both yield the same set of order statistics, namely,

X (1) = y1, X (2) = y2, . . . , X (n) = yn.

However, if (π (1), . . . , π (n)) is any one of the n! distinct permutations of the first n integers
and Rπ is the region xπ (1) < xπ (2) <. . .< xπ (n), then the transformation

x(k) = xπ (k); 1 ≤ k ≤ n

is one–one and linear. In the notation of (2), we have

ai j =
{
1 if i = π ( j)
0 otherwise,

and |det A| = 1. Therefore, the density of X (1), . . . , X (n) is
∏n

i=1 f (yi ).
Now we observe that X1, X2, . . . , Xn lies in just one of the n! regions Rπ ; hence, the

order statistics have joint density

n!
n∏

i=1
f (yi ) for y1 < y2< . . .< yn.(8)

Here are some applications of this useful result.

(9) Example Let (X1, . . . , Xn) be independently and uniformly distributed on (0, a).
Then, by (8), their order statistics have the density

f = n!

an
for y1 < y2 < . . .< yn.(10) �
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It follows from (8) that we may in principle obtain the marginal density of any subset
of the order statistics by performing appropriate integrations. For small subsets, this is
actually unnecessary.

(11) Example Show that X (k) has density

f(k)(y) = k

(
n

k

)
f (y)(1− F(y))n−k[F(y)]k−1.

Solution The event X (k) ≤ y occurs if and only if at least k of the Xi lie in (−∞, y].
Hence,

F(k)(y) =
n∑

j=k

(
n

j

)
[F(y)] j (1− F(y))n− j .(12)

Now, differentiating to obtain the density,

f(k)(y) = f (y)
n∑

j=k

[
j

(
n

j

)
F j−1(1− F)n− j − ( j + 1)

(
n

j + 1
)

F j (1− F)n−( j+1)
]

= f (y)k

(
n

k

)
Fk−1(1− F)n−k(13)

by successive cancellation in the sum. �

8.8 The Poisson Process: Martingales

A recurring idea in previous chapters has been that of a series of events or happenings
that may occur repeatedly at random times denoted by T1, T2, . . . . For example, we have
considered light bulbs that may fail and be replaced at (Tn; n ≥ 1), or machine bits that
may wear out and be renewed at (Tn; n ≥ 1) and so on. Other practical problems may also
have this structure; for example, the Tn may be the times at which my telephone rings,
cars arrive at the toll booth, meteorites fall from the sky, or you get stung by a wasp.
You can think of many more such examples yourself, and it is clear that it would be

desirable to have a general theory of such processes. This is beyond our scope, but we can
now consider one exceptionally important special case of such processes.
The basic requirement is that the times between events should be independent and

identically distributed random variables (Xk ; k ≥ 1); we assume further that they have an
exponential distribution.

(1) Definition Let (Xk ; k ≥ 1) be independent identically distributed exponential
random variables with parameter λ. Let T0 = 0, and set

Tn =
n∑
1

Xk ; n ≥ 1.
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Define

N (t) = max{n: Tn ≤ t}; t ≥ 0.(2)

Then N (t) is a Poisson process with parameter λ. �

Acouple of remarks are in order here. First, note that N (t) is just the number of happenings
or events by time t ; N (t) is constant until an event occurs, when it increases by 1. Second,
the collection (N (t); t ≥ 0) is an uncountable collection of random variables.We have said
nothing about such collections up to now, and so our analysis of N (t) must of necessity
be rather informal.
Our first result explains why N (t) is called a Poisson process.

(3) Theorem N (t) has mass function

fN (k) = e−λt (λt)k

k!
; k ≥ 0.

(4) Proof First, we note that from Definition 2 of N (t), the event N (t) ≥ k occurs if and only
if Tk ≤ t . It follows that

P(N (t) ≥ k) = P(Tk ≤ t),(5)

and because Tk has a gamma density by (8.5.15) we have

fN (k) = P(N (t) ≥ k)− P(N (t) ≥ k + 1) = P(Tk ≤ t)− P(Tk+1 ≤ t)

=
∫ t

0

(
λkvk−1

(k − 1)! −
λk+1vk

k!

)
e−λv dv = e−λt (λt)k

k!

after an integration by parts. As an alternative, we could argue straight from (5) and (6.1.7)
that

1− sE(s N (t))

1− s
=

∞∑
0

skP(N (t) ≥ k) = 1+
∞∑

k=1
sk
∫ t

0

λkvk−1

(k − 1)!e
−λvdv

= 1+ sλ
∫ t

0
eλvs−λvdv = 1− s

1− s
[eλv(s−1)]t0

= 1+ s

1− s
− seλt(s−1)

1− s
= 1− seλt(s−1)

1− s
,

and the Poisson mass function of N (t) follows. �

Our next result is one of the most striking and important properties of N (t), from which
many other results flow.

(6) Theorem: Conditional Property of the Poisson Process Let N (t) be a Poisson pro-
cess as defined in Definition 1. Conditional on the event N (t) = k, the k random variables
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T1, . . . , Tk have conditional density

fT |N=k(t1, . . . , tk) = k!

t k
; 0 < t1 < t2< . . .< tk ≤ t.(7)

Before proving (7) let us interpret it. From Example 8.7.9, we recognize that the density
k!/t k is the density of the order statistics of k independent random variables, each uniform
on (0, t). Thus, Theorem 6 can be more dramatically expressed: given N (t) = k, the k
events of the process are independently and uniformly distributed on (0, t).

Proof of (6) Because X1, . . . , Xk are independent and exponential, they have joint density

f (x1, . . . , xk) = λk exp (−λ(x1+ · · ·+ xk)).(8)

Next, observe that the transformation

tn =
n∑

i=1
xi ; 1 ≤ n ≤ k + 1

is linear and invertible with |J | = 1. Hence, by Theorem 8.7.2, the random variables
Tn =

∑n
1 Xi ; 1 ≤ n ≤ k + 1 have joint density

f (t1, . . . , tk+1) = λk+1e−λtk+1 ; 0 < t1<. . .< tk+1.(9)

Now

P(0 < T1 < t1 < T2<. . .< Tk < tk ; N (t) = k)
= P(0 < T1 < t1<. . .< Tk < tk < t < Tk+1)
= λk t1(t2 − t1) . . . (tk − tk−1)e−λt

on integrating the density (9). Hence, the conditional distribution of T1, . . . , Tk given
N (t) = k is given by

P(T1≤ t1< . . . < Tk ≤ tk |N (t)= k) = P(T1≤ t1<. . .< tk ; N (t)= k)/P(N (t)= k)(10)

= t1(t2 − t1) . . . (tk − tk−1)
k!

t k
.

Now differentiating (10) with respect to all of t1, . . . , tk gives (7), as required. �

As we have remarked, this result finds many applications, see Example 8.17 for some
of them. For the moment we content ourselves with showing that N (t) has the so-called
independent increments property.

(11) Theorem: The Poisson Process has Independent Increments Let N (t) be a Poisson
process, as usual, and let s < t ≤ u < v. Then N (t)− N (s) is independent of N (v)−
N (u).

Proof Let W = N (t)− N (s) and Z = N (v)− N (u). Then, by conditional expectation,

E(wW zZ ) = E[E(wW zZ |N (v))].(12)
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However, conditional on N (v) = k, these events are independently and uniformly dis-
tributed in (0, v), whence (W, Z , k −W − Z ) has a trinomial distribution with

E(wW zZ |N (v) = k) =
((

t − s

v

)
w +

(
v − u

v

)
z +

(
s + u − t

v

))k

.(13)

Hence, combining (12) and (13) and Theorem (3) gives

E(wW zZ ) = exp (λw(t − s)+ λz(v − u)+ λ(s + u − t)− λv)(14)
= exp (λ(t − s)(w − 1)+ λ(v − u)(z − 1)) = E(wW )E(zZ ),

as required. �

We may also observe from (14) that because E(wW ) = exp (λ(t − s)(w − 1)), it follows
that W is Poisson with parameter λ(t − s). That is to say, N (t)− N (s) has the same
mass function as N (t − s). This property may be called homogeneity or the property of
stationary increments. Note that it is possible, and often convenient, to define N (t) as a
process with stationary independent Poisson-distributed increments. It is then necessary
to prove that interevent times are independent identically distributed exponential random
variables.
Now looking back at Section 5.6, we see that the simple randomwalk also has the prop-

erty of independent increments. In Section 5.7, we found thatmartingaleswere particularly
useful in analysing the behaviour of such random walks. We may expect (correctly) that
martingales will be equally useful here. First, we need to define what we mean by a
martingale for an uncountably infinite family of random variables (X (t); t ≥ 0).

(15) Definition (X (t); t ≥ 0) is a martingale if

(a) E|X (t)| <∞, for all t .
(b) E(X (t)|X (t1), X (t2), . . . , X (tn), X (s)) = X (s), for any 0 ≤ t1 < t2<. . .< tn <

s < t .

It is customary and convenient to rewrite (b) more briefly as

(b)′E(X (t)|X (u); u ≤ s) = X (s),

but note that this is slightly sloppy shorthand; we cannot condition on an infinite number
of values of X (u).

A stopping time for X (t) is a random variable T taking values in [0,∞), such that
the event (T ≤ t) depends only on values of X (s) for s ≤ t. �

There are many technical details that should properly be dealt with here; we merely
note that they can all be satisfactorily resolved and ignore them from now on.
Such martingales and their stopping times can behave much like those with discrete

parameter. We state this useful theorem without proof, or technical details.



368 8 Jointly Continuous Random Variables

(16) Theorem: Optional Stopping Let X (t) be a continuous parameter martingale and
T a stopping time for X (t). Then X (t ∧ T ) is a martingale, so

EX (0) = EX (t ∧ T ) = EX (t).

Furthermore, EX (T ) = EX (0) if any one of the following holds for some constant K <

∞:
(a) T is bounded (i.e., T ≤ K <∞).
(b) |X (t)| ≤ K for all t , and P(T <∞) = 1.
(c) E(sup X (t ∧ T ) <∞, and P(T <∞) = 1.
(d) E|X (T )| ≤ K , and P(T <∞) = 1, and lim

t→∞E(X (t)I (T > t)) = 0.

Note that similar appropriate definitions and theorems apply to sub- and supermartingales
with continuous parameter, but we do not explore that further here. Note further that, just
as in the discrete-time case, a popular technique when P(T <∞) = 1 is to apply part
(a) of the theorem at T ∧ t , allow t →∞, and use either the Dominated or Monotone
Convergence theorem, as appropriate.

(17) Example: Poisson Martingales If (N (t); t ≥ 0) is a Poisson process with parameter
λ, then the following are all martingales:

(a) U (t) = N (t)− λt .
(b) V (t) = (U (t))2 − λt .
(c) W (t) = exp {−θN (t)+ λt(1− e−θ )}, θ ∈ R.

To see (a), we calculate

E(U (t)|N (u); 0 ≤ u ≤ s) = E(N (t)− N (s)+ N (s)|N (u), 0 ≤ u ≤ s)
= U (s)+ E[N (t)− N (s)]− λ(t − s)
= U (s),

where we used the independent increments property. The proof of (b) proceeds likewise:

E(V (t)|N (u), 0 ≤ u ≤ s) =
= E[N (t)− λt − N (s)+ λs]+ (N (s)− λs)]2|N (u); 0 ≤ u ≤ s]− λt

= [U (s)]2 + λ(t − s)− λt = V (s),

on using the independence of the increments and var [N (t)− N (s)] = λ(t − s). Part (c)
is left as an exercise, but see also Example (8.22). �

8.9 Two Limit Theorems

Perhaps surprisingly (as we are toward the end of the book), this is an appropriate moment
to reconsider our basic ideas about chance. Suppose we are given a number n of similar
observations or measurements, denoted by x1, . . . , xn . For example, the xi may be the
height of each of n men, or they may be the lifetimes of n light bulbs, or they may be
the weight of potatoes yielded by each of n plants. By “similar” in this context, we mean
that no measurement has any generic reason to be larger or smaller than the others; the
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potatoes are of the same variety and grown in the same circumstances; the light bulbs are
of the same make and type, and the men are of the same age and race.
It is convenient to have one number that gives an idea of the size of a typical xi , and a

popular candidate for this number is the average x̄ given by

x̄ n = 1

n

n∑
i=1

xi .

One reason for the popularity of x̄ is that it is empirically observed that, as n increases,
the sequence x̄ n undergoes smaller and smaller fluctuations, and indeed exhibits behaviour
of the kind we call convergent.
A special case of suchmeasurements ariseswhen each xi takes the value 1 or 0 according

to whether some event A occurs. Then x̄ n is the proportion of times that A occurs in n
trials, and the fact that x̄ n fluctuates less and less as n increases is sometimes used as a
basis to justify the axioms of probability.
Of course, inmathematical terms,we think of xi as the outcome of some randomvariable

Xi . It follows that, if our theory of probability is as relevant as we have claimed, then the
sequence

Xn = 1

n

n∑
i=1

Xi

ought also to exhibit a similar kind of regularity in the long run as n →∞. What kind
might there be?
To gain some insight into the problem, consider the case when each xi is 1 if A occurs,

and 0 otherwise. In the mathematical formulation of this, Xi is the indicator of the event A,
and we assume the Xi are independent. Then

∑n
1 Xi is a binomial random variable with

parameters n and p, and we have shown in Examples 4.18 and 7.5.11 that, as n →∞,

P

(∣∣∣∣∣1n
n∑

i=1
Xi − p

∣∣∣∣∣ > ε

)
→ 0(1)

and

P

(
1

(npq)
1
2

n∑
i=1
(Xi − p) ≤ x

)
→ �(x),(2)

where �(x) is the standard normal distribution. (Indeed, we proved something even
stronger than (1) in Example 4.18 and Theorem 5.8.8.)
It seems that n−1

∑n
1(Xi − E(X1)) is settling down around E(Xi ) = p and that the

distribution of (n var (X1))−
1
2
∑n

1(Xi − E(X1)) is getting closer to the standard normal
distribution �(x). More generally, we showed in Theorem 5.8.6 that (1) holds for any
collection of independent discrete random variables with the same mean and variance. We
called this the weak law of large numbers.
This is deliberately vague and informal, but it should now seem at least plausible that

the following results might be true.
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(3) Theorem Let (Xk ; k ≥ 1) be independent and identically distributed random vari-
ables with mean µ, variance σ 2 <∞, and moment generating function MX (t), |t | <
a. Then we have:

(i) Weak Law of Large Numbers For ε > 0, as n →∞,

P

(∣∣∣∣∣1n
n∑

i=1
(Xi − µ)

∣∣∣∣∣ > ε

)
→ 0.(4)

(ii) Central Limit Theorem As n →∞,

P

(
1

σ
√

n

n∑
i=1
(Xi − µ) ≤ x

)
→ �(x) =

∫ x

−∞
(2π )−

1
2 e−

1
2 y2 dy.(5)

It is a remarkable fact that both of these are indeed true, and we now prove them.

Proof of (4) The essential step here is to recall Chebyshov’s inequality, for then we may
write, using Theorem 7.4.16,

P

(
1

n

∣∣∣∣∣
n∑
1

(Xi − µ)
∣∣∣∣∣ > ε

)
≤ ε−2E


n−2

(
n∑
1

(Xi − µ)
)2

= ε−2n−2E

(
n∑
1

(Xi − µ)2
)

by independence,

= ε−2n−1σ 2→ 0 as n →∞
�

Note that the proof here is the same as that of Theorem 5.8.6. So it is not necessary for (4)
that the Xi be identically distributed or have an m.g.f., it is sufficient that they have the
same mean and variance.

Proof of (5) The essential step here is to recall the continuity theorem (7.5.10), for then
we may write

E

(
exp

[
t

σ
√

n

n∑
1

(Xi − µ)
])

=
(
E
(
exp

[
t

σ
√

n
(X1 − µ)

]))n

,
by
independence

= (MY (t/(σ
√

n)))n where Y = X − µ,

=
(
1+ E(Y 2)

t2

2σ 2n
+ o

(
t2

n

))2
by
Theorem 7.5.9

→ e
1
2 t2, because E(Y 2) = σ 2.
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Nowwe recall that e
1
2 t2 is themoment generating function of the standard normal density

φ(x), and (5) follows by the continuity theorem (7.5.10). �

8.10 Review and Checklist for Chapter 8

In this chapter, we consider the joint behaviour of collections of continuous random vari-
ables having joint density functions. We also introduce the joint distribution function, and
show how these yield themarginal densities and distributions. The change of variable tech-
nique is given and used to study important functions of sets of random variables (including
sums, products, quotients, and order statistics). We look at expectation, independence, and
conditioning, especially the key concept of conditional expectation. Finally, we discuss
the Poisson process and its crucial properties, together with continuous parameter martin-
gales and the optional stopping theorem, and prove simple forms of the weak law of large
numbers and the central limit theorem.
We summarize most of these principal properties for the bivariate case (X, Y ). The

extension to larger collections of random variables (X1, X2, X3, . . . ; the multivariate case)
is straightforward but typographically tedious.

SYNOPSIS OF FORMULAE:
The random vector (X, Y ) is supposed to have joint density f (x, y) and distribution
F(x, y).
Key rule:

P[(X, Y ) ∈ B] =
∫
(x,y)∈B

f (x, y) dxdy.

Basic rules:

F(x, y) =
∫ x

−∞

∫ y

−∞
f (u, v) dudv = P(X ≤ x, Y ≤ y).

For small h and k,

P(x < X ≤ x + h, y < Y ≤ y + k) � f (x, y) hk,

and when F is differentiable,

∂2F(x, y)

∂x∂y
= f (x, y).

Marginals:

fX (x) =
∫

R

f (x, y)dy; fY (y) =
∫

R

f (x, y)dx,

FX (x) = F(x,∞); FY (y) = F(∞, y).

Functions:

P(g(X, Y ) ≤ z) =
∫ ∫

g≤z
f (x, y) dxdy.
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In particular,

fX+Y (z) =
∫

R

f (x, z − x) dx .

Transformations:
More generally, suppose (u, v) = (u(x, y), v(x, y)) defines a one–one invertible function;
let

J (u, v) = ∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v
,

where the derivatives are continuous in the domain of (u, v). Then the random variables
(U, V ) = (u(X, Y ), v(X, Y )) are jointly continuous with density

fU,V (u, v) = fX,Y (x(u, v), y(u, v))|J (u, v)|.
Independence: X and Y are independent, if and only if

FX,Y (x, y) = FX (x)FY (y), for all x, y,

or

fX,Y (x, y) = fX (x) fY (y), for all x, y.

Expectation: If
∫ ∫ |g| f (x, y)dxdy <∞, then g(X, Y ) has an expected value given by

Eg(X, Y ) =
∫ ∫

g(x, y) f (x, y)dxdy.

Moments: Joint moments, covariance, and correlation are defined as they were in the
discrete case.
Joint generating functions: The joint probability generating function of integer-valued
X and Y is

G X,Y (x, y) = E(x X yY ).

The joint moment generating function of X and Y is

MX,Y (s, t) = E(es X+tY ) = G X,Y (e
s, et ).

Moments are obtained by appropriate differentiation, so

cov (X, Y ) =
{

∂2G
∂x∂y (1, 1)− ∂G

∂x (1, 1)
∂G
∂y (1, 1) if X, Y are discrete

∂2M
∂s∂t (0, 0)− ∂M

∂s (0, 0)
∂M
∂t (0, 0) in any case.

Random variables X and Y are independent if and only if the moment generating function
factorizes as a product of separate functions of s and t for all s, t ; thus,

M(s, t) = M(s, 0)M(0, t).
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Conditioning: The conditional density of X given Y = y is

fX |Y (x |y) =



f (x, y)

fY (y)
, 0 < fY (y) <∞

0, otherwise.

The Key Rule is

P(X ∈ A|Y = y) =
∫

x∈A
fX |Y (x |y) dx,

the continuous partition rule is

fX (x) =
∫

R

fX |Y (x |y) fY (y) dy,

and the conditional distribution function is

FX |Y (x |y) =
∫ x

−∞
fX |Y (x |y)dx = P(X < x |Y = y).

If
∫ |x | fX |Y (x |y)dx <∞, then the conditional expectation of X given Y = y is

E(X |Y = y) =
∫

R

x fX |Y (x |y) dx .

As Y varies, this defines a function E(X |Y ), where E(X |Y ) = E(X |Y = y) when Y = y.
Key theorem for conditional expectation:

E(E(X |Y )) = EX.

This has the same properties as the conditional expectation in the discrete case.

Limit Theorems:We established the Weak Law of Large Numbers and the Central Limit
Theorem in (8.9.3).
Multivariate normal density: Jointly normal randomvariables are particularly important.
Recall that the standard normal density is

φ(x) = fX (x) = 1√
2π

exp

(
− 1

2
x2
)
, −∞ < x <∞.

If the random variables X and Y are jointly distributed, and aX + bY has a normal
distribution for all choices of the constants a and b, then X and Y are said to have a
bivariate normal, or binormal, density. In particular, X and Y have the standard binormal
density with correlation coefficient (or parameter) ρ, if

f (x, y) = (2π )−1(1− ρ2)−1/2 exp
{ −1
2(1− ρ2) (x

2 − 2ρxy + y2)

}
.

Thus X and Y are independent if and only if uncorrelated.
More generally, X = (X1, . . . , Xn) is said to be multivariate normal (or multinormal)

if
∑n

1 ai Xi has a normal distribution for all choices of a = (a1, . . . , an). It follows that the
multinormal distribution is determined by the means and covariances of (X1, . . . , Xn).
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To see this, we simply calculate the joint moment generating function of X:

MX(t) = E exp

(
n∑
1

tr Xr

)
.

This is easy because
∑n

1 tr Xr is normal with mean
∑

i tiEXi and variance∑
i, j cov (Xi , X j )ti t j . Hence, by Example 7.5.7,

MX(t) = exp
[∑

i

tiEXi + 1

2

∑
i, j

cov (Xi , X j )ti t j

]
,

and this determines the joint distribution by the basic property of m.g.f.s.
In particular, X1, X2, X3 have the standard trivariate normal distribution (or trinormal)

when varX1 = varX2 = varX3 = 1,EX1X2 = ρ12,EX1X3 = ρ23,EX3X1 = ρ31, and

f (x1, x2, x3) = (2π )−3/2A−
1
2 exp

{
− 1

2A

∑
j

∑
k

a jk x j xk

}
,

where a11= 1− ρ223, a22= 1− ρ231, a33= 1− ρ212, a12= a21= ρ31ρ23− ρ12, a13=a31 =
ρ12ρ23 − ρ31, a23 = a32 = ρ12ρ31 − ρ23, and A = 1− ρ212 − ρ223 − ρ231 + 2ρ12ρ23ρ31.
The joint moment generating function of X1, X2, X3 is

M(t1, t2, t3) = exp
{
1

2

(
t21 + t22 + t23 + ρ12t1t2 + ρ23t2t3 + ρ31t3t1

)}
.

Checklist of Terms for Chapter 8

8.1 joint distribution function
joint density function
marginals
bivariate normal density

8.2 change of variable formula
8.3 independence and factorization
8.4 sums, products, and quotients
8.5 expectation

Cauchy–Schwarz inequality
independence and expectation
covariance and correlation
joint moment generating function
normal sample

8.6 conditional density
conditional distribution
conditional expectation

8.7 normal sample
order statistics

8.8 Poisson process
conditional property
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independent increments
martingales
optional stopping theorem

8.9 weak law of large numbers
central limit theorem

WORKED EXAMPLES AND EXERCISES

8.11 Example: Bivariate Normal Density

Let X and Y have the standard bivariate normal joint density

f (x, y) = 1

2π (1− ρ2) 12
exp

(
− x2 − 2ρxy + y2

2(1− ρ2)
)
.

Show that the joint moment generating function of X and Y is

exp

(
1

2
(s2 + 2ρst + t2)

)
.

Solution We are asked to find

M = E(es X+tY ) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)esx+t y dxdy.(1)

After a little thought, we observe that the terms in the exponents in the integrand can be
rearranged to give

M = 1

2π (1− ρ2) 12
∫ ∫

exp

(
− x2

2
+ x(s + tρ)− 1

2

(
y − ρx

(1− ρ2) 12

)2

+ y − ρx

(1− ρ2) 12
t(1− ρ2) 12

)
dxdy.

This suggests that we make the change of variables u = x, v = (y − ρx)/(1− ρ2) 12 in the
integral. This map is one–one, and J = (1− ρ2) 12 . Hence,

M = 1

2π

∫ −∞

−∞

∫ −∞

−∞
exp

(
− 1

2
u2 + (s + tρ)u − 1

2
v2 + t(1− ρ2) 12 v

)
dudv.

Because the integrand factorizes, we now recognize the right-hand side as being equal to

E(e(s+tρ)U )E(et(1−ρ2) 12 V ),

where U and V are standard normal random variables. But we know the m.g.f. E(etV ) of
a standard normal random variable V to be e

1
2 t2 . Hence,

M = e
1
2 (s+tρ)2e

1
2 t2(1−ρ2),(2)

as required.
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(3) Exercise Find the conditional m.g.f. of Y given X .
(4) Exercise Use (3) to find E(es X+tY ). Show that ρ(X, Y ) = cov (X, Y ) = ρ. Deduce that X and

Y are independent if and only if cov (X, Y ) = 0.
(5) Exercise Let X1, X2, . . . , Xn be independent standard normal variables. Let W =∑n

i=1 αi Xi

and Z =∑n
i=1 βi Xi . When are Y and Z independent?

(6) Exercise Find the distributionofaX + bY ,where X andY have the bivariate normal distribution.

Remark See Example 8.20 for another approach.

8.12 Example: Partitions

(a) The random variables X and Y are independently and uniformly distributed on (0, a).
Find the density of U, V, and W , where U = min{X, Y }, V = |X − Y |, and W =
a −max {X, Y }.

(b) Use this to show that if three points are picked independently and uniformly on the
perimeter of a circle of radius r , then the expected area of the resulting triangle is
3r2/(2π ).

Solution (a) We give three methods of solution.
I: Basic Plod (i) By independence

P(U ≤ u) = 1− P(X > u; Y > u) = 1−
(

a − u

a

)2
.

(ii) By the basic property of densities, if we let C be the set {x, y: |x − y| ≤ v}, then

P(V ≤ v) = a−2
∫

C
dx dy = 1−

(
a − v

a

)2
.

(iii) By independence,

P(W ≤ w) = P(max {X, Y } ≥ a − w) = 1−
(

a − w
a

)2
.

Hence, U, V , and W have the same density:

f (z) = 2

a2
(a − z), for 0 < z < a.(1)

II: Crofton’s Route Let F(a, v) be the distribution of V , and consider F(a + h, v). By
conditioning on the three events {both X and Y lie in (0, a)}, {one of X, Y lies in (0, a)},
and {neither of X, Y lie in (0, a)}, we find that

F(a + h, v) = F(a, v)

(
a

a + h

)2
+
(v

a
+ o(h)

) 2ha

(a + h)2
+ o(h).

Hence, rearranging and taking the limit as h → 0, we have

∂F

∂a
(a, v) = −2

a
F(a, v)+ 2v

a2
.(2)
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Integrating (2) using the condition F(a, a) = 1 gives

F(a, v) = 2av − v2
a2

.(3)

The densities of U and W may be found by the same method (exercise).
III: Symmetry Suppose we pick three points independently at random on the perimeter

of a circle with perimeter of length a. Then choose any of the three as origin and “unwrap”
the perimeter onto (0, a). The other two points are distributed as X and Y . However, by the
symmetry of the original problem the three lengths U, V , and W have the same density.
By method I, part (i), it is 2(a − z)/a2.
(b) Let θ, φ, ψ be the angles subtended at the centre by the three sides of the triangle.

The area of the triangle is A = 1
2r2(sin θ + sinφ + sinψ) ; note that this expression is

still valid when an angle is obtuse. However, by part (a), each of the arc lengths rθ, rφ,
and rψ has the same density 2(2πr − z)/(2πr )2. Hence, θ has density 2(2π − θ )/(2π )2,
and

E(A) = 3

2
r2E(sin θ ) = 3

2
r2
∫ 2π

0

2(2π − θ ) sin θ
(2π )2

dθ = 3r2

2π
.

(4) Exercise Show that the probability that U, V , and W can form a triangle is 14 .
(5) Exercise Find the densities of U and W by method II.
(6) Exercise Suppose that X1, X2, . . . , Xn are independently and uniformly distributed on (0, 1)

with order statistics X (1), . . . , X (n). What is the density of X (k+1) − X (k); 1 ≤ k ≤ n − 1?
(7) Exercise (6) Continued What is the joint density of X (k+1) − X (k) and X ( j+1) − X ( j) for j �= k?
(8) Exercise Two points are picked at random on the perimeter (including its diameter) of a semicir-

cle with radius 1. Show that the expected area of the resulting triangle they make with the midpoint
of the diameter is 1/(2+ π ).

(9) Exercise Write down the joint density of U and W ; then integrate to derive (1) by a fourth
method.

8.13 Example: Buffon’s Needle

An infinite horizontal table is marked with a rectangular grid comprising two families of
distinct lines A and B. The lines of A are parallel, and the distance between neighbouring
lines is 2a. All the lines of B are perpendicular to every line of A and are distance 2b
apart.
A thin symmetrical needle of length 2l, where l < min {a, b}, is thrown at random onto

the table.

(a) Show that the probability that the needle intersects both an A-line and a B-line is

P(A ∩ B) = l2

πab
.(1)

(b) Show that the probability that the needle intersects an A-line and does not intersect a
B-line is

P(A ∩ Bc) = 2bl − l2

πab
.(2)
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B-line

a

l

l0 b A-line

III

II

I

Figure 8.2 Buffon’s needle.

Solution The centre C of the needle must fall in some 2a × 2b rectangle R, whose
sides are A-lines and B-lines. The words “at random” mean that the centre is uniformly
distributed over R, and the angle! that the needle makes with any fixed line is uniformly
distributed. By symmetry, we can suppose that C lies in one quarter of R, namely, the
a × b rectangle Q, and also that 0 ≤ θ < π . That is to say, we assume thatC = (X, Y ) and
! are jointly uniform on {0 ≤ x < a} × {0 ≤ y < b} × {0 ≤ θ < π} with joint density
(πab)−1.
(i)NowconsiderFigure 8.2.Theneedle can intersect both A and B onlywhenC = (x, y)

lies in the positive quadrant of the circle, radius l, centred at the origin (region I).
If the angle it makes withOB lies between± sin−1(x/ l), then it cuts onlyOA. Likewise

the needle cuts only OB if it lies within the angle − sin−1(y/ l) < ! < sin−1(y/ l).
Therefore, when X = x > 0, Y = y > 0, and x2 + y2 ≤ l2, the probability of two in-

tersections is π − 2 sin−1(x/ l)− 2 sin−1(y/ l). Hence,

P(A ∩ B) = 1

πab

∫
π − 2 sin−1

( x

l

)
− 2 sin−1

( y

l

)
dx dy,(3)

where the integral is over x > 0, y > 0, x2 + y2 ≤ l2. Now

∫ l

0

∫ (l2−x2)
1
2

0
sin−1

( x

l

)
dx dy =

∫ l

0
(l2 − x2)

1
2 sin−1

( x

l

)
dx

=
∫ π/2

0
l2θ cos2 θdθ,

with the
obvious substitution,

=
(
π2

16
− 1

4

)
l2.

Hence, substituting into (3) gives

P(A ∩ B) = 1

πab

(
l2π2

4
− 4l2

(
π2

16
− 1

4

))
= l2

πab
.
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(ii) For P(A ∩ Bc), we examine Figure 8.2 again. First, if C is in region I, then the
needle cuts A and not B if ! lies in an angle 2 sin−1(x/ l), as we remarked above.
Second, if C lies in region II (that is, 0 ≤ y < l, but x2 + y2 > l2), then the needle cuts

A and not B if it lies in an angle of size 2 cos−1(y/ l). Hence,

πabP(A ∩ Bc) =
∫
I
2 sin−1

( x

l

)
dx dy +

∫
II
2 cos−1

( y

l

)
dxdy

=
∫ l

0
2(l2 − x2)

1
2 sin−1

( x

l

)
dx

+
∫ l

0
2(l − (l2 − y2)

1
2 ) cos−1

( y

l

)
dy

+
∫ l

0
2(a − l) cos−1

( y

l

)
dy

= l2
∫ π

2

0
2θ (cos2 θ − sin2 θ ) dθ + l

∫ π
2

0
(2l + 2(a − l))θ sin θdθ

= 2al − l2, as required.

(4) Exercise Show that the probability that the needle intersects no line of the grid is

1− 2l

πb
− 2l

πa
+ l2

πab
.

(Do this in two ways, one of which is an integral.)
(5) Exercise Suppose the table is marked with only one set of parallel lines, each distance 2a from

its next neighbour. Show that the probability that a needle of length 2l < 2a intersects a line is
2l/πa. (Do this two ways also.)

(6) Exercise Consider the problem of Exercise 5 when 2l > 2a. Show that the probability of an
intersection is

2

π
cos−1

(a

l

)
+ 2l

πa

(
1−

(
1− a2

l2

) 1
2
)
.

(7) Exercise Suppose (instead of a needle) you roll a penny of radius l on to the grid of A-lines and
B-lines. What is the probability that when it topples over it intersects a line? When is this an evens
chance?

8.14 Example: Targets

(a) Let (Xi ; 1 ≤ i ≤ 2n + 1) be independently and uniformly distributed over (−1, 1),
and let Yn = X (n+1) so that Yn is the sample median of the Xi . Find the density of Yn ,
and hence evaluate the integral

∫ 1
0 (1− x2)n dx .

(b) Now n shots hit a circular target. The points of impact are independently and uniformly
distributed over the circle. Let Zn be the radius of the largest circle concentric with
the target which includes no hit. Find E(Zn).
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Solution (a) First note that the uniform distribution on (−1, 1) is F(x) = 1
2 (1+ x).

Now let Ak be the event that X (n+1) = Xk ; this occurs of course if n of the Xi are greater
than Xk , and the remaining n are less than Xk . Then

P(Yn ≤ y) =
2n+1∑
k=1

P(Yn ≤ y ∩ Ak) = (2n + 1)P(Yn ≤ y ∩ A1), by symmetry,

= (2n + 1)
∫ y

−1
fX1 (y)

(
2n

n

)(
1+ y

2

)n (
1− (1+ y)

2

)n

dy,

by conditional probability.
Hence, Yn has density fY (y) = ((2n + 1)!/(n!)2)((1− y2)n/22n+1). Because this is a

density, its integral over (−1, 1) is unity, so∫ 1

0
(1− y2)n dy = 22n(n!)2

(2n + 1)! .

[Alternatively, you could write down the density for fY (y) using the known density of
order statistics.]
(b) Let Ri be the distance of the i th hit from the centre of the target. Because hits are

uniform, P(Ri ≤ x) = x2 for 0 ≤ x ≤ 1. Obviously,

P(Zn > x) = P(Ri > x for all i) =
n∏

i=1
P(Ri > x), by independence,

= (1− x2)n.

Hence,

E(Zn) =
∫ 1

0
P(Zn > x) dx =

∫ 1

0
(1− x2)ndx = 22n(n!)2

(2n + 1)! .

(1) Exercise Find var (Yn).
(2) Exercise Let An be the area of the smallest circle concentric with the target that includes all the

hits. Find E(An).
(3) Exercise The hit furthest from the centre of the target is deleted. What now is the expected area

of the smallest circle concentric with the target that includes all the remaining hits?
(4) Exercise Let Rn be the distance of the furthest hit from the centre of the target. Show that as

n →∞,P(n(1− Rn) ≤ x)→ 1− e−2x .

8.15 Example: Gamma Densities

Let X and Y be independent, having gamma distributions with parameters {α, λ} and
{β, λ}, respectively.

(a) Find the joint density of U = X + Y and V = X

X + Y
.

(b) Deduce that E
(

X

X + Y

)
= E(X )

E(X )+ E(Y )
.

(c) What is the density of V ?
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Solution (a) We use the change of variables technique. The transformation u = x +
y, v = x/(x + y) for x, y > 0, is a one–one map of the positive quadrant onto the strip
0 < v < 1, u > 0, with inverse x = uv and y = u(1− v). Hence, J = u, and by Theorem
8.2.1, U and V have joint density

f (u, v) = λαλβ

 (α) (β)
(uv)α−1(u(1− v))β−1e−λuve−λu(1−v)u(1)

= c1u
α+β−1e−λuc2v

α−1(1− v)β−1,(2)

where c1 and c2 are constants.
Hence, U and V are independent, as f (u, v) has factorized.
(b) Using the independence of U and V gives

E(X ) = E(U V ) = E(U )E(V ) = (E(X )+ E(Y ))E
(

X

X + Y

)
,(3)

as required.
(c) A glance at (2) shows that V has the beta density with parameters α and β.

(4) Exercise Show that
 (α) (β)

 (α + β) =
∫ 1

0
xα−1(1− x)β−1dx .

(5) Exercise Show that  ( 12 ) = π
1
2 .

(6) Exercise Let the random variable Z have density c(1+ x2)−m,m > 1
2 ,−∞ < x <∞. Show

that c−1 = π
1
2 (m − 1

2 )/ (m).

8.16 Example: Simulation – The Rejection Method

(a) Let U and X be independent random variables such that U is uniform on (0, 1) and
X has density fX (x); suppose that there exists a constant a that for all x the function
fS(x) satisfies

0 ≤ fS(x) ≤ a fX (x)(1)

and
∫∞
−∞ fS(x) dx = 1. Show that

P(X ≤ x |aU fX (X ) ≤ fS(X )) =
∫ x

−∞
fS(y) dy.(2)

(b) Explain how this result may be used to produce realizations of a random variable Z
with density fS(z).

Solution (a) By conditional probability,

P(X ≤ x |aU fX (X ) ≤ fS(X )) = P(X ≤ x, aU fX (X ) ≤ fS(X ))

P(aU fX (X ) ≤ fS(X ))
(3)

=

∫ x

−∞
P(aU fX (x) ≤ fS(x)) fX (x) dx∫ ∞

−∞
P(aU fX (x) ≤ fS(x)) fX (x) dx
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=
∫ x

−∞

fS(x)

a fX (x)
fX (x) dx

/∫ ∞

−∞

fS(x)

a fX (x)
fX (x) dx,

by (1),

=
∫ x

−∞
fS(x) dx .

(b) Supposewe have independent realizations ofU and X . Then the above equation says
that conditional on the event A = {aU fX (X ) ≤ fS(X )}, X has density fS(x). In familiar
notation, we have

fX |A(x) = fS(x).

Now suppose we have a sequence (Uk, Xk ; k ≥ 1) of random variables that have the same
distributions as (U, X ). For every pair (Uk, Xk) for which A occurs, the random variable
Xk has density fS(x), and we can write Z = Xk . Then Z has density fS(z).

Remark It is implicit in the question that we want a random variable with density
fS(x), and so any pair (Uk, Xk) for which Ac occurs is rejected. This explains the title
of the example (although in the circumstances you might think a better title would be
the conditionalmethod). Obviously, this offers a method for simulating random variables
with an arbitrary density fS(x), subject only to the constraint that we have to be able to
simulate X with density fX (x) that satisfies (1).

(4) Exercise Find the mass function and mean of the number N of pairs (Uk, Xk) that are rejected
before the first occasion on which A occurs. What does this imply about a?

(5) Exercise If X is exponential with parameter 1, show that (2) takes the form P(X ≤ x |aU1U2 ≤
fS(X )) = FS(x), whereU1 andU2 are independent and uniform on (0, 1). Hence, describe how you
would simulate a random variable with density fS(x) = (2/π ) 12 e−x2/2, x > 0.

(6) Exercise Let U1 and U2 be independent and uniform on (0, 1). Let X = − logU1 and Y =
− logU2. What is the density of X conditional on Y > 1

2 (X − 1)2?

8.17 Example: The Inspection Paradox

Let N (t) be a Poisson process, and at each time t > 0, define C(t) to be the time since the
most recent event. (This is called the current life or age.) Further, define B(t) to be the
time until the next event (this is called the balance of life or excess life). Show that B(t)
and C(t) are independent, and find the distribution of C(t). What is E(B + C)?
[Note: By convention, if N (t) = 0, we set C(t) = t .]

Solution Recall that we used the conditional property of the Poisson process to show
that N (t) has independent increments. Now

P(B(t) > y,C(t) > z) = P(N (t + y)− N (t) = 0, N (t)− N (t − z) = 0)
= P(N (t + y)− N (t) = 0)P(N (t)− N (t − z) = 0),

by the independence of increments,
= P(B(t) > y)P(C(t) > z).
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Furthermore, we showed that N (t)− N (t − z) has the same distribution as N (z), for t and
t − z both nonnegative. Hence,

P(C(t) > z) =


1 z < 0
e−λz 0 ≤ z ≤ t
0 z > t.

(1)

Likewise,

P(B(t) > y) =
{
1 y < 0
e−λy y > 0.

Hence,

E(B + C) = 1

λ
+
∫ t

0
λte−λt dt + te−λt = 2

λ
− 1

λ
e−λt .(2)

Remark If we suppose N (t) is the number of renewals of (say) light bulbs, then (2)
says that the expected life of the light bulb inspected at time t is 2/λ− 1/λe−λt , which is
greater than the expected life of a randomly selected light bulb, which is 1/λ.
It may seem as though we make light bulbs last longer by inspecting them, this is

the “paradox.” Of course, this is not so, it is just that if you only look once, you are
more likely to see a longer-lived light bulb. This is related to other sampling paradoxes
mentioned previously, see for example, “congregations.”

(3) Exercise: TheMarkov Property Show that for any t1 < t2< . . .< tn , the process N (t) has the
so-called Markov property:

P(N (tn) = jn|N (tn−1) = jn−1, . . . , N (t1) = j1) = P(N (tn) = jn|N (tn−1) = jn−1).

(4) Exercise: The Shower Problem Your telephone is called at the instants of a Poisson process
with parameter λ. Each day you take a shower of duration Y starting at time X , where X and Y are
jointly distributed in hours (and not independent). Show that the number of times that the telephone
is called while you are in the shower has a Poisson distribution with parameter λE(Y ). (Assume
0 ≤ X ≤ X + Y ≤ 24.)

(5) Exercise Aesthetes arrive at a small art gallery at the instants of a Poisson process of parameter
λ. The kth arrival spends a time Xk in the first room and Yk in the second room, and then leaves.
The random variables Xk and Yk are not independent, but (Xk, Yk) is independent of (X j , Y j ) for
j �= k. At time t , let R1 and R2 be the number of aesthetes in the respective rooms. Show that R1
and R2 are independent Poisson random variables.

(6) Exercise Find cov (N (s), N (t)), and the correlation ρ(N (s), N (t))

8.18 Example: von Neumann’s Exponential Variable

Let the sequence of random variables X1, X2, X3, . . . be independent and identically
distributed with density f and distribution F . Define the random variable R by

R = min{n: X1 ≥ X2 ≥ . . . ≥ Xn−1 < Xn}.(1)
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(a) Show that P(R = r ) = (r − 1)/r !, and that

P(X R ≤ x) = exp (1− F(x))− e(1− F(x)).

(b) Now let Xn be uniformly distributed on (0, 1) for all n. Show that

P(X1 ≤ x ; R = r ) = xr−1

(r − 1)! −
xr

r !
.(2)

Deduce that

P(X1 ≤ x |R is even) = 1− e−x

1− e−1
.(3)

Finally, define a random variable V as follows. A sequence X1, X2, . . . , X R is a “run”; it
is “odd” is R is odd, otherwise it is “even.” Generate runs until the first even run, and then
let V equal the number N of odd runs plus X1 in the even run. Show that V has density
e−v for v > 0.

Solution (a) Let X (1) ≤ X (2) ≤ . . . ≤ X (r ) be the order statistics of (X1, . . . , Xr ).
By symmetry (X1, . . . , Xr ) is equally likely to be any one of the r ! permutations of
(X (1), . . . , X (r )). For the r − 1 permutations of the form,

(X (r ), . . . , X (k+1), X (k−1), . . . , X (1), X (k)), 2 ≤ k ≤ r,

the event R = r occurs, and for no others. Hence,

P(R = r ) = r − 1
r !

.

The above remarks also show that

P(X R ≤ x) =
∞∑

r=2

1

r !

r∑
k=2

P(X (k) ≤ x)

=
∞∑

r=2

1

r !

r∑
k=2

r∑
j=k

(
r

j

)
(F(x)) j (1− F(x))r− j by (8.7.12)

=
∞∑

r=2

1

r !
(r F(x)− 1+ (1− F(x))r ) = e(F(x)− 1)+ exp (1− F(x)),

on summing the series. It is easy to check that this is continuous and nondecreasing as x
increases, and differentiation gives the density of X R:

fX R (x) = e f (x)(1− exp (1− F(x))).

(b) Now observe that the event {R > r} ∩ {X1 ≤ x} occurs if and only if Xk ≤ x
for 1 ≤ k ≤ r [which has probability (F(x))r , and X1 ≥ X2 ≥ X3 ≥ . . . ≥ Xr (which
has probability 1/r !]. Hence, when Xk is uniform on (0, 1),

P(R > r ; X1 ≤ x) = xr

r !
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and so

P(R = r ; X1 ≤ x) = xr−1

(r − 1)! −
xr

r !
.

Now summing over even values of R, we have

P(X1 ≤ x, R is even) = 1− e−x ,

and hence,

P(X1 ≤ x |R is even) = (1− e−x )/(1− e−1).
This shows that P(R is even)= 1− e−1, and so by independence of runs, N is a geometric
random variable, with mass function

P(N = n) = e−n(1− e−1), for n > 0.

Finally, let us denote X1 in the even run by X0. Then P(X0 > x) = 1− (1− e−x )/(1−
e−1), from (3). Hence,

P(V > v) = P(N ≥ [v]+ 1)+ P(N = [v]; X0 > v − [v])(4)

= e−[v]−1 + ((1− e−1)e−[v])
(
1− 1− e−v+[v]

1− e−1

)
= e−v for 0 < v <∞.

Thus, V is exponentially distributed.

Remark This method of generating exponential random variables from uniform ones
was devised by von Neumann in 1951. Notice that it is computationally economical,
in that it is necessary to store only the number of odd runs to date, and the first X1 in
the run in progress. Also, the expected number of uniform random variables used for
each exponential random variable is small. Since the original result, the method has been
extended to generate other continuous random variables from uniform r.v.s.

(5) Exercise What is the density of X R−1?
(6) Exercise: Bad luck As above, X1, X2, . . . are independent and identically distributed with

density f and distribution F . Define T = min {n: Xn > X1}. Find P(T = n) and show that T has
infinite expectation. Show that XT has distribution FXT (x) = F(x)+ (1− F(x)) log(1− F(x)).

(7) Exercise Explain why the above exercise is entitled “Bad luck.”
(8) Exercise Use the result of Exercise 6 to show that when X1 has an exponential distribution, XT

has a gamma distribution. Why is this obvious without going through the analysis of Exercise 6?

8.19 Example: Maximum from Minima

Let X1, . . . , Xn be a collection of nonnegative random variables with finite expected
values. Show that

Emax
j

X j =
∑

j

EX j −
∑
j<k

Emin(X j , Xk)

+
∑

i< j<k

Emin(Xi , X j , Xk)− · · · + (−1)n+1Emin
j

X j .
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Solution Let I j = I (X j > x) be the indicator of the event that X j > x . Then for all
x we have I j Ik = I (min(X j , Xk) > x), and so on for any product. Furthermore, for all x ,
we see by inspection that

I (max I j > x) = 1−
n∏

j=1
(1− I j )

=
∑

j

I (X j > x)−
∑
j<k

I (X j ∧ Xk > x)+ · · ·

+ (−1)n+1 I (min X j > x).

Now taking expectations gives

P(max X j > x) =
∑

j

P(X j > x)−
∑
j<k

P(X j ∧ Xk > x)+ · · ·

Finally, integrating over [0,∞) and recalling the tail integral for expectation, Theorem
7.4.11, gives the result.

(1) Exercise Deduce that for any collection of real numbers (x1, . . . , xn) we have

max
j

x j =
∑

j

x j −
∑
j<k

x j ∧ xk + · · · + (−1)n+1 min
j

x j .

(2) Exercise: Coupon Collecting (Example 5.3.3) Revisited Suppose that at each transaction
you acquire a coupon of the i th type with probability ci , 1 ≤ i ≤ n, where

∑
i ci = 1 and ci �= 0.

Show that the expected number of coupons collected until you first have at least one of every type
is

∑
j

1

c j
−
∑
j<k

1

c j + ck
+

∑
i< j<k

1

ci + c j + ck
− · · · + (−1)n(−1)n+1 1∑

i ci
.

(3) Exercise A wood contains n birds of r species, with bi of the i th species, bi �= 0, so that∑r
i=1 bi = n. You catch and cage birds at random one by one. Let B be the expected number of

captures until you have at least one of every species, and C the expected number of captures until
you have caged all the representatives of any one of the species. Show that

B

n + 1 =
∑

j

1

b j + 1 −
∑
j<k

1

b j + bk + 1 + · · · +
(−)r+1

b1 + · · · + br + 1 ,

and C = n − B + 1.
(4) Exercise A complex machine contains r distinct components, and the lifetime to failure of the

i th component is an exponential random variable with parameter ai , independent of all the rest. On
failing, it is replaced by one with identical and independent properties. Find an expression for the
expected time until every distinct component has failed at least once.
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8.20 Example: Binormal and Trinormal

LetU and V be independent random variables having the standard normal N (0, 1) density.
Set

X = U, Y = ρU +
√
1− ρ2V ; |ρ| < 1.(1)

Show that the pair X, Y has the standard bivariate normal density. Deduce that

P(X > 0, Y > 0) = 1

4
+ 1

2π
sin−1 ρ.

Solution The joint density of U and V is

f (u, v) = (2π )−1 exp
{
− 1

2
(u2 + v2)

}
,

and the inverse transformation is

U = X, V = (Y − ρX )/(1− ρ2)1/2.
Hence, by Theorem 8.2.1, X and Y have joint density

f (u(x, y), v(x, y))|J | = 1

2π (1− ρ2)1/2 exp
{
− 1

2(1− ρ2) (x
2 − 2ρxy + y2)

}
,

which is indeed the standard bivariate normal density. Using this, and recalling Example
8.3.8, we find

P(X > 0, Y > 0) = P(U > 0, ρU +
√
1− ρ2V > 0)

= P
(

ρ

(1− ρ2)1/2 < tan
−1 V

U
<∞

)

=
{
π

2
+ tan−1 ρ

(1− ρ2)1/2
}
· 1
2π

= 1

4
+ 1

2π
sin−1 ρ,

where we use the well-known fact that

sin θ = ρ ⇔ cos θ =
√
1− ρ2 ⇔ tan θ = ρ√

1− ρ2
.

(2) Exercise Show that a X + bY has the normal density N (0, a2 + 2ρab + b2).
(3) Exercise Show that X and Y are independent if and only if cov (X, Y ) = 0.
(4) Exercise Show that

E(Y |a X + bY = z) = b2 + ρab

a2 + 2ρab + b2
z

b

and

var (Y |aX + bY = z) = a2(1− ρ2)
a2 + 2ab + b2

.
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(5) Exercise Let X, Y , and Z have the standard trivariate normal density, defined in (8.10) Show
that

P(X > 0, Y > 0, Z > 0) = 1

8
+ 1

4π

{
sin−1ρ12 + sin−1 ρ23 + sin−1 ρ31

}
.

Express X, Y , and Z in terms of three independent N (0, 1) random variablesU, V , and W . Hence,
deduce that

E(Z |X, Y ) = {(ρ31 − ρ12ρ23)X + (ρ23 − ρ12ρ31)Y }/
(
1− ρ212

)
and

var (Z |X, Y ) = {
1− ρ212 − ρ223 − ρ231 + 2ρ12ρ23ρ31

}
/
(
1− ρ212

)
.

(6) Exercise Do Example 8.11 again, this time using the representation in (1) for X and Y .

8.21 Example: Central Limit Theorem

Let (Xn; n ≥ 1) be a collection of independent Poisson random variables with parameter
1. By applying the central limit theorem to the Xn , prove Stirling’s formula:

lim
n→∞

√
ne−nnn/n! = (2π )− 1

2 .

[You may assume without proof that the convergence of the sequence of distributions to
�(x) is uniform in x on finite intervals including 0.]

Solution Let Sn =
∑n

r=1 Xr . Then Sn is Poisson with parameter n, mean n, and vari-
ance n. Thus, P(Sn = n) = e−nnn/n!, and we may write

√
ne−nnn/n! = √nP(Sn = n) = √nP(n − 1 < Sn ≤ n)(1)

= √nP
(

n − 1− n√
n

<
Sn − n√

n
≤ 0

)

= √n

[
Fn(0)− Fn

(
− 1√

n

)]
,

where Fn is the distribution function of (Sn − n)/
√

n, and by the Central Limit Theorem,
we have

Fn(x)→ �(x) as n →∞.(2)

Furthermore, because �′(x) = φ(x), we have, as n →∞,
√

n

{
�(0)−�

(
− 1√

n

)}
→ φ(0) = 1√

2π
.(3)

Because the convergence in (2) is uniform on finite intervals, we may let n →∞ in (1)
and use (3) to yield the result.

(4) Exercise Apply the central limit theorem to the same family (Xn ; n ≥ 1) of Poisson random
variables to show that

lim
n→∞ e−n

(
1+ n + n2

2!
+ · · · + nn

n!

)
= 1

2
.
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(5) Exercise It is said that D. Hagelbarger built a machine to predict whether a human coin-flipper
would call heads or tails. In 9795 flips, the machine was correct on 5218 occasions. What is the
probability of doing at least this well by chance? (The flipped coin was known to be fair by all
involved.)

(6) Exercise An aeroplane has 120 seats and is full. There are 120 inflight meals, of which 60
are fish and 60 are pasta. Any passenger, independently of the rest, prefers pasta with probability
0.55, or prefers fish with probability 0.45. Show that the probability that 10 or more passengers
will not get their first choice is approximately 0.234. [You are given that �(0.734) � 0.7676 and
�(2.94) � 0.9984.]

8.22 Example: Poisson Martingales

Suppose that (N (t); t ≥ 0) is a collection of nonnegative integer-valued random variables
such that N (s) ≤ N (t) for all 0 ≤ s ≤ t <∞, and W (t) = exp{−θN (t)+ λt(1− e−θ )}
is a martingale. Show that N (t) is a Poisson process.

Solution For s < t ,

E(exp(−θ (N (t)− N (s))|N (u); 0 ≤ u ≤ s)

= E
(

W (t)

W (s)
exp[(−λ(t − s))(1− e−θ )]|N (u); 0 ≤ u ≤ s

)
= exp[−λ(t − s)(1− e−θ )]

because W (t) is a martingale. As this does not depend on N (u), 0 ≤ u ≤ s, it follows
that N (t) has independent increments. Furthermore, we recognise the final expression as
the moment generating function of a Poisson random variable with parameter λ(t − s).
Hence, N (t) is a Poisson process.

(1) Exercise Let N (t) be a Poisson process with parameter λ. Show that W (t) defined above is a
martingale.

(2) Exercise Let N (t) be a Poisson processwith parameter λ, and N (0) = 0. Let T = min{t : N (t) =
a}, where a is a positive integer. Use the optional stopping theorem to show that
(a) ET = a/λ.
(b) varT = a/λ2.

(c) Ee−θT =
(

λ

λ+ θ
)a

.

(Hint. Recall the martingales of Example 8.8.17.)
(3) Exercise: Integrated Poisson process. Let N (t) be a Poisson process with parameter λ. Show

that

∫ t

0
N (u) du − 1

2λ
N (t)2 + 1

2λ
N (t)

is a martingale. If T = min{t : N (t) = a} where a is a positive integer, deduce that

E
∫ T

0
N (u) du = 1

2λ
a(a − 1).
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8.23 Example: Uniform on the Unit Cube

Let X, Y , and Z be independent, identically distributed, and uniform on [0, 1]. Show that
W = (XY )Z is also uniform on (0, 1).

Solution First, we recall fromExample 7.2.2 that the randomvariableU has a uniform
density on (0, 1) if and only if− logU has an exponential density on (0,∞). Hence, taking
logarithms and using Example 8.5.15 and Theorem 8.6.11, we have

E exp[−t logW ] = E exp{t Z{− log X − log Y }}
= E{E{exp[t Z (− log X − log Y )]|Z}}
= E

1

(1− t Z )2
, since − log X and − log Y are exponential,

=
∫ 1

0

1

(1− t z)2
dz = 1

1− t
.

Hence, by Example 7.5.4, − logW has an exponential density, so that W has a uniform
density on (0, 1), by the remark above.

Remark In the following exercises, X, Y , and Z are independent and uniform on (0,
1), with order statistics X (1), X (2), X (3).

(1) Exercise Let S = X + Y + Z . Show that S has density

fS(s) =



s2/2, 0 ≤ s < 1
−s2 + 3s − 3/2, 1 ≤ s < 2
s2/2− 3s + 9/2, 2 ≤ s ≤ 3.

(2) Exercise Regarding X, Y, and Z as three points on the unit interval, show that the probability
that the distance between any two is at least d is (1− 2d)3, when d < 1

2 .
(3) Exercise Show that the probability that Xt2 + Y t + Z = 0 has two real roots is 5

36 + 1
6 log 2.

(4) Exercise Show that the probability that Xt3 − 3Y t + Z = 0 has three real roots is 1− 5
4r−1 +

2
5

√
r , where r = 41/3.

(5) Exercise Show that the joint density of V = X (1)
X (2)
andW = X (2)

X (3)
is f (v,w) = 2w for 0 ≤ v,w ≤

1. Deduce that V and W are independent.

8.24 Example: Characteristic Functions

For any random variable X , define the function φ(t) = Eeit X , where i = √−1. Show that
for all real t

|φ(t)| ≤ 1,
and find φ(t) when X is exponential with parameter λ.

Solution By definition of eit X ,

Eeit X = E(cos t X + i sin t X ),
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but

| cos t X + i sin t X | = cos2 t X + sin2 t X = 1,
and so |φ(t)| ≤ 1. If X is exponential,

Eeit X =
∫ ∞

0
λe−λx cos t x dx + i

∫ ∞

0
λe−λx sin t x dx .

Integrating by parts gives∫ ∞

0
λe−λx cos t x dx = 1−

∫ ∞

0
te−λx sin t x dx = 1−

∫ ∞

0

t2

λ2
λe−λx cos t x dx .

Hence, ∫ ∞

0
λe−λx cos t x dx

(
1− t2

λ2

)
= 1

Likewise, ∫ ∞

0
λe−λx sin t x dx

(
1+ t2

λ2

)
= t

λ
.

Hence,

Eeit X = 1+ i t/λ

1+ t2/λ2
= λ

λ− i t
.

Remark φ(t) is called the characteristic function of X . We have occasionally
been frustrated by the nonexistence of a moment generating function. This example
shows that we can use the characteristic function in such cases because it always
exists. For example, it can be shown that the Cauchy density f (x) = {

π (1+ x2)
}−1
,

which has no moments at all, has characteristic function φ(t) = e−|t |.
Furthermore, for any random variable X that does have a moment generating function

M(θ ) = EeθX , for |θ | < ε > 0, the characteristic function of X is given by φ(t) = M(i t).

(1) Exercise Show that the random variable uniform on [−1, 1] has characteristic function φ(t) =
sin t

t .
(2) Exercise If X1, . . . , Xn are independent Cauchy random variables, show that X = 1

n

∑n
1 Xi has

the same Cauchy density as the Xi .
(3) Exercise Find the characteristic function of the random variable X with density

f (x) = 1

2
e−|x |, x ∈ R.

PROBLEMS

1 When is f (x, y) = xy + ax + by + 1 a joint density function on 0 ≤ x, y ≤ 1? Can it be the joint
density of random variables X and Y that are independent?

2 Find cov (X, Y ) for the joint density of Problem 1.
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3 Let X and Y have joint density f (x, y) = c exp(−x − y) for x > 0, y > 0. Find (a) c, (b) P(X +
Y > 1), and (c) P(X < Y ).

4 Let X andY have joint density f (x, y) = g(x + y) for x ≥ 0, y ≥ 0.Find the density of Z = X + Y.
5 Let X and Y have joint density f = c(1+ x2 + y2)−

3
2 for all x and y. (a) What is c? (b) Find the

marginal density of X .
6 Let X and Y have the joint density of Problem 5, and define W = X2 + Y 2, Z = Y/X. Show that

W and Z are independent.
7 Let U and V be independently and uniformly distributed on (0, 1). Find the joint density of X =

U
1
2 /(U

1
2 + V

1
2 ) and Y = U

1
2 + V

1
2 . By considering P(X ≤ x |Y ≤ 1), devise a rejection sampling

procedure for simulating a random variable with density 6x(1− x); 0 < x < 1.
8 Let U1,U2, and U3 be independently and uniformly distributed on (0, 1), with order statistics

U(1) < U(2) < U(3). Show that the density of U(2) is 6x(1− x); 0 < x < 1.
9 Let U1,U2,U3, and U4 be independently and uniformly distributed on (0, 1). What is the density

of X = log (U1U2)/ log (U1U2U3U4)? (Hint: One way uses Example 8.15).
10 Let X and Y be independent normal random variables, and setU = X + Y, V = X − Y. Show that

U and V are independent if and only if var (X ) = var (Y ).
11 Simulation Using Bivariate Rejection Let U and V be independent and uniform on (0, 1).

Define the random variables

Z = (2U − 1)2 + (2V − 1)2,
X = (2U − 1)(2Z−1 log Z−1)

1
2

Y = (2V − 1)(2Z−1 log Z−1)
1
2 .

Show that the conditional joint density of X and Y given Z < 1, is (2π )−1 exp (− 1
2 (x

2 + y2)).
Explain how this provides a method for simulating normal random variables.

12 Let X and Y be independent exponential random variables with respective parameters λ and µ.
Find P(max {X, Y } ≤ aX ) for a > 0.

13 Let X and Y have joint density f = cye−y(x+1), 0 ≤ x < y <∞ for some constant c. What is the
conditional density of X given Y = y?

14 A spherical melon has radius 1. Three gravid insects alight independently (for oviposition) at A, B,
andC,where A, B, andC are uniformly distributed on the surface of themelon. For any two insects,
if the distance between them (along a great circle of the melon) is less than π/2, then they detect
each other’s presence and will both fly off to seek an unoccupied melon. Show that the probability
that exactly one insect is left in possession of the melon is 3(π − 1)/4π , and that the probability
that all three remain on the melon is 1/4π .

15 Let X and Y have joint density f (x, y) = c sin(x + y), 0 < x, y < π/2.
Show that c = 1

2 ; cov (X, Y ) = 1
2 (π − 2)− 1

16π
2, and ρ(X, Y ) = (8(π − 2)− π2)/(π2 + 8π −

32).
16 Let X and Y be independent exponential with parameters λ and µ, respectively. Now define U =

X ∧ Y and V = X ∨ Y. Find P(U = X ), and show that U and V −U are independent.
17 Let (Xi ; i ≥ 1) be independent with the uniform density on (−1, 1). Let the density of

∑n
i=1 Xi be

fn(x). Show that

fn(x) = 1

2

∫ x+1

x−1
fn−1(u) du for n ≥ 2,

and deduce that for any integer k, the density fn(x) is a polynomial in x for x ∈ [k, k + 1).
18 Let X and Y have the bivariate normal density of Examples 8.4.3 and 8.20.

(a) If σ = τ, what is E(X |X + Y )?
(b) If σ �= τ , what are E(X |X + Y ) and E(Y |X + Y )?
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19 Let (Xn ; n ≥ 1) be independent and uniformly distributed on (0, 1). Define

T = min
{

n:
n∑

i=1
Xi > 1

}
.

Show that P(T ≥ j + 1) = 1/j! for j ≥ 1. Deduce that E(T ) = e.
20 Let (X1, X2, X3) be independent and uniformly distributed on (0, 1). What is the probability that

the lengths X1, X2, X3 can form a triangle?
21 Let (Ui ; i ≥ 1) be independently and uniformly distributed on (0, 1), and define Mn =

max {U1, . . . ,Un} . Show that, as n →∞, the distribution of Zn = n(1− Mn) converges to an
exponential distribution.

22 Let (Xi ; i ≥ 1) be independent exponential random variables each with parameter µ. Let N be
independent of the Xi having mass function fN (n) = (1− p)pn−1; n ≥ 1. What is the density of
Y =∑N

i=1Xi?
23 Let N (t) be a Poisson process, C(t) its current life at t , and X1 the time of the first event. Show that

cov (X1,C(t)) = 1
2 t2e−λt .

24 Simulating Gamma Let U and X be independent, where U is uniform on (0, 1)
and X is exponential with parameter α−1 ≤ 1. Show that the density of X conditional on(

eX

α

)α−1
exp

(
−
(
α − 1
α

)
X

)
≥ U

is xα−1e−x/ (α). Why is this of value?
25 (a) Let X be exponential with parameter 1. Show that X/λ is exponential with parameter λ.

(b) Let (Xi ; 1 ≤ i ≤ n) be independent and exponential with parameter 1. Use the lack-of-memory
property of the exponential density to show that max {X1, . . . , Xn} has the same distribution as
X1 + X2/2+ . . .+ Xn/n.

26 Let X1, X2, X3, and X4 be independent standard normal random variables. Show thatW = X1/X2
has the Cauchy density, and Z = |X1X2 + X3X4| has an exponential density.

27 Let X and Y be independent Poisson random variables each with parameter n. Show that, as
n →∞,P(X − Y ≤ √2nx)→ �(x).

28 Let (Ui ; i ≥ 1) be a collection of independent random variables each uniform on (0, 1). Let
X have mass function fX (x) = (e − 1)e−x ; x ≥ 1 and let Y have mass function fY (y) = 1/
{(e − 1)y!} y ≥ 1. Show that Z = X −max {U1, . . . ,UY } is exponential. (Assume X and Y
are independent of each other and of the Ui ).

29 Let X and Y be independent gamma with parameters (α, 1) and (β, 1), respectively. Find the
conditional density of X given X + Y = z.

30 Let X and Y be independent standard normal random variables. Show that the pair X and Z , where
Z = ρX + (1− ρ2) 12 Y, |ρ| ≤ 1, has a standard bivariate normal density.

31 Let X and Y have joint moment generating function M(s, t) and define K (s, t) = logM(s, t). Show
that Ks(0, 0) = E(X ), Kss(0, 0) = var (X ), and Kst (0, 0) = cov (X, Y ).

32 A sorcerer has hidden a ring in one of an infinite number of boxes num-
bered . . . ,−2,−1, 0, 1, 2, 3, . . . . You only have time to look in 11 boxes. The sorcerer
gives you a hint. He tosses 100 fair coins and counts the number of heads. He does not tell you this
number, nor does he tell you the number of the box with the ring in it, but he tells you the sum of
these two numbers.
(a) If the sum is 75, which 11 boxes should you look in?
(b) Give an approximation to the probability of finding the ring.(

1√
2π

∫ 11
10

0
e−

u2

2 du = 0.36.
)
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33 Multivariate Normal Density Let (Y1, . . . , Yn) be independent, each having the N (0, 1) den-
sity. If

Xi =
∑

j

ai j Y j + bi for 1 ≤ i, j ≤ n,

then (X1, . . . , Xn) are said to have a multivariate normal density. Find the joint m.g.f.
Mn(t1, . . . , tn) = E(exp(

∑n
i=1 ti Xi )). Deduce that the following three statements are equivalent:

(a) The random variables (X1, . . . , Xn) are independent.
(b) (X1, . . . , Xn) are pairwise independent.
(c) cov (Xi , X j ) = 0 for 1 ≤ i �= j ≤ n.

34 A sequence of random variables X1, X2, . . . is said to obey the Central Limit Theorem (CLT) if and
only if the distribution of (Sn − E(Sn))/

√
var(Sn) tends to the standard normal distribution, where

Sn =
∑n

i=1 Xi .
State sufficient conditions on (Xn) for the sequence to obey the CLT and say which of your

conditions are necessary.
Let (Un(λn)) be a sequence of independent random variables having the Poisson distribution with

nonzero means (λn). In each of the following cases, determine whether the sequence (Xn) obeys
the CLT:
(i) Xn = Un(1). (iv) Xn = U2n(1)/(1+U2n−1(1)).
(ii) Xn = Un(1)+ n. (v) Xn = Un(n).
(iii) Xn = Un( 12 )!.

35 Let X1 and X2 be independent with the same density f (x). Let U be independent of both and
uniformly distributed on (0, 1). Let Y = U (X1 + X2). Find f (x) such that Y can also have density
f (x).

36 Molecules A molecule M has velocity v = (v1, v2, v3) in Cartesian corrdinates. Suppose that
v1, v2, and v3 have joint density:

f (x, y, z) = (2πσ 2)− 3
2 exp

(
− 1

2σ 2
(x2 + y2 + z2)

)
.

Show that the density of the magnitude |v| of v is

f (w) =
(
2

π

) 1
2

σ−3w2 exp
(
− 1

2σ 2
w2

)
, w > 0.

37 Let C be a circle radius r with centre O . Choose two points P and Q independently at random in
C . Show that the probability that the triangle OPQ contains an obtuse angle is 32 .
(Note: No integration is required.)

38 Given a fixed line AB, a point C is picked at random such that max {AC, BC} ≤ AB. Show that
the probability that the triangle ABC contains an obtuse angle is

1

8
π

(
1

3
π − 1

4

√
3

)−1
.

[Note: No integration is required. This is a version of a problem given by Lewis Carroll. To combat
insomnia, he solved mathematical problems in his head; this one was solved on the night of 20
January 1884. He collected a number of these mental exercises in a book entitled Pillow problems
(Macmillan, 1895).]

39 Let X be a nonnegative random variable such that P(X > x) > 0 for all x > 0. Show that P(X >

x) ≤ EXn/xn for all n ≥ 0. Deduce that s =∑∞
n=0

1
EXn <∞.

Let N be a random variable with the mass function P(N = n) = 1
sEXn .

Show that: (a) for all x > 0,Ex N <∞; (b) EX N = ∞.



Problems 395

40 Let X and Y be independent and uniform on [0, 1], and let Z be the fractional part of X + Y. Show
that Z is uniform on [0, 1] and that X, Y, Z are pairwise independent but not independent.

41 Let (X (k); 1 ≤ k ≤ n) be the order statistics derived from n independent random variables, each
uniformly distributed on [0, 1]. Show that

(a) EX (k) = k

n + 1 .

(b) var X (k) = k(n − k + 1)
(n + 1)2(n + 2) .

42 Let (X (k); 1 ≤ k ≤ n) be the order statistics derived from n independent random variables each
uniformly distributed on [0, 1]. Show that they have the same distribution as (Yk ; 1 ≤ k ≤ n),
where Y0 = 0 and, given Y j−1, Y j , has the density (1− y)n− j ; Y j−1 ≤ y ≤ 1, for 1 ≤ j ≤ n.

43 Normal Sample: Example 8.7.4 Revisited Let (Xr ; 1 ≤ r ≤ n) be independent N (µ, σ 2) ran-
dom variables.
(a) By considering the joint moment generating function of X and (Xr − X ; 1 ≤ r ≤ n), show that
X = 1

n

∑n
1 Xr and

S2 = 1

n − 1
n∑
1

(Xr − X )2

are independent.
(b) Show that X and Xr − X are uncorrelated, and deduce that X and S2 are independent.

44 (i) Suppose that the random variable Q has density sin q, on [0, π ]. Find the distribution
function of Q, and deduce that sin2 {Q/2} has the uniform density on [0, 1].

(ii) Suppose that the random vector (X, Y ) is uniformly distributed on the unit circle, and
set R2 = X2 + Y 2. Show that R2 has the uniform density on [0, 1]. Deduce that the
random vector (U, V,W ) is uniformly distributed on the unit sphere, where U = 2X (1−
R2)

1
2 , V = 2Y (1− R2)

1
2 , and W = 1− 2R2.



9
Markov Chains

In all crises of human affairs there are two broad courses open to a man. He
can stay where he is or he can go elsewhere.

P.G. Wodehouse, Indiscretions of Archie

9.1 The Markov Property

In previous chapters, we found it useful and interesting to consider sequences of inde-
pendent random variables. However, many observed sequences in the natural world are
patently not independent. Consider, for example, the air temperature outside your window
on successive days or the sequence of morning fixes of the price of gold. It is desirable
and necessary to consider more general types of sequences of random variables.
After some thought, you may agree that for many such systems it is reasonable to

suppose that, if we know exactly the state of the system today, then its state tomorrow
should not further depend on its state yesterday (or on any previous state). This informal
(and vague) preamble leads to the following formal (and precise) statement of the Markov
property for a sequence of random variables.

(1) Definition Let X = (Xn; n ≥ 0) be a sequence of random variables taking values
in a countable set S, called the state space. If for all n ≥ 0 and all possible values of
i, k, k0, . . . , kn−1, we have

P(Xn+1 = k|X0 = k0, . . . , Xn = i) = P(Xn+1 = k|Xn = i)(2)
= P(X1 = k|X0 = i),

then X is said to be a Markov chain or to have the Markov property. We write

pik = P(X1 = k|X0 = i),

where (pik ; i ∈ S, k ∈ S) are known as the transition probabilities of the
chain. �

Sometimes we write pi,k for pik , and you are warned that some books use pki to de-
note pik .

396
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Another popular rough and ready way of interpreting the formal condition (2) is to say
that, for a Markov chain, the future is conditionally independent of the past, given the
present.
Notice that in some applications it is more natural to start the clock at n = 1, so the

chain is X = (Xn; n ≥ 1). Occasionally, it is convenient to suppose the chain extends in
both directions so that X = (Xn;−∞ < n <∞).
The state space S is often a subset of the integers Z or a subset of the set of ordered

pairs of integers Z
2. Markov chains may take values in some countable set that happens

not to be a subset of the integers. However, this set can immediately be placed in one–one
correspondence with some appropriate subset of the integers, and the states relabelled
accordingly.

(3) Example: Simple RandomWalk Let (Sn; n ≥ 0) be a simple random walk. Because
the steps (Sn+1 − Sn; n ≥ 0) are independent, the sequence Sn clearly has the Markov
property, and the transition probabilities are given by

pik = P(Sn+1 = k|Sn = i) =



p if k = i + 1
q if k = i − 1
0 otherwise.

The state space S is the set of integers Z. �

(4) Example: Branching Process Let Zn be the size of the nth generation in an ordinary
branching process. Because family sizes are independent, Z = (Zn; n ≥ 0) is a Markov
chain. The transition probabilities are given by

pik = P(Zn+1 = k|Zn = i) = P

[
i∑

r=1
Yr = k

]
,

where Y1, . . . , Yi are the i families of the nth generation given that Zn = i . The state space
is the set of nonnegative integers Z

+. �

When S is a finite set, X is known as a finite Markov chain. Until further notice, we
consider finite chains (unless it is specifically stated otherwise) and write |S| = d .

(5) Example: Information Source A basic concern of telecommunications engineers
is the transmission of signals along a channel. Signals arise at a source, and to devise
efficient methods of communication it is necessary to have models for such sources. In
general, it is supposed that the source produces a sequence of symbols randomly drawn
from a finite alphabet A. By numbering the symbols from 1 to |A|, the output becomes a
sequence of random variables (Xn; n ≥ 1) called a message. Various assumptions can be
made about the output of sources, but a common and profitable assumption is that they
have the Markov property. In this case, the output is a finite Markov chain and the source
is called a simple Markov source. �

Having formally defined a Markov chain X , we emphasize that there are many ways of
presenting the idea of a Markov chain to the mind’s eye. You should choose the one that
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best suits the context of the problem and your own psyche. For example:

(i) A particle performs a random walk on the vertices of a graph. The distribution of its
next step depends on where it is, but not on how it got there.

(ii) A system may be in any one of d states. The distribution of its next state depends on
its current state, but not on its previous states.

Because of this imagery, we talk equivalently of chains visiting k, being at k, taking the
value k, and so on. Whatever the choice of concept, the notation is always essentially that
of Definition 1, but (to avoid repetitive strain injury) some abbreviations of notation are
widespread. Thus, we commonly write

P(Xn+1 = k|X0 = k0, . . . , Xn−1 = kn−1, Xn = i) = P(Xn+1 = k|X0, . . . , Xn).

If we want to stress or specify the initial value of X , then we write P(Xn+1 = k|X0 =
k0, . . . , Xn), and so on.

Note that theMarkov property as defined in (1) is equivalent to each of the following
properties, which it is occasionally convenient to take as definitive. First:

P(Xn+m = k|X0, . . . , Xn) = P(Xn+m = k|Xn)(6)

for any positive m and n. Second:

P(Xnr = k|Xn1, . . . , Xnr−1 ) = P(Xnr = k|Xnr−1 )(7)

for any n1 < n2 < . . . < nr . Third:

P(X1 = k1, . . . , Xr−1 = kr−1, Xr+1 = kr+1, . . . , Xn = kn|Xr = kr )(8)
= P(X1 = k1, . . . , Xr−1 = kr−1|Xr = kr )×
× P(Xr+1 = kr+1, . . . , Xn = kn|Xr = kr ).

You are asked to prove the equivalence of Definition 1 and (6), (7), and (8) in Problem 6.
Notice that (8) expresses in a precise form our previously expressed rough idea that given
the present state of a Markov chain, its future is independent of its past. Finally, it should
be noted that the Markov property is preserved by some operations, but not by others, as
the following examples show.

(9) Example: Sampling Let X be aMarkov chain. Show that the sequenceYn = X2n; n ≥
0, is a Markov chain.

Solution Because X is a Markov chain, we can argue as follows:

P(Yn+1 = k|Y0, . . . , Yn = i) = P(X2n+2 = k|X0, . . . , X2n = i)
= P(X2n+2 = k|X2n = i) by (7)
= P(Yn+1 = k|Yn = i).

So Y is a Markov chain. It is said to be imbedded in X . �
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(10) Example If X is a Markov chain with state space SX , show that

Yn = (Xn, Xn+1); n ≥ 0,
is a Markov chain. What are its transition probabilities?

Solution The state space of Y is a collection of ordered pairs of the states of X ; that
is to say, SY = {(s1, s2): s1 ∈ SX , s2 ∈ SX }. Now

P(Yn+1 = ( j, k)|Y0, . . . , Yn) = P(Xn+2 = k, Xn+1 = j |X0, . . . , Xn+1)
= P(Xn+2 = k, Xn+1 = j |Xn+1, Xn) since X is Markov,
= P(Yn+1 = ( j, k)|Yn).

So Y is Markov. Also,

P(Yn+1 = (k, l)|Yn = (i, j)) = P(Xn+2 = l|Xn = k)δ jk = pklδk j ,(11)

where

δk j =
{
1 if k = j
0 otherwise

is the usual Kronecker delta. �

(12) Example Let X be a Markov chain. Show that Yn = |Xn|; n ≥ 0, is not necessarily a
Markov chain.

Solution Let X have state space S = {−1, 0, 1} and transition probabilities zero, ex-
cept for

p−1,0 = 1

2
, p−1,1 = 1

2
, p0,−1 = 1, p1,0 = 1.

Then

P(Yn+1 = 1|Yn = 1, Yn−1 = 1) = P(Xn+1 = 1|Xn = 1, Xn−1 = −1) = 0.
But P(Yn+1 = 1|Yn = 1) = P(Yn+1 = 1|Xn ∈ {−1, 1}), which is not necessarily zero. So
Y is not Markov. �

Notice that the states −1 and +1 for Xn produce one state +1 for Yn; they are said to be
lumped together. The example shows that lumping states together can destroy the Markov
property. Conversely, given a sequence Yn which is not a Markov chain, it is sometimes
possible to construct a Markov chain involving Yn by enlarging the state space.

(13) Example A machine can be in one of two states; working (denoted by s0), or repair
(denoted by s1). Each day, if working, it may break downwith probability α independently
of other days. It takes r days to repair, where r > 1. Now if Xn is the state of the machine
on the nth day, this is not a Markov chain. To see this note that

P(Xn+1 = s0|Xn = s1, Xn−1 = s0) = 0,
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but

P(Xn+1 = s0|Xn = Xn−1 = . . . = Xn−r+1 = s1) = 1.
However, suppose we now let the state space be S = {s0, s1, . . . , sr }, where Xn = si if the
machine has been in repair for i days. Then

P(Xn+1 = si+1|Xn = si , Xn−1, . . .) = 1, if 1 ≤ i ≤ r − 1,
P(Xn+1 = s0|Xn = sr , . . .) = 1,

and so on. It is easy to see that Xn now is a Markov chain. �

9.2 Transition Probabilities

Recall that X is a Markov chain with state space S, where |S| = d . The transition proba-
bilities pik are given by

pik = P(Xn+1 = k|Xn = i) for n ≥ 0.(1)

The d × d matrix (pi j ) of transition probabilities is called the transition matrix and is
denoted by P. Let us first record two simple but important facts about P. Because (pik ; k ∈
S) is a conditional mass function, we have

pik ≥ 0 for all i and k;(2)

and ∑
k∈S

pik = 1.(3)

Any matrix P satisfying (2) and (3) is called stochastic. We remark that if in
addition ∑

i∈S

pik = 1,(4)

then P is doubly stochastic. Also, if (3) is replaced by the condition∑
k∈S

pik ≤ 1,(5)

then amatrix satisfying (2) and (5) is called substochastic. For example, the simple random
walk of Example 9.1.3 is doubly stochastic. If pi j > 0 for all i and j , then P is called
positive.
Now, given that X0 = i , the distribution of Xn is denoted by

pik(n) = P(Xn = k|X0 = i) = P(Xn+m = k|Xm = i)

because of (9.1.2). Trivially, of course,∑
k∈S

pik(n) = 1.(6)

These probabilities are called the n-step transition probabilities, and they describe the
random evolution of the chain.
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Note that pi j (n) is a function of three variables, the two states i, j , and the time n. In
more complicated expressions involving several such probabilities, you should use the
symbols i, j, k, l to denote states and the symbols m, n, r, t to denote time (possibly with
suffices).
Some simple special cases illustrate these notions.

(7) Example (9.1.3) Continued: Simple Random Walk Recall that (Sn; n ≥ 0) are the
successive values of a simple random walk. If Sn = k and S0 = i , then from Theorem
5.6.4 we have

pik(n) =
{(

n
1
2 (n+ k− i)

)
p
1
2 (n+k−i)(1− p)

1
2 (n−k+i) if n + k − i is even

0 otherwise.
(8)

(Note that this chain has infinite state space.) �

(9) Example: Survival A traffic sign stands in a vulnerable position. Each day, indepen-
dently of other days, it may be demolished by a careless motorist with probability q . In
this case, the city engineer replaces it with a new one at the end of the day. At the end of
day n, let Xn denote the number of days since the sign in position was newly installed.
Show that Xn is a Markov chain, and find pik and pik(n).
(Note that this chain has infinite state space.)

Solution By construction,

Xn+1 =
{

Xn + 1 with probability 1− q = p
0 with probability q.

Because the choice of outcomes is independent of previous days, Xn is a Markov chain,
and

pik =



p if k = i + 1
q if k = 0
0 otherwise.

For the n-step transition probabilities, we note that either the sign survives for all n days
or has been struck in the meantime. Hence,

pik(n) = pn if k = i + n(10)

and

pik(n) = qpk if 0 ≤ k ≤ n − 1.(11) �

Returning to the general case, we examine the relationship between pik and pik(n). It is
a remarkable and important consequence of the Markov property (9.1.1) that the random
evolution of the chain is completely determined by pik , as the following theorem shows.
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(12) Theorem: Chapman–Kolmogorov Equations Let X have transition matrix P.
For any i and k in S, and any positive m and n, we have

pik(m + n) =
∑
j∈S

pi j (m)p jk(n)(13)

and also

pik(n + 1) =
∑
j1∈S

. . .
∑
jn∈S

pi j1 p j1 j2... p jnk .(14)

Proof Recall that if (A j ; j ≤ d) is a collection of disjoint events such that ∪d
1 A j = �,

then for any events B and C

P(B|C) =
d∑

j=1
P(B ∩ A j |C).

Hence, setting A j = {Xm = j}, we have

pik(m + n) =
∑
j∈S

P(Xm+n = k, Xm = j |X0 = i)

=
∑
j∈S

P(Xm+n = k|Xm = j, X0 = i)P(Xm = j |X0 = i),

by conditional probability,

=
∑
j∈S

P(Xm+n = k|Xm = j)P(Xm = j |X0 = i),

by the Markov property,
=

∑
j∈S

pi j (m)p jk(n).

Hence, in particular,

pik(n + 1) =
∑
j1∈S

pi j1 p j1k(n)(15)

=
∑
j1∈S

∑
j2∈S

pi j1 p j1 j2 p j2k(n − 1)

...
=

∑
j1∈S

. . .
∑
j n∈S

pi j1 . . . p jnk

by repeated application of (15).
An alternative proof of (14) is provided by the observation that the summation on the

right-hand side is the sum of the probabilities of all the distinct paths of n steps, which
lead from i to k. Because these are mutually exclusive and one of them must be used to
make the trip from i to k, the result follows. �
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The n-step transition probabilities pik(n) tell us how the mass function of Xn depends on
X0. If X0 itself has mass function

αi = P(X0 = i)(16)

and Xn has mass function

α
(n)
i = P(Xn = i)(17)

then, by conditional probability, they are related by

α
(n)
k =

∑
j∈S

αi pik(n).(18)

The probabilities α(n)i are sometimes called the absolute probabilities of Xn .
Nowwe notice that the d2 n-step transition probabilities (pik(n); 1 ≤ i ≤ d, 1 ≤ k ≤ d)

can be regarded as a matrix Pn , and the absolute probabilities (α
(n)
i ; 1 ≤ i ≤ d) as a row

vector αn . It follows from Theorem 12 and (18) that

Pm+n = PmPn = Pm+n(19)

and αn = αPn, where α = (α1, . . . , αd ).

(20) Example: Two State Chain The following simple but important example is very
helpful in illustrating these and other ideas about Markov chains. Let X have state space
S = {1, 2} and transition matrix

P =
(
1− α
β

α

1− β
)
.

You can verify by induction that

(α + β)Pn =
(
β

β

α

α

)
+ (1− α − β)n

(
α

−β
−α
β

)
.

Hence, for example,

p12(n) = α

α + β −
α

α + β (1− α − β)
n.

�

Descending once again from the general to the particular,we identify some special varieties
of chain that have attractive properties that we find useful later.

(21) Definition If for some n0 <∞ we have pi j (n0) > 0 for all i and j,
then the chain is said to be regular. �

(22) Example Let X have transition probabilities

P =
(
0
1
2

1
1
2

)
.
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Then P is not positive, but

P2 =
(
1
2
1
4

1
2
3
4

)
> 0,

so P is regular. �

Roughly speaking, a chain is regular if there is a time such that, no matter where it started,
the chain could be anywhere in S. Some chains satisfy theweaker condition that every state
can be reached from every other statewith nonzero probability. This is called irreducibility.

(23) Definition A chain X is irreducible if for each i and k in S there exists an n0 <∞,
such that pik(n0) > 0. �

(24) Example Let X have transition matrix

P =
(
0

1

1

0

)
.

Then,

P2n =
(
1

0

0

1

)
; n ≥ 0

and

P2n+1 =
(
0

1

1

0

)
; n ≥ 0.

Hence, X is neither positive nor regular but it is irreducible. In fact, it is said to be periodic
with period 2 because pii (n) > 0 if n is even. A state with no period greater than 1 is
aperiodic. �

(25) Example Let X and Y be independent regular Markov chains with transition matrices
P = (pik) and Q = (qik), respectively. Show that Zn = (Xn, Yn); n ≥ 0, is a regular
Markov chain.

Solution Using the independence of X and Y ,

P(Zn = (k, l)|Zn−1= (i, j), Zn−2, . . . , Z0) = P(Xn = k|Xn−1 = i, Xn−2, . . . , X0)
×P(Yn = l|Yn−1 = j, . . . , Y0)

= pikq jl

because X and Y are Markov chains. Therefore, Z is a Markov chain. Likewise, Z has
n-step transition probabilities pik(n)q jl(n).
Finally, because P and Q are regular, there exists n0 and m0 (both finite) such

that pik(m0) and q jl(n0) are both positive for all i, k and all j, l, respectively. Hence,
pik(m0n0)q jl(m0n0) > 0, for all i, j, k, l, and so Z is regular. �
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Note two further bits of jargon. A set C of states is called closed if pik = 0 for all
i ∈ C, k /∈ C . Furthermore, if C is closed and |C | = 1, then this state is called absorbing.
We conclude this section with two examples drawn from communication theory.

(26) Example: Entropy Let the random vector Xn = (X0, . . . , Xn) have joint mass func-
tion f (x0, . . . , xn). Then the entropy (also called uncertainty) of Xn is defined as

H (Xn) = −E[log( f (X0, . . . , Xn))]

(with the convention that 0 log 0 = 0). Let X0, . . . , Xn be the first n + 1 values of aMarkov
chain with transition matrix P and initial mass function α. Show that, in this case,

H (Xn) = −E[log(αX0 )]−
n∑

r=1
E[log(pXr−1Xr )].(27)

Solution Because X is a Markov chain, f (x0, x1, . . . , xn) = αx0 px0x1 . . . pxn−1xn .
Hence,

E[log( f (X0, . . . , Xn))]
=

∑
x0∈S

. . .
∑
xn∈S

αx0 px0x1 . . . pxn−1xn (logαx0 + log px0x1 + · · · + log pxn−1xn )

=
∑

x0

αx0 logαx0 +
∑
x0,x1

αx0 px0x1 log px0x1 + · · ·+
∑

xn−1,xn

αxn−1 pxn−1xn log pxn−1xn

= E[log(αX0 )]+
n∑

r=1
E[log pXr−1Xr ],

as required, yielding (27). �

(28) Example: Simple Markov Source Let the random variable X and the random vector
Y be jointly distributed, and denote the conditional mass function of X given Y by f (x |y).
Then the conditional entropy of X with respect to Y is defined to be

H (X |Y ) = −E[E(log f (X |Y )|Y )]
= −

∑
y

∑
x

f (x |y) log f (x |y)P(Y = y).

Let X0, . . . , Xn+1 be the output from the Markov source defined in Example 9.1.5. Show
that

H (Xn+1|X0, . . . , Xn) = H (Xn+1|Xn).

Solution Let Y be (X0, . . . , Xn). Then, by the Markov property,

f (x |y) = P(Xn+1 = x |X0 = y0, . . . , Xn = yn) = P(Xn+1 = x |Xn = yn)
= pyn x .
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Hence,

H (Xn+1|Y ) = −
∑

y

∑
x

pyn x log pyn xP(X0,= y0, . . . , Xn = yn)

= −
∑

yn

∑
x

pyn x log pyn xP(Xn = yn) = H(Xn+1|Xn). �

9.3 First Passage Times

For any two states i and k of X , we are often interested in the time it takes for the chain
to travel from i to k. This is not merely a natural interest, these quantities are also of
theoretical and practical importance. For example, in the simple gambler’s ruin problem
the state 0 entails ruin, and in the simple branching process X = 0 entails extinction.

(1) Definition For a Markov chain X with X0 = i :

(a) When i �= k, the first passage time to k from i is defined to be

Tik = min {n ≥ 0 : Xn = k|X0 = i};
the mean first passage time is

µik = E(Tik).(2)

(b) When i = k, the recurrence time of i is defined to be

Ti = min {n > 0: Xn = i |X0 = i};
the mean recurrence time is

µi = E(Ti ).(3) �

Note the simple but important fact that the chain has not entered k by time n if and only if

Tik > n.(4)

(5) Example Let X have transition matrix

P =
(
1
3

2
3

1
4

3
4

)
.

Then, given X0 = 1, the chain enters 2 as soon as it leaves 1. Hence,

P(T12 = r ) = 2

3
.

(
1

3

)r−1
; r ≥ 1,

and

µ12 =
∞∑

r=1
r
2

3

(
1

3

)r−1
= 3

2
.
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Likewise, first return to 1 at the r th step occurs after r − 2 consecutive visits to 2. so

P(T1 = r ) =
{
1
3 ; r = 1
2
3

(
3
4

)r−2 1
4 ; r ≥ 2.

Hence,

µ1 = 1

3
+

∞∑
r=2

r
1

6

(
3

4

)r−2
= 11

3
.

If we do not require the distribution of T12 or T1, then a simpler procedure will suffice to
find µ12 and µ1, as follows. Conditioning on the first step of the chain and assuming all
the expectations exist, we find that

µ12 = 1

3
E(T12|X1 = 1)+ 2

3
E(T12|X1 = 2).

But, by the Markov property,

E(T12|X1 = 1) = 1+ E(T12),

and obviously E(T12|X1 = 2) = 1. Hence, µ12 = 1+ 1
3µ12 as above. Likewise, we

find µ21 = 4, and using conditional expectation again yields µ1 = 1+ 2
3µ21 = 11

3 as
before. �

For a rather different type of behaviour consider the following.

(6) Example Let X have transition matrix

P =

 1

3
1
3

1
3

1
4

3
4 0

0 0 1


 .

Because p33 = 1, state 3 is absorbing, which is to say that upon entering 3 the chain never
leaves it subsequently. Hence, T12 = r occurs when the first r − 1 visits to 1 are followed
by a step to 2. Thus,

P(T12 = r ) =
(
1

3

)r

; r ≥ 1.

Hence,

P(T12 <∞) =
∞∑

r=1

(
1

3

)r

= 2

3

and µ12 = ∞. Likewise,

P(T1 = r ) =
{
1
3 ; r = 1
1
3

(
3
4

)r−2 1
4 ; r ≥ 2,

and so P(T1 <∞) = 2
3 and µ1 = ∞. �
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These examples demonstrate that the properties of recurrence and first passage times
depend strongly on the nature of the transition matrix P. In fact, we are going to show
that, for any finite regular chain, both µk and µik are finite (with finite expectation) for all
i and k. First we need to clear the ground a little. Because we are only considering finite
chains with |S| = d, we can without loss of generality set k = d . (If you like mnemonics
you can think of d as the destination of the chain.) Also, as we are only interested in the
progress of the chain until it arrives at d, it is natural to focus attention on the probabilities

rik(n) = P(Xn = k, n < Tid |X0 = i), i �= d �= k.(7)

These are the transition probabilities of the chain before entering d , and we denote the
array (rik(n)) by Rn .
By definition, for one step,

rik(1) = pik for i �= d �= k.(8)

For n > 1, the n-step d-avoiding probabilities are given by the following.

(9) Theorem For i �= d �= k,

rik(n) =
∑
j1 �=d

∑
j2 �=d

. . .
∑

jn−1 �=d

pi j1 p j1 j2 . . . p jn−1k,(10)

or in matrix form Rn = Rn
1 .

Proof We use the idea of paths. Every distinct path of the chain that goes from i to k
in n steps and does not enter d is of the form i, j1, j2, . . . , jn−1, k, where jr ∈ S\d for
1 ≤ r ≤ n − 1. Such a path has probability pi j1 . . . p jn−1k and one of them is used, so rik(n)
is just the sum of all these probabilities as given on the right-hand side of (10). �

Corollary For any state i of a regular chain,

lim
n→∞

∑
k �=d

rik(n) = 0,(11)

and more strongly,

∞∑
n=1

∑
k �=d

rik(n) <∞.(12)

Proof First, suppose that the chain is positive so that for every i, pid > 0. Hence, there
exists t such that ∑

k �=d

pik < t < 1.(13)

Therefore, using (13) on the last sum in (10),∑
k �=d

rik(n) ≤
∑
j1 �=d

. . .
∑

jn−1 �=d

pi j1 . . . p jn−2 jn−1 t.



9.3 First Passage Times 409

Hence, ∑
k �=d

r (n)ik ≤ tn

on using (13) to bound each summation successively. Because t < 1, (11) and (12) follow
in this case. If the chain is regular but not positive, we first note that because

∑
k r jk ≤ 1

we have that ∑
k �=d

rik(n + 1) =
∑
j �=d

ri j (n)
∑

k

r jk ≤
∑
j �=d

ri j (n).

Thus,
∑

k rik(n) is nonincreasing in n. Because the chain is regular, there is an m0 such
that pid (m0) > 0 for all i . By the argument of the first part, for some t0 < 1,∑

k �=d

rik(nm0) < tn
0 < 1.(14)

Hence, because
∑

k rik(n) is nondecreasing (11) follows. Finally,

∑
n

∑
k

rik(n) ≤ m0

(
1+

∑
n,k

rik(m0n)

)
≤ m0

(
1

1− tn
0

)
<∞

proving (12). �

With these preliminaries completed, we can get on with proving the main claim of the
paragraph following Example 6.

(15) Theorem For a regular chain, Tid is finite with probability 1 and has finite mean.
More precisely, P(Tid > n) < cλn for some constants c <∞ and λ < 1.

Proof By the remark preceding (4),

P(Tid > n) =
∑
k �=d

rik(n)→ 0

as n →∞ by (11). Therefore, Tid is finite with probability 1. Also,

E(Tid ) =
∞∑

n=0
P(Tid > n) =

∞∑
n=0

∑
k �=d

rik(n) <∞

by (12). The second statement of the theorem follows easily from (14). �

There is a simple and useful generalization of this result, as follows.

(16) Theorem Let X be a regular Markov chain, and let D be a subset of the state
space S. For i /∈ D, define the first passage time Ti D = min {n: Xn ∈ D|X0 = i}. Then,
E(Ti D) <∞.
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Proof This is an exercise for you. �

It should be remarked that E(Ti ) <∞ is a trivial consequence of Theorem 15.
As discussed above, first passage times are interesting in themselves for practical rea-

sons, but they are even more interesting because of a crucial theoretical property. Infor-
mally, it says that given the state of a chain at a first passage time T , the future of the chain
is independent of the past. The following example makes this more precise.

(17) Example: Preservation of Markov Property at First Passage Times Let X be a
regular Markov chain with transition matrix P , and let T be the first passage time of the
chain to d. Show that for any m > 0 and xr �= d, we have

P(XT+m = k|Xr = xr for 1 ≤ r ≤ T, XT = d) = pdk(m).(18)

Solution Let us denote the event {Xr = xr �= d for1 ≤ r < T } by A(T ). Then, using
conditional probability, the left-hand side of (18) may be written as

P(XT+m = k, A(T ), XT = d)

P(A(T ), XT = d)
(19)

Now the numerator can be expanded as

∞∑
t=1

P(XT+m = k, A(t), Xt = d, T = t)

=
∞∑

t=1
P(Xt+m = k|A(t), Xt = d)P(A(t), Xt = d, T = t)

= pdk(m)
∞∑

t=1
P(A(t), Xt = d, T = t) by the Markov property,

= pdk(m)P(A(T ), XT = d).

Finally, substitution into (19) yields (18). �

It would be difficult to overemphasize the importance of this result in the theory ofMarkov
chains; it is used repeatedly. [It is a special case of the “strong Markov property,” that we
meet later.]
To conclude this section we show that the mass functions of Tid and of Td are related

to the transition probabilities pik(n) by very elegant and useful identities. Let fid (n) =
P(Tid = n), i �= d, and fdd (n) = P(Td = n). Define the generating functions

Pik(z) =
∞∑

n=0
pik(n)z

n and Fid (z) =
∞∑

n=0
fid (n)z

n

with the convention that pii (0) = 1, pi j (0) = 0, for i �= j , and fi j (0) = 0 for all i and j .

(20) Theorem When i �= k, we have

Pik(z) = Fik(z)Pkk(z),(21)
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and otherwise

Pii (z) = 1+ Fii (z)Pii (z).(22)

Proof The idea of the proof is much the same as that of Example 17. For each k in S, let
us define the event Am = {Xm = k}, and let Bm be the event that the first visit to k after
time 0 takes place at time m. That is,

Bm = {Xr �= k for 1 ≤ r < m, Xm = k}.
Then following a now familiar route, we write

pik(m) = P(Am |X0 = i) =
m∑

r=1
P(Am ∩ Br |X0 = i)(23)

=
m∑

r=1
P(Am |Br , X0 = i)P(Br |X0 = i)

=
m∑

r=1
P(Am |Xr = k)P(Br |X0 = i) by the Markov property,

=
m∑

r=1
pkk(m − r ) fik(r ).

The right-hand side of (23) is a convolution, so multiplying both sides by zm and summing

over all m ≥ 1 gives Pik(z)− δik = Fik(z)Pkk(z), where δik =
{
1 if i = k
0 otherwise as required. �

(24) Example: Weather Successive days are either hot or cold, and they are also either
wet or dry. From one day to the next, either the temperature changes with probability α
or the precipitation changes with probability 1− α. Let f (n) be the probability that it is
again hot and dry for the first time on the nth day, given that it was hot and dry on day
zero. Show that

F(z) =
∞∑

n=1
f (n)zn = z2

1+ (1− 2z2)(1− 2α)2
2− z2 − z2(1− 2α)2 .(25)

Solution It is helpful to visualize this Markov chain as a random walk on the vertices
of a square in which steps are taken along a horizontal edge with probability α or a vertical
edge with probability 1− α. We identify the four states of the chain with the vertices of
the square; the origin is hot and dry. The walk can return to the origin only after an even
number 2n of steps, of which 2k are horizontal and 2n − 2k are vertical. Hence p0(2n),
the probability of returning on the 2nth step (not necessarily for the first time), is

p0(2n) =
n∑

k=0
α2k(1− α)2n−2k

(
2n

2k

)
= 1

2
(α + (1− α))2n + 1

2
(α − (1− α))2n

= 1

2
((1− 2α)2n + 1).
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Hence,

P0(z) =
∞∑
0

p0(2n)z2n = 1

2

(
1

1− (1− 2α)2 z2 + 1

1− z2

)
.

Hence, by (22), we have

F(z) = P0(z)− 1
P0(z)

= z2
1+ (1− 2z2)(1− 2α)2
2− z2(1+ (1− 2α)2) ,

which is (25). �

If you have read Section 6.7, you will have noticed much in common with the above
analysis and the results of that section. This is, of course, because the visits of a Markov
chain to some given state k form a renewal process.We explore this link a little in Example
9.14.

9.4 Stationary Distributions

We now consider one of the most important properties of the transition matrix P . That is,
for any d × d stochastic matrix P , the set of equations

xk =
∑
1≤i≤d

xi pik ; 1 ≤ k ≤ d,(1)

always has a solution such that

xi ≥ 0(2)

and

d∑
i=1

xi = 1.(3)

Such a solution is thus a probability mass function, and it is commonly denoted by x =
π = (π1, . . . , πd ). It may not be unique.

(4) Example (a) If

P =
(
1
2

1
2

1
2

1
2

)
,

then clearly π = (
1
2 ,

1
2

)
.

(b) If

P =
(
0 1

1 0

)
,

then it is also clear that π = (
1
2 ,

1
2

)
.



9.4 Stationary Distributions 413

(c) If

P =
(
1 0

0 1

)
,

then we have π = (α, 1− α) for any α ∈ [0, 1].
Note that the first chain is regular, the second periodic, and the third has two absorbing

states; these chains evolve in very different ways. �

The mass function π is called a stationary distribution of the chain for the following
reason. Suppose that π is the mass function of X0, then X1 has mass function

αk(1) =
∑

i

πi pik = πk

because π is a solution of (1). Hence, X1 has mass function π , and by a trivial induction
so does Xn for all n:

P(Xn = k) = πk ; n ≥ 0.(5)

Remark The chain is sometimes said to be in equilibrium.

In formal terms, (1) says that P has a positive left eigenvector corresponding to the eigen-
value 1. Experience of student calculations leads us to stress that π is a left eigenvector. If
your stationary vector π is constant, check that you have not inadvertently found the right
eigenvector. [And see (22) below.]
Here is a less trivial example.

(6) Example: Random Walk with Retaining Barriers Let X have state space
{0, 1, 2, . . . , d} and transition probabilities

pi,i+1 = p; 0 ≤ i ≤ d − 1
pi,i−1 = 1− p = q; 1 ≤ i ≤ d

p00 = q

pdd = p.

Then a stationary distribution must satisfy

πi = pπi−1 + qπi+1; 1 ≤ i ≤ d − 1(7)
pπ0 = qπ1
qπd = pπd−1.

Simple substitution shows that if p �= q, then πi = π0

(
p
q

)i
. Because

∑
i πi = 1, it now

follows that

πi =
1− p

q

1−
(

p
q

)d+1

(
p

q

)i

. �
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(8) Example Let X have transition matrix P, and suppose that there exists a stationary
distribution π satisfying (1). Define the Markov chain Yn by Yn = (Xn, Xn+1); n ≥ 0.
Show that Y has stationary distribution

ηi j = πi pi j ; i ∈ S, j ∈ S.(9)

Solution We just have to check thatη satisfies (1) and (3). Recall fromExample 9.1.10
that Y has transition probabilities

P(Yn+1 = (k, l)|Yn = (i, j)) = pklδ jk,

so that ∑
i, j

ηi j pklδ jk =
∑
i, j

πi pi j pklδ jk =
∑

j

π j pklδ jk = πk pkl = ηkl .

Furthermore, ∑
i, j

ηi j =
∑
i, j

πi pi j =
∑

j

π j by (1)

= 1 by (3).

Hence, η is the stationary distribution of Y . �

(10) Example: NonhomogeneousRandomWalk Let (Sn; n ≥ 0) be aMarkov chain with
transition matrix given by

pi,i+1 = λi ,

pi,i−1 = µi ,

pi,k = 0, if |i − k| �= 1,
where λi + µi = 1. This may be regarded as a random walk, taking positive or negative
unit steps on the integers, such that the step probabilities depend on the position of the
particle.
Is there a stationary distribution π?
For simplicity, let us suppose that µ0 = 0 and S0 ≥ 0, so that the walk is confined to

the nonnegative integers. Then if π exists, it satisfies

π0 = µ1π1

π1 = λ0π0 + µ2π2
π2 = λ1π1 + µ3π3

and in general, for k > 1,

πk = λk−1πk−1 + µk+1πk+1.

Solving these equations in order of appearance gives

π1 = λ0

µ1
π0;π2 = λ0λ1

µ1µ2
π0;π3 = λ0λ1λ2

µ1µ2µ3
π0;
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and so on. It is now easy to verify that for n > 0,

πn = λ0λ1 . . . λn−1
µ1µ2 . . . µn

π0.

This is a stationary distribution if

1 =
∞∑

n=0
πn = π0 + π0

∞∑
n=1

n−1∏
0
λr

n∏
1
µr

,

and so we deduce that a stationary distribution exists if this sum converges. �

Having examined some consequences of (1), we now turn to the question of proving it.
The existence of x satisfying (1), (2), and (3) is a famous result with many algebraic

and analytical proofs. Most of these are neither elementary nor probabilistic. We prefer to
give a proof that uses the ideas of probability theory and is elementary.

(11) Theorem A regular Markov chain with transition matrix P has a stationary dis-
tribution π .

Proof Let s be an arbitrary state of the chain with recurrence time Ts and mean recurrence
time µs . For all k ∈ S, let ρk(s) be the expected number of visits to k between successive
visits to s; with the convention that ρs(s) = 1. We show that

πk = µ−1s ρk(s); 1 ≤ k ≤ d(12)

is a stationary distribution of the chain.
First, let In denote the indicator of the event that the chain visits k at the nth step and

has not previously revisited s, given that it started in s. Then the total number of visits to
k between visits to s is

Rk =
∞∑

n=1
In; k �= s,

and in accord with our convention above, when k = s, we have Rs = 1. Now
Ts = 1+

∑
k �=s

Rk .

It follows that the expected value ρk(s) of Rk is finite, and also that

µs =
∑

k

ρk(s).(13)

Furthermore,

ρk(s) = E(Rk) =
∞∑

n=1
E(In) =

∞∑
n=1

P(Xn = k, Ts ≥ n|X0 = s).
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Now for n = 1,
P(X1 = k, Ts ≥ 1|X0 = s) = psk .

For n ≥ 2,
P(Xn = k, Ts ≥ n|X0 = s)

=
∑
j �=s

P(Xn = k, Xn−1 = j, Ts ≥ n|X0 = s)

=
∑
j �=s

P(Xn = k|Xn−1 = j, Ts ≥ n, X0 = s)P(Xn−1 = j, Ts ≥ n|X0 = s)

by conditional probability

=
∑
j �=s

p jkP(Xn−1 = j, Ts ≥ n − 1|X0 = s) by the Markov property.

Hence,

ρk(s) = psk +
∑
j �=s

p jk

∞∑
n=2

P(Xn−1 = j, Ts ≥ n − 1|X0 = s)(14)

= ρs(s)psk +
∑
j �=s

p jkρ j (s) =
∑

j

ρ j (s)p jk .

Dividing throughout by µs yields the result (12), as required. �

In view of the appearance of mean recurrence times in the above proof, it is perhaps not
surprising to discover another intimate link between π and µ.

(15) Theorem For a regular Markov chain, the stationary distribution is unique and
satisfies πkµk = 1; k ∈ S. Hence,

ρk(s) = µs

µk
.(16)

Proof Recall that Tik = min {n ≥ 0: Xn = k|X0 = i}, so that, in particular, Tkk = 0 and
Tk = min {n ≥ 1: Xn = k|X0 = k}. Conditioning on the outcome of the first transition of
the chain we have, for i �= k,

µik = E(E(Tik |X1)) = 1+
∑

j

pi jµ jk .(17)

Also,

µk = 1+
∑

j

pk jµ jk .(18)

By using the Kronecker delta,

δik =
{
1 if i = k
0 otherwise

(19)



9.4 Stationary Distributions 417

these may be combined as one equation valid for all i :

µik + δikµk = 1+
∑

j

pi jµ jk .(20)

Now if π is a stationary distribution, we multiply (20) by πi and sum over all i to give∑
i

πiµik +
∑

i

πiδikµk = 1+
∑

i

∑
j

πi pi jµ jk = 1+
∑

j

π jµ jk

on using the fact that π = πP. Hence, using (19) in the second sum, we have πkµk = 1.
Because µk is uniquely determined and finite, the required results follow. �

(21) Example: Cube Suppose that a particle performs a random walk on the vertices of a
cube in such a way that when it is at a vertex it is equally likely to move along any one of
the three edges that meet there, to a neighbouring vertex. Find the mean recurrence time
of each vertex.

Solution The state space can be chosen as S = {i : 1 ≤ i ≤ 8} and the transition prob-
abilities are

pi j =
{
1
3 if i and j are joined by an edge
0 otherwise.

Hence,
∑

i∈s pi j = 1, and so the stationary distribution is πi = 1
8 ; 1 ≤ i ≤ 8. By Theorem

15, µi = 8; 1 ≤ i ≤ 8. �

More generally, we note that for any finite regular doubly stochastic Markov chain, all
states have the same mean recurrence time. This follows easily from the observation that
in the doubly stochastic case, we have

1

d
=

∑
i∈S

1

d
pi j = 1

d
.(22)

Hence, πi = d−1 is a stationary distribution and µi = d .

(23) Example: Library Books My local lending library permits me to borrow one book at
a time. Each Saturday I go to the library. If I have not finished reading the book I renew it;
otherwise, I borrow another. It takes meWr weeks to read the r th book, where (Wr ; r ≥ 1)
is a sequence of independent random variables that are identically distributed. Let Xn be
the number of times that I have renewed the book that I take out of the library on the nth
Saturday. Show that Xn is a Markov chain and find its transition matrix P .
Find the stationary distribution of P when Wr is uniformly distributed on {1, . . . , d}.

Solution LetWr havemass function f (k) and distribution function F(k). Let R denote
the record of borrowings and renewals up to, but not including, the book I am currently
reading, and suppose that Xn = i . Either I renew it again, so Xn+1 = i + 1, or I borrow
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a new one, in which case Xn+1 = 0. Because the Wr are independent and identically
distributed,

P(Xn+1 = i + 1|Xn = i, R) = P(W1 ≥ i + 1|W1 = i)(24)

= P(W1 ≥ i + 1)
P(W1 ≥ i)

by conditional probability

= 1− F(i + 1)
1− F(i)

= P(Xn+1 = i + 1|Xn = i)

= pi,i+1; i ≥ 0.
Otherwise,

P(Xn+1 = 0|Xn = i, R) = 1− pi,i+1 = f (i)

1− F(i)
.(25)

Hence, X is a Markov chain with transition probabilities given by (24) and (25).
If Wr is uniform on {1, . . . , d}, then

pi,i+1 = d − i − 1
d − i

; 0 ≤ i < d − 1

and pd−1,0 = 1. Hence, any stationary distribution π satisfies

πi+1 = πi
d − i − 1

d − i
; 0 ≤ i < d − 1(26)

and π0 = πd−1. Iterating (26) gives πi+1 = d−i−1
d π0, and because

∑d
i πi = 1, it follows

that

πi+1 = 2(d − i − 1)
d(d + 1) .

�

9.5 The Long Run

It is natural to speculate about the behaviour of the Markov chain X in the long run, that
is, as n →∞. As usual, we obtain insight from examples before turning to the general
case.

Example 9.2.9 Revisited: Survival Recall that

pik(n) =
{

pn if k = i + n
qpk if 0 ≤ k ≤ n − 1.

Now allowing n →∞ shows that

pik(n)→ qpk .

Notice that
∑

k qpk = 1 and that the collection πk = qpk ; k ≥ 0 is a stationary distribu-
tion. To see this, just check that π = π P because

π0 = p
∞∑
0

πk = q
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and πk = pπk−1. This stationary distribution does not depend on the starting point of the
chain. �

Example (9.2.7) Revisited: Simple RandomWalk In this case, for all i and k,

lim
n→∞ pik(n) = 0. �

Example: Gambler’s Ruin This is a simple random walk that stops when it reaches
0 or K , and is therefore a Markov chain. The probability of ruin starting from i is pi ,
and we have shown above that the probability of winning from i is 1− pi . Hence, for
0 ≤ i ≤ K , as n →∞,

pi0(n)→ pi

pi K (n)→ 1− pi

pi j (n)→ 0 for 0 < j < K .

The pair {pi , 1− pi } is a stationary distribution, but it depends on the initial state of the
chain. �

These examples illustrate the possibilities and agree with our intuition. Roughly speaking,
if a chain can get to absorbing states, then it may eventually be absorbed in one of them;
on the other hand, if it has no stationary distribution then the chance of finding it in any
given state vanishes in the long run.
The most interesting case, as you might expect, arises when the chain has a unique

stationary distribution, and the principal result for a finite chain is then the following
theorem.

(1) Theorem Let X be regular with transition probabilities pik . Then, as n →∞,
for any i and k,

pik(n)→ πk > 0.

Furthermore,

(i) πk does not depend on i
(ii)

∑
k∈S πk = 1

and

(iii) πk =
∑

i∈S πi pik,

and so π is the stationary distribution of X. In addition, πkµk = 1.

Our proof of Theorem 1 will rely on the idea of coupling. This technique has many forms
and applications; we use a simple version here. Suppose we run two independent chains
X and Y with the same transition matrix, and they first take the same value s at time T ,
say. Now, as we have shown above, the Markov property is preserved at such first passage
times, so given XT = YT = s, the further progress of X and Y is independent of their
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activities before T . Hence, on the event T ≤ n we have

P(Xn = k; T ≤ n) = P(Yn = k; T ≤ n),(2)

because given T = t both sides are equal to psk(n− t). The chains are coupled at T .
Now we can tackle the theorem.

Proof of Theorem 1 Let X and Y be independent regular Markov chains with the same
state space S and transition matrix pi j . Let X0 have mass function

P(X0 = i) = 1,
and Y0 have the stationary distribution of pi j so that

P(Y0 = i) = πi .

Define the Markov chain

W = (X, Y ),

and let T be the first passage time of W to the set D = {(x, y): x = y}, namely, T =
min {n: Xn = Yn}. Now, by (9.2.11), because X and Y are regular, so is W . Hence, T is
finite with probability 1 (and has finite mean) by Theorem 9.3.15.
Now, bearing in mind our preparatory remarks above, we can say

|pik(n)− πk | = |P(Xn = k)− P(Yn = k)|(3)
= |P(Xn = k, n ≥ T )− P(Yn = k, n ≥ T )
+P(Xn = k, n < T )− P(Yn = k, n < T )|

= |P(Xn = k, n < T )− P(Yn = k, n < T )| by (2)
≤ P(T > n),

where the last inequality follows because |P(A ∩ B)− P(A ∩ C)| ≤ P(A) for any events
A, B, and C . Because P(T > n)→ 0 as n →∞, we have

pik(n)→ πk,

as required. The rest of the assertions follow because π is the stationary distribution
of X . �

This is a rather useful result; to find the long term behaviour of the chain, we just solve
π = π P , which gives the limiting distribution of X . Indeed, we know from the results
of Section 9.3 that this distribution is approached rather quickly, because from Theorem
9.3.15

|pi j (n)− π j | < P(T > n) < cλn(4)

for some constants c <∞ and λ < 1.
The probabilities pi j (n) are said to approach π j geometrically fast.

(5) Example Let X have state space {1, 2} and transition matrix

P =
(
1− α
β

α

1− β
)
.
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From the results of Example 9.2.20, we see that when 0 < α + β < 2, as n →∞
p11(n)→ β, p21(n)→ β

p12(n)→ α, p22(n)→ α.

And, of course,

(β, α)

(
1− α
β

α

1− β
)
= (β, α),

so

(
β

α + β ,
α

α + β
)
is the stationary distribution as it must be.

When α + β = 0, the chain is not irreducible, and when α + β = 2, the chain is not
regular (being periodic). �

(6) Example: Entropy of a Markov Source Let X = (Xn; n ≥ 1) be a collection of
jointly distributed randomvariables, andwrite Xn = (X1, . . . , Xn). Recall that in Example
9.2.28, we defined the conditional entropy function

H (Xn+1|Xn) = −E[E(log f (Xn+1|Xn)|Xn)].

If HX = limn→∞ H (Xn+1|Xn) exists, then HX is said to be the entropy or uncertainty
of X .
Now let X be a regular Markov chain with transition matrix P . Show that HX does

indeed exist and is given by

HX = −
∑

i

πi

∑
k

pik log pik,(7)

where π is the stationary distribution of P.

Solution In Example 9.2.28, it was shown that for a Markov chain X ,

H (Xn+1|Xn) = H (Xn+1|Xn)(8)
= −

∑
i

∑
k

P(Xn+1 = k|Xn = i)× log(P(Xn+1 = k|Xn = i))

×P(Xn = i)
= −

∑
i

∑
k

αi (n)pik log pik .

Now, by Theorem 1, as n →∞, αi (n)→ πi , and therefore taking the limit as n →∞ of
the right-hand side of (8) gives (7), as required. �

The basic limit theorem (1) tells us that in the long run the probability of finding the regular
chain X in state k converges to πk , for each k ∈ S. It seems plausible that, also in the long
run, the proportion of time that X spends visiting k should converge to πk . The following
theorem shows that a more precise version of this vague statement is indeed true. It may
be thought of as a type of weak law of large numbers for Markov chains.
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(9) Theorem Let X be regular with transition matrix P and stationary distribution π .
Let Vk(n) be the number of visits to the state k by X up to time n. Then for any ε > 0,

P
(∣∣∣∣ 1

n + 1Vk(n)− πk

∣∣∣∣ > ε

)
→ 0, as n →∞.(10)

Proof Some groundwork is required before setting about the proof of (10). Let Ik(n) be
the indicator of a visit to k at time n, so

Ik(n) =
{
1 if Xn = k
0 otherwise.

By the basic property of indicators,

E(Ik(n)) = P(Xn = k) = αk(n)(11)

and for m �= r ,

E(Ik(m)Ik(r )) = αk(s)pkk(t),(12)

where s = min {m, r} and t = |m − r |. These indicators will be useful because

Vk(n) =
n∑

r=0
Ik(r ).(13)

Now we recall that for some constants c and λ with 1 ≤ c <∞ and 0 < λ < 1,

|αk(n)− πk | < cλn(14)

and

|pik(n)− πk | < cλn.(15)

At last, we are in a position to tackle (10). By Chebyshov’s inequality,

P
(∣∣∣∣ 1

n + 1Vk(n)− πk

∣∣∣∣ > ε

)

≤ E

((
Vk(n)− (n + 1)πk

(n + 1)ε
)2)

= 1

(n + 1)2ε2E

(

n∑
r=0
(Ik(r )− πk)

)2

= 1

(n + 1)2ε2E
(

n∑
m=0

n∑
r=0
(Ik(m)Ik(r )− πk Ik(m)− πk Ik(r )+ π2k

)

= 1

(n + 1)2ε2
∑
m,r

((αk(s)− πk)(pkk(t)− πk)

+ πk[(αk(s)− πk)+ (pkk(t)− πk)− (αk(m)− πk)− (αk(r )− πk)])

by (11) and (12)

≤ 1

(n + 1)2ε2
∑
m,r

2c2(λs + λt ) by (14) and (15)

→ 0
as n →∞, establishing (10). �
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(16) Corollary For any bounded function g(x), and any ε > 0

P

(∣∣∣∣∣ 1

n + 1
n∑

r=0
g(Xr )−

∑
k∈S

πk g(k)

∣∣∣∣∣ > ε

)
→ 0,(17)

as n →∞.

Proof The key to this lies in the observation that
n∑

r=0
g(Xr ) =

∑
k∈S

g(k)Vk(n).

Hence, we can rewrite (17) as

P



∣∣∣∣∣∣∣
∑

k∈S
g(k)�=0

g(k)

(
Vk(n)

n + 1 − πk

)∣∣∣∣∣∣∣ > ε


 ≤ ∑

k∈S
g(k)�=0

P
(∣∣∣∣Vk(n)

n + 1 − πk

∣∣∣∣ > ε

dg(k)

)
→ 0,

as n →∞ , by Theorem 9 (using the fact that S is finite). �

We can give an immediate application of these results.

(18) Example: Asymptotic Equipartition for a Markov Source Let the regular Markov
chain X with transition matrix P and stationary distribution π represent the output from
a Markov information source, as defined in Example 9.1.5. Let Xn = (X0, . . . , Xn) have
joint mass function f (x0, . . . , xn) = P(X0 = x0, . . . , Xn = xn), and recall from Example
9.5.6 that the entropy of X is

HX = −
∑
i∈S

∑
k∈S

πi pik log pik .(19)

Show that, for any δ > 0, as n →∞,

P
(∣∣∣∣HX + 1

n
log f (X0, . . . , Xn)

∣∣∣∣ > δ

)
→ 0.(20)

Solution First, from Example 9.4.8, the sequence Yn = {Xn, Xn+1}; n ≥ 0, is a
Markov chain with stationary distribution (πi pik ; i ∈ S, kεS). Second, we have

−1
n
log f (X0, . . . , Xn) = −1

n
log(pX0X1 pX1X2, . . . , pXn−1Xn )(21)

= −1
n

n−1∑
r=0

log pXr Xr+1 .

Finally, we note that if we set g(Yn) = log pXn Xn+1 , thenCorollary 16 applied to theMarkov
chain Y shows that

P

(∣∣∣∣∣1n
n−1∑
r=0

log pXr Xr+1 −
∑
i,k

πi pik log pik

∣∣∣∣∣ > δ

)
→ 0

and (20) follows immediately, on remembering (19) and (21). �
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Here is a useful application of the asymptotic equipartition example. If d is the size of the
alphabet, then the total number of messages of length n which the source can emit is dn .
Let us divide them into disjoint sets T and A, where

T =
{
(x1, . . . , xn):

∣∣∣∣1n log f (x1, . . . , xn)+ HX

∣∣∣∣ < δ

}
(22)

and

A =
{
(x1, . . . , xn):

∣∣∣∣1n log f (x1, . . . , xn)+ HX

∣∣∣∣ ≥ δ

}
.

By Example 18, for any ε > 0 and δ > 0, there exists n0 <∞ such that

P{(X1, . . . , Xn0 ) ∈ T } ≥ 1− ε;(23)

because this is arbitrarily near 1, sequences in T are called typical. Also, by
Example 18,

P({X1, . . . , Xn0} ∈ A) ≤ ε,

which is arbitrarily small, so sequences in A are called atypical. If you are seeking efficient
transmission ofmessages, it thereforemakes sense to concentrate on the typical sequences.
It follows that a natural question is, how many typical sequences are there? At this point,
we recall that by convention the logarithms in Example 18 are taken to base 2. Hence,
from (22),

2−n(HX+δ) < f (x1, . . . , xn) < 2
−n(HX−δ).

But also, from (23),

1− ε ≤
∑
xn∈T

f (x1, . . . , xn) ≤ 1.

Hence, the number |T | of sequences in T satisfies

(1− ε)2n(HX−δ) ≤ |T | ≤ 2n(HX+δ),

which is to say that, roughly speaking, there are about 2nHX typical messages of length n.
We end this section with a brief look at Markov chains in general.
Up to now, we have dealt chiefly with finite regular chains because such chains have

useful and elegant properties with elementary proofs. However, as some examples have
indicated, many chains are irregular or infinite or both. We therefore give a brief account
of some of the important results for more general chains; the proofs are all omitted.
In the above sections, it was found that in a finite regular chain, any state d has a

recurrence time Td , which is finite with probability 1 and has finite expectation. When X
has countably infinite state space, this need no longer be true, as a glance at the unrestricted
simple random walk shows immediately. We therefore distinguish these cases.
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(24) Definition Let the state d have recurrence time Td. Then:

(i) If P(Td <∞) < 1, then d is said to be transient.
(ii) IfP(Td <∞) = 1 butE(Td ) = ∞, then d is said to be recurrent null (or persistent

null). Otherwise, d is recurrent (or persistent). �

These new types of behaviour seem to complicate matters, but the following theorem helps
to simplify them again.

(25) Decomposition Theorem The state space S can be uniquely partitioned as S = T ∪
C1 ∪ C2 ∪ . . . , where T is the set of transient states and each Ci is an irreducible closed
set of recurrent states.

This means that eventually the chain ends up in some one of the Ci and never leaves it,
or it remains forever in the transient states.
Of course, if there is only one closed set of recurrent states matters are even simpler, so

the following theorem is useful.

(26) Theorem The chain X has a unique stationary distribution π if and only if S contains
exactly one recurrent nonnull irreducible subchain C. For each i in C,

πi = µ−1i ,(27)

where µi is the mean recurrence time of i , and for i /∈ C, πi = 0.

There is also a limit theorem for general Markov chains.

(28) Theorem For any aperiodic state k of a Markov chain,

pkk(n)→ 1

µk
as n →∞,

where the limit is zero if k is null or transient. If i is any other state of the chain, then

pik(n)→ 1

µk
P(Tik <∞).

9.6 Markov Chains with Continuous Parameter

We have suggested above that Markov chains can provide a good description of various
real systems. However, a moment’s thought about real systems is sufficient to see that
many of them do not change their state at integer times. Components fail, your telephone
rings, meteorites fall, at any time.
Spurred by this, it is natural to want to study collections of random variables of the form

X = (X (t); t ≥ 0).
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Here, t ∈ R is often regarded as the time, and then X (t) ∈ Z is regarded as the state of the
system X at time t . Such a collection is often called a random process. The most obvious
thing about X is that it is an uncountable collection of random variables, and it follows
that a rigorous account of the behaviour of X (t) is beyond the scope of an elementary text
such as this. However, we can discover quite a lot informally in special cases.
First, the remarks in Section 9.1 that motivated our interest in Markov chains apply

equally well in continuous time. We therefore make the following definition, analogous
to Definition 9.1.1. As usual, X (t) ∈ S, where S is a subset of the integers called the state
space.

(1) Definition The process X = (X (t); t ≥ 0) taking values in S is a Markov process (or
has the Markov property), if

P(X (t) = k|X (t1) = i1, . . . , X (tn) = in) = P(X (t) = k|X (tn) = in)

for all possible k, i1, . . . , in, and any sequence 0 ≤ t1 < t2 < . . . < tn < t of times. We
write

P(X (t + s) = k|X (s) = i) = pik(t). �

As in the discrete case, (pik(t); i, k ∈ S) are known as the transition probabilities, and they
satisfy the Chapman–Kolmogorov equations, as follows.

(2) Theorem For any s > 0 and t > 0 and i, k ∈ S,

pik(s + t) =
∑
j∈S

pi j (s)p jk(t).

Proof By the same arguments as we used in Theorem 9.2.12.

pik(s + t) =
∑
j∈S

P(X (s + t) = k, X (s) = j |X (0) = i)(3)

=
∑
j∈S

P(X (t + s) = k|X (s) = j, X (0) = i)P(X (s) = j |X (0) = i)

=
∑

j

pi j (s)p jk(t). �

Given this collection of equations, it is possible to set about solving them in special cases,
without any further ado. In fact, we do just that in the next section, but as usual there are
a few preliminaries.
First we must ask, do any nontrivial Markov processes exist? (Obviously, the trivial

process X (t) = 1 for all t is a Markov process, but not a very exciting one.) This ques-
tion is not as stupid as it may appear to you. Recall that we defined Markov chains by
visualizing a counter or particle moving around the vertices of a graph according to some
specified distributions, and if necessary we could actually do it. Here, we have started
with a collection of probabilities, with no description of how we might actually produce
a sequence X (t) having these transition probabilities and joint distributions.
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Of course, the answer to the above question is, yes they do exist, and you have already
met one, namely, the Poisson process. This was defined by construction in Definition
8.8.1, and we showed that it had the Markov property in Exercise 8.17.3. Henceforth,
where necessary, we assume without proof that the processes we consider exist; in more
advanced texts, it is shown that they do.

(4) Example: Poisson Process It has already been shown that if N = (N (t); t ≥ 0) is
a Poisson process with parameter λ, then N (t)− N (0) has a Poisson distribution with
parameter λt , which is to say that

pik(t) = e−λt (λt)k−i

(k − i)!
.

Hence, we can calculate

k∑
j=i

pi j (s)p jk(t) =
k∑

j=i

e−λs(λs) j−i

( j − i)!

e−λt (λt)k− j

(k − j)!

= e−λ(t+s)

(k − i)!

k−i∑
r=0

(
k − i

r

)
(λs)r (λt)k−i−r

= e−λ(t+s)(λ(s + t))k−i

(k − i)!
= pik(s + t).

Thus, the transition probabilities of the Poisson process satisfy the Chapman–Kolmogorov
equations, as they must of course by Theorem 2. �

Note that this result of itself does not show that N is a Markov process: there are processes
that are not Markov, whose transition probabilities nevertheless satisfy (3). The crucial
propertywhichmakes N aMarkov process is the exponential distribution of times between
events. This property is in fact characteristic of Markov processes in general; they wait
in each successive state for an exponentially distributed time before moving to the next.
Naturally, it is the lack-of-memory property of the exponential distribution that is basically
responsible for this essential role in the theory of Markov processes. However, we can do
no more here than state the fact baldly; exploring its ramifications is beyond our scope.
One example will suffice to give some trivial insight into these remarks.

Example: Falling Off a Log Let X (t) be a Markov chain with two states 0 and 1.
Suppose that transitions from 1 to 0 are impossible. Let us consider transitions from 0 to
1. Because X (t) is Markov, the transition probabilities satisfy the Chapman–Kolmogorov
equations. Hence, as p10(t) = 0, we have

p00(s + t) = p00(s)p00(t)+ p01(s)p10(t) = p00(s)p00(t).

However, as we have remarked previously, the only bounded solutions to the equation
f (x + y) = f (x) f (y) are of the form f (x) = e−λx . Hence,

p00(t) = e−λt



428 9 Markov Chains

for some λ ≥ 0. The exponential density is forced upon us by the assumption that X (t) is
Markov.

9.7 Forward Equations: Poisson and Birth Processes

It is all very well to verify that a previously obtained solution satisfies (9.6.3). A pressing
question is, can we solve (9.6.3) without already knowing the answer? We therefore
develop a technique for tackling the Chapman–Kolmogorov equations in this section.
First, we observe that for the Poisson process, as t → 0

pk,k+1(t) = P(N (t) = 1) = λte−λt = λt + o(t);†(1)

pkk(t) = P(N (t) = 0) = e−λt = 1− λt + o(t);(2)

for j < k,

pkj (t) = P(N (t) < 0) = 0;(3)

and for j > k + 1,
pkj (t) = P(N (t) > 1) = o(t).(4)

Equations (1)–(4) say that:

N (t) is nondecreasing.(5)

(6) The probability of an event in [s, s + t] is proportional to t , for small t , and does not
depend on previous events.

The probability of two or more events in [s, s + t], for small t , is o(t).(7)

What we are going to do now is to seek a Markov process X (t) with transition proba-
bilities pik(t), which satisfy (5), (6), and (7).
Because pik(t) satisfies (9.7.3), we have for small t

pik(s + t) =
k∑

j=1
pi j (s)p jk(t)

= pik(s)(1− λt + o(t))+ pi,k−1(s)(λt + o(t))+
k−2∑
j=i

pi j (s).o(t).

Hence,

pik(s + t)− pik(s)

t
= −λpik(s)+ λpi,k−1(s)+ o(1)

and allowing t → 0 gives

d

ds
pik(s) = −λpik(s)+ λpi,k−1(s),(8)

valid for all 0 ≤ i ≤ k [remembering that pi,i−1(s) = 0].

† We discussed the o(.) notation in Section 7.5.



9.7 Forward Equations: Poisson and Birth Processes 429

At t = 0, we have the initial condition
pii (0) = 1.(9)

The equations (8), as i and k range over all possible values, are known as the forward
equations for pik(t), and may be solved in various ways.

Theorem The solution of (8) is given by

pik(t) = e−λt (λt)k−i

(k − i)!
,(10)

namely, the transition probabilities of the Poisson process.

Proof We give twomethods of proof. First, solve (8) with k = i , using (9), to find pii (t) =
e−λt . Substituting this into (8) with k = i + 1 yields

pi.i+1(t) = λte−λt .

A simple induction now yields (10). �

A second method relies on the generating function

G(z, t) =
∞∑

k=i

pik(t)z
k = E(zN (t)|N (0) = i).

Multiply (8) by zk and sum over k to obtain

∂G

∂t
= λ(z − 1)G.(11)

From (9), we have

G(z, 0) = zi .(12)

The solution of (11) that satisfies (12) is

G(z, t) = zi exp (λt(z − 1))(13)

and the coefficient of zk in this expression is just (10). �

The point of this elaborate reworking is that the simple assumptions (5), (6), and (7) also
lead to the Poisson process in a simple and straightforward way. It turns out that a great
many useful processes can be analysed by specifying pik(t) for small t , and all i and k,
then obtaining the forward equations, and finally (occasionally) solving them.

(14) Example: The Simple Birth Process A population of individuals grows as follows.
Each member of the population in existence at time t may be replaced by two new indi-
viduals during [t, t + h] with probability λh + o(h), independently of the other members
of the population. Otherwise, the given member of the population remains intact during
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[t, t + h] with probability 1− λh + o(h), also independently of the rest of the population.
If the population at time t is X (t), and X (0) = 1, show that

E(zX (t)) = z

z + (1− z)eλt
.(15)

What is E(X (t))?

Solution Let pn(t) = P(X (t) = n) and

p jk(t) = P(X (t) = k|X (0) = j).

Suppose that X (t) = i . Because each individual is replaced (or not) independently of all
the others we have, as h → 0,

pii (h) = (1− λh + o(h))i

pi,i+1(h) = i(λh + o(h))(1− λh + o(h))i−1 = iλh + o(h)
pik(h) = o(h); k > i + 1

pik(h) = 0; k < i.

Following the by now familiar routine, we find

pk(t + h) = (1− λkh)pk(t)+ λ(k − 1)hpk−1(t)+ o(h)

and so

∂

∂t
pk(t) = −λkpk(t)+ λ(k − 1)pk−1(t).(16)

Now we set G X (z, t) = E(zX (t)), and notice that because probability generating functions
are differentiable, at least for |z| < 1, we have

∂G X

∂z
=

∞∑
k=1

kpk(t)z
k−1.(17)

Now, on multiplying (16) by zk and summing over k, we notice ∂G X
∂z appearing on the

right-hand side. In fact,

∂G X

∂t
= λz(z − 1)∂G X

∂z
.(18)

Also, because X (0) = 1,
G X (z, 0) = z.(19)

By inspection, for any differentiable function h(.), the function

G(z, t) = h

(
λt +

∫ z 1

v(v − 1)dv
)

(20)
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satisfies (18). Imposing the boundary condition (19) reveals that

z = h

(∫ z 1

v(v − 1)dv
)
= h

(
log

(
z − 1

z

))
.

Hence, the function h(.) is given by h(y) = (1− ey)−1 and so

G X (z, t) = 1

1− exp (λt + log ( z−1
z

)) = z

z + (1− z)eλt
,

as required.
Now, to find E(X (t)), we have a choice of methods. Obviously, by differentiating (15)

with respect to z and setting z = 1, we find

E(X (t)) = ∂

∂z
G X (1, t) = eλt .(21)

However, we could have obtained E(X (t)) without solving (18). If we assume E[(X (t))2]
exists, then differentiating (18) with respect to z and setting z = 1 yields

∂

∂t

∂G X

∂z
(1, t) = λ

∂G X

∂z
(1, t).

This has solution given by (21). Or we could simply have noted that X has a geometric
distribution with parameter e−λt . �

9.8 Forward Equations: Equilibrium

Guided by our glances at the Poisson and simple birth processes, we can now outline a
simple technique for dealing with some elementary Markov chains. The aim is to obtain
forward equations, so from the Chapman–Kolmogorov equations we write, for h > 0,

pik(t + h)− pik(t)

h
= 1

h

(∑
j

pi j (t)p jk(h)− pik(t)

)
.(1)

We want to let h ↓ 0. By inspection of (1), this is possible if for some finite numbers
(g jk ; j, k ∈ S) we have as h → 0,

p jk(h) = g jkh + o(h),(2)

and

pkk(h) = 1+ gkkh + o(h).(3)

In this case, we obtain the required forward equations by letting h ↓ 0 in (1), to give
∂

∂t
pik(t) =

∑
j

pi j (t)g jk .(4)
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The application of this idea is best illustrated by examples. We give perhaps the simplest
here, others follow in due course.

(5) Example: Machine A machine can be either up or down. [You can interpret this
figuratively (working/not working), or literally (a lift), it makes no difference to the math-
ematics.] If it is up at time t , then it goes down during [t, t + h] with probabilityαh + o(h),
independently of its past record. Otherwise, it stays up with probability 1− αh + o(h)
during [t, t + h]. Likewise, if it is down at time t , it goes up in [t, t + h] with probability
βh + o(h), independently of its past, or it stays down with probability 1− βh + o(h).

(a) If it is up at t = 0, find the probability that it is down at time t > 0.
(b) Let N (t) be the number of occasions on which it has gone down during [0, t]. Find

E(N (t)).
(c) Find the probability generating function E(zN (t)).

Solution (a) Let X (t) be the state of the machine, where X (t) = 0 if it is up at t and
X (t) = 1 if it is down at t . By the assumptions of the question, X (t) is a Markov process,
and

p01(t + h) = p00(t)αh + p01(t)(1− βh)+ o(h)
p00(t + h) = p01(t)βh + p00(t)(1− αh)+ o(h).

Hence,

d

dt
p01(t) = −βp01(t)+ αp00(t)(6)

d

dt
p00(t) = −αp00(t)+ βp01(t)(7)

and, because X (0) = 0,
p00(0) = 1.(8)

Solving (6), (7), and (8) gives the required probability of being down at t

p01(t) = α

α + β (1− e−(α+β)t ).

(b) The first thing to realize here is that N (t) is not a Markov process. However, if we let
M(t) be the number of times the machine has gone up during [0, t], then

Y(t) = {N (t), M(t)}
is a Markov process. By the assumptions of the problem, as h → 0,

P(Y(t + h) = (k + 1, k)|Y(t) = (k, k)) = αh + o(h)

P(Y(t + h) = (k, k)|Y(t) = (k, k)) = 1− αh + o(h)

P(Y(t + h) = (k, k)|Y(t) = (k, k − 1)) = βh + o(h)

P(Y(t + h) = (k, k − 1)|Y(t) = (k, k − 1)) = 1− βh + o(h).
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Hence, if fk j (t) = P(Y(t) = (k, j)), the forward equations may be derived routinely as

d

dt
fkk(t) = −α fkk(t)+ β fk,k−1(t); k ≥ 0.(9)

d

dt
fk,k−1(t) = −β fk,k−1(t)+ α fk−1,k−1(t); k ≥ 1,(10)

where f0,−1(t) = 0.
Now consider a Poisson process Z (t) of rate α. By construction of N (t),P(N (t) = k) ≤

P(Z (t) = k) for all k. Hence, E(N (t)) exists because it is less than E(Z (t)) = αt . In fact,

P(N (t) = k) = fkk(t)+ fk,k−1(t),

and so E(N (t)) = m1(t)+ m2(t), where

m1(t) =
∞∑

k=1
k fkk(1)

and

m2(t) =
∞∑

k=1
k fk,k−1(t).

Multiplying (9) and (10) by k, and summing gives

dm1

dt
= −αm1 + βm2(11)

and
dm2

dt
= −βm2 + α

∑
k

(k − 1+ 1) fk−1,k−1(t)(12)

= −βm2 + αm1 + α
∑

k

fk−1,k−1(t)

= −βm2 + αm1 + αP(N (t) = M(t))
= −βm2 + αm1 + αp00(t)

because the machine is up if N (t) = M(t). Hence, adding (11) and (12), we have

d

dt
E(N (t)) = αp00(t),

and so, using the result of (a),

E(N (t)) =
∫ t

0
α

(
β

α + β +
αe−(α+β)ν

α + β
)

dν.

It follows that as t →∞, t−1E(N (t))→ αβ/(α + β).
(c) Let

x(t, z) =
∞∑

k=0
fkk(t)z

k and y(t, z) =
∞∑

k=1
fk,k−1(t)zk .
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ThenE(zN (t)) = x(t, z)+ y(t, z), and multiplying each of (9) and (10) by zk and summing
over k gives

∂x

∂t
= −αx + βzy, and

∂y

∂t
= −βy + αzx .

This pair of simultaneous differential equations is solved by elementary methods, subject
to the initial conditions x(0, z) = 1 and y(0, z) = 0, to yield

x(t, z)= [(α + λ2(z))/(λ2(z)− λ1(z))]eλ1(z)t + [(α + λ1(z))/(λ1(z)− λ2(z))]eλ2(z)t

and

y(t, z) = (α + λ1)(α + λ2)(eλ1(z)t − eλ2(z)t )/(βz(λ2 − λ1)),
where

λ1(z) = 1

2
[−(α + β)+ ((α − β)2 + 4αβz2)

1
2 ]

and

λ2(z) = 1

2
[−(α + β)− ((α − β)2 + 4αβz2)

1
2 ]. �

Recalling our results about chains in discrete time, it is natural to wonder whether chains
in continuous time have stationary distributions and whether pi j (t) converges as t →∞.
A detailed answer to these questions is far beyond our scope, but we can make some
guarded remarks. Let us start with the simplest.

(13) Theorem Let X (t) be a finite Markov process with transition matrix pi j (t). Then
limt→∞ pi j (t) exists for all i and j .

If X (t) is irreducible then the limit is independent of i , we write

lim
t→∞ pi j (t) = π j .

Furthermore, π j satisfies
∑

j π j = 1 and

π j =
∑

i

πi pi j (t); t ≥ 0,

π is the stationary distribution of X (t).
[A chain is irreducible if for each i, j there is some finite t such that pi j (t)

> 0.]

(14) Example 5 Revisited In this case, we have

p01(t) = α

α + β (1− e−(α+β)t )→
{

α
α+β if α + β > 0
0 otherwise,

with three similar results for p00, p10, and p11. If α = β = 0, then X (t) = X (0) for all
t . However, if αβ > 0, then the chain is irreducible and has stationary distribution π =
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( β

α+β ,
α

α+β ). We can check that for all t

π0 = β

α + β
= β

α + β
(

β

α + β +
αe−(α+β)t

α + β
)
+ α

α + β
(

β

α + β −
βe−(α+β)t

α + β
)

= π0 p00(t)+ π1 p10(t).
�

In practice, the state space is often countably infinite, and of course we would like to use
the forward equations (4). The following theorem is relevant.

(15) Theorem Let X (t) be an irreducible Markov process with transition matrix pi j (t),
satisfying (2) and (3) above. Then limt→∞ pi j (t) exists and is independent of i , for
all j .

There are two possibilities.
Either (a) lim

t→∞ pi j (t) = π j > 0,

where
∑
πi = 1 and

π j =
∑

i

πi pi j (t)

and ∑
i

πi gi j = 0(16)

for all j;
or (b) lim

t→∞ pi j (t) = 0.

We give no proof of this result, but you may notice with some pleasure that there are
no tiresome reservations about periodicity.

(17) Example: Queue Let X (t) be the length of queue formed before a single service point
at time t . The times between arrivals are exponentially distributed with parameter λ; each
individual is served on reaching the head of the queue; each service time is exponentially
distributed with parameter µ; interarrival times and service times are all independent of
each other.
It follows that as h → 0, when X (t) > 0,

P(X (t + h)− X (t) = 1) = P(one arrival; no service completed in (t, t + h))
= λh(1− µh)+ o(h) = λh + o(h).

Likewise,

P(X (t + h)− X (t) = −1) = µh + o(h)
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and

P(X (t + h)− X (t) = 0) = 1− (λ+ µ)h + o(h).

The process X (t) is Markov, by the properties of the exponential density, and the above
statements show that

pi,i+1(h) = λh + o(h),
pi,i−1(h) = µh + o(h); i �= 0

pii (h) = 1− (λ+ µ)h + o(h); i �= 0 .
When i = 0, no service can be completed so we have p01(h) = λh + o(h) and p00(h) =
1− λh + o(h). These supply us with all the numbers gi j , and so by (16) to find the
stationary distribution we seek a solution to the equations πG = 0, that is,

−λπ0 + µπ1 = 0
λπi−1 − (λ+ µ)πi + µπi+1 = 0; i ≥ 1.

Solving recursively shows that

πi =
(
λ

µ

)i

π0; i ≥ 0,

and so a stationary distribution exists if ( λ
µ
) < 1, and it is given by

πi =
(
1− λ

µ

)(
λ

µ

)i

. �

9.9 The Wiener Process and Diffusions

All the Markov processes that we have considered up to now have been “discrete,” which
is to say that they take values in the integers (or some other countable set). They have
thus been “jump processes,” in the sense that transitions between discrete states take place
instantaneously at times that may be fixed (as in the simple random walk), or they may
be random times indexed by a continuous parameter (as in the Poisson process). But it
is a matter of simple observation that many real random processes do not make jump
transitions in a countable set of states. In complete contrast, such processes are seen to
move continuously between their possible states, which typically lie in some interval of
the real line (or all the real line). We may mention noisy electronic signals, meteorological
data, and the size and position of sunspots, for example.
We have seen that Markov chains have been effective and amenable in describing pro-

cesses with discrete state space. It is natural to ask if there are also useful processes
that are continuous and have the Markov property (Definition 9.6.1). The answer is yes,
and by far the simplest and most useful of such models is that called the Wiener pro-
cess (also known as Brownian motion for reasons we discuss in a moment). Here it
is:



9.9 The Wiener Process and Diffusions 437

(1) Definition The random process W (t), t ≥ 0, is called the Wiener process if it
satisfies
(a) W (0) = 0
(b) W (t) is continuous
(c) W (s + t)−W (s) is normally distributed with mean 0 and variance σ 2t , for all

s, t ≥ 0, and some constant σ 2 > 0.

Remark Note that we usually take σ 2 = 1, in which case this may be called the
standardWiener process. OurWiener processes are standard unless otherwise stated.

(d) W (t) has independent increments, which is to say that for any 0 < t0 < t1 < . . . <

tn ,

W (t0),W (t1)−W (t0), . . . ,W (tn)−W (tn−1),

are independent random variables.

[Note that it still seems to be an open problem as to whether pairwise independence of
increments is sufficient to define W (t).] �
This may seem a rather abrupt and arbitrary definition, so our first task must be to justify

it. First, of course, we must check that it is indeed a Markov process satisfying Definition
(9.6.1). We write, for any t0 < t1 < . . . < tn < tn + s,

P(W (tn + s) ≤ w|W (tn) = wn, . . . ,W (t0) = w0)

= P(W (tn + s)− wn ≤ w − wn|W (tn),W (tn)−W (tn−1), . . . ,W (t0) = w0)

= P(W (tn + s)−wn ≤w−wn|W (tn)=wn) by the independence of increments

= P(W (tn + s) ≤ w|W (tn) = wn),

which is the Markov property, as required.
The second natural question is, why have we picked that particular set of properties

to define W (t)? The answer most easily appears from the history and background of the
process, which is also of interest in its own right.
Ancient peoples were able to cut and polish rock crystal, and also glass when it was

invented. They were aware that, when lens-shaped, such objects distorted observation and
focussed light. However, the crucial step of exploiting this commonplace fact for useful
purposes was taken in Holland at the end of the sixteenth century. Hans Lippeshey had an
effective telescope by 1608, and Hans and Zacharias Janssen developed a microscope at
about the same time. Galileo immediately used the telescope to revolutionize astronomy
and cosmology, and Robert Hooke and others used the microscope to revolutionize our
knowledge of smaller-scale aspects of the universe.
In particular, Antonie van Leeuwenhoek noted tiny objects in drops of water, which he

called animalcules. He observed that their motion “was so fast, and so random, upwards,
downwards and round in all directions that it was truly wonderful to see.” He attributed this
motion to the objects being alive, and indeed he is credited with first identifying bacterial
cells.
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However, it was the botanist Robert Brown who (in 1822) conducted key experiments
that demonstrated that this erratic motion is exhibited by any sufficiently small particle,
inanimate as well as animate. He began his observations on pollen, which is in general too
large to show the effect, but he observed that the smaller particles were in motion. Further,
the smaller the particle the more vigorous the motion, and he obtained the same result
using “every mineral which I could reduce to powder,” including arsenic and “a fragment
of the Sphinx.” The motion must therefore be purely mechanical, and is in fact caused by
the ceaseless battering of the atoms of the fluid in which the particles are suspended. What
are the properties of the process generated by the movements of such a randomly battered
particle?

(i) First the physical nature of particles and molecules entails that their movements in
nonoverlapping time intervals are independent. This is 1(d).

(ii) Second, the path of a particle is surely continuous. This is 1(b).
(iii) Third, the position of the particle at time t is the cumulative sum of an arbitrarily large

number of small steps that are independent by (i) above. The sizes of steps over time
intervals of the same length have the same distribution, by the homogeneous nature
of the conditions of the problem. The central limit theorem therefore applies, and
we see that the position of the particle X (t) is normally distributed. The mean of X (t)
is 0 by symmetry. For the variance, we note that the variance of the position of a
discrete random walk is proportional to its duration. Because we envisage X (t) as the
continuous limit of such a walk, it is natural to set var X (t) = c2t . That is, 1(c).

(iv) Without loss of generality, we start the particle at 0. This is 1(a).

The first successful attempt at a mathematical and scientific description of the effect was
undertaken by A. Einstein in 1905. (The same year as his better-knownwork on relativity.)
He characterized the motion in terms of physical laws and constants; a description that
later allowed Perrin to obtain Avogadro’s number, and hence a Nobel prize. Another
mathematical description is implicit in the earlier work of L. Bachelier in 1900, but this
(by contrast) was ignored for half a century.
In both cases, the idea underlying the model is that the effect of the impact of atoms

on the particles is to force them to execute a random walk, whose steps (on any scale)
are equally likely to be in any direction. Clearly, the steps must be independent, and an
application of the central limit theorem tells us that steps in any given direction must be
normally distributed. These are just the properties we set out in Definition (1).
There is a third, rather less obvious question about the processW (t) defined in (1). That

is, does it exist? This may seem paradoxical, but recall our discussion after (9.6.3). The
point is that almost every other process in this book was defined by construction, and then
we deduced its joint distributions.Herewe simply stated the joint distributions (implicitly);
thus leaving open the question of whether a construction is possible. The answer “yes,”
together with a construction, was supplied by N. Wiener in a series of papers from 1918.
This is why we give it that name. The proof is too intricate for inclusion here, so we move
on to look at the basic properties of W (t).
A key point to grasp here is that such properties fall into two types: sample-path prop-

erties and distributional properties. The idea of what we mean by that is best conveyed by
giving some such properties. Here is a list of properties of the paths of W (t).



9.9 The Wiener Process and Diffusions 439

With probability 1,

(a) W (t) is continuous.
(b) W (t) is not differentiable anywhere.
(c) W (t) changes sign infinitely often in any interval [0, ε], ε > 0.
(d) W (t)/t → 0, as t →∞.
Roughly speaking, W (t) is incredibly spiky, but does not get too far away from zero.
These path properties are not so easy to verify so we turn our attention to the other kind,

that is, properties of the joint distributions of W (t), which are again best illustrated by
examples.
It is useful to recall that the N (0, σ 2) normal density is denoted by

φσ 2 (x) = 1√
2πσ 2

exp(−1
2

x2

σ 2
),

and we omit the suffix if σ 2 = 1, so φ1(x) = φ(x). Also, recall from the end of 8.10,
the review of Chapter 8, that the joint distribution of a collection of multivariate normal
random variables is determined by their means, variances, and covariances. Hence, we
have for the Wiener process

(2) Example: Joint Distribution Because increments are independent and normally dis-
tributed, the joint density of W (t1),W (t2), . . . ,W (tn), where t1 < t2 < . . . < tn , is given
by

f (w1, . . . , wn) = φt1 (w1)φt2−t1 (w2 − w1) . . . φtn−tn−1 (wn − wn−1).

In particular, the joint density of W (s) and W (t) is

f (s, x ; t, y) = 1

2π

1√
s(t − s)

exp{−1
2

x2

s
− 1

2

(y − x)2

t − s
}, 0 < s < t.(3)

Now by comparison with Example (8.11) we see immediately that

ρ(W (s),W (t)) =
√

s

t
and cov (W (s),W (t)) = s. �

Because W (t) is a Markov process its transition probabilities satisfy the Chapman–
Kolmogorov equations, as we showed in Theorems 9.2.12 and 9.6.2 for discrete Markov
processes.
In this case, because W (t) has continuous state space, the equations are expressed in

terms of an integral. That is to say, by considering the possible values z of W (u) for
s < u < t , and using the Markov property at u, we have

f (s, x ; t, y) =
∫

R

f (s, x ; u, z) f (u, z; t, y) dz.(4)

In Problem 9.35, you are asked to show that the transition density in (3) does indeed satisfy
these equations.
Joint densities can be readily used to find joint moments and conditional densities, but

there are often simpler techniques. Here is an example.
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(5) Example: Conditioning We could use (2) and (3) to obtain the conditional density
of W (s) given W (t) = y, as

fW (s)|W (t)(x |W (t) = y) = f (s, x ; t, y)

φt (y)

∝ exp
{
−1
2

x2

s
− 1

2

(y − x)2

t − s
+ 1

2

y2

t

}

∝ exp
{
−1
2

t

s(t − s)

(
x − sy

t

)2}
.

By inspection, this is a normal densitywithmean sy/t and variance
√

s(t − s)/t (where,
for simplicity, we have omitted the normalizing constant).
That is to say, for 0 < s < t ,

E(W (s)|W (t)) = s

t
W (t),(6)

var (W (s)|W (t)) = s(1− s

t
).(7)

Hence,

cov (W (s),W (t)) = E(W (s)W (t))(8)
= E([E(W (s)W (t)|W (t))]
= E

[s

t
W (t)2

]
= s = s ∧ t,

as we remarked above.
In fact, in this case and in many other similar situations, it is easier and quicker to recall

the clever device from Example (8.20). Thus, we first calculate cov(W (s),W (t)) directly
as

E(W (s)W (t)) = E{W (s)[W (t)−W (s)]+W (s)2}
= EW (s)2, by independent increments
= s = s ∧ t = min{s, t}.

Hence,W (s)/
√

s andW (t)/
√

t have a standard bivariate normal densitywith correlation

ρ = E
(

W (t)√
s

W (t)√
t

)
=

√
s

t
.

By (8.20), we find immediately that given W (t),W (s)/
√

s is normal with conditional
mean

E
(

W (s)√
s
|W (t)

)
=

√
s

t

W (t)√
t
=
√

s

t
W (t),

and conditional variance

var

(
W (s)√

s
|W (t)

)
= 1− ρ2 = 1− s

t
,

as are found above. �
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A famous and important special case is the so-called “Brownian Bridge,” which (per-
haps surprisingly) turns out to be useful in making statistical inferences about empirical
distribution functions.

(9) Example: Brownian Bridge This is the process B(t), 0 ≤ t ≤ 1, defined to be W (t),
conditional on the event W (1) = 0. (It is sometimes called the “tied-down Wiener pro-
cess.”) Because W (t) has multivariate normal joint distributions, it also follows immedi-
ately that B(t) does. To be precise, from the results of Example (5), we have

EB(t) = E(W (t)|W (1) = 0) = 0;
and for 0 < s < t < 1,

E(B(s)B(t)) = E(W (s)W (t)|W (1) = 0)
= E(E(W (s)W (t)|W (t),W (1) = 0)|W (1) = 0)
by (5.7.4), the tower property,

= E(E(W (s)W (t)|W (t))|W (1) = 0)
by independence of the increments of W (t),

= E
(

s

t
W (t)2|W (1) = 0

)
by (6)

= s

t
t(1− t) by (7)

= s ∧ t − st.

Obviously, the Brownian Bridge cannot have independent increments because it is forced
to satisfy B(1) = 0. Nevertheless, it is a Markov process, as you can easily show by
verifying that its transition probabilities satisfy (9.6.1). �

In some ways, it is unsatisfying to have a process defined as a conditional version of
another, especially when the conditioning is on an event of probability zero. The following
result is therefore very useful.

(10) Lemma Let B∗(t) = W (t)− tW (1), 0 ≤ t ≤ 1. Then B∗(t) is also the Brownian
Bridge.

Proof B∗(t) has multivariate normal joint distributions because W (t) does; obviously,
B∗(t) has zero mean. Also, for s < t < 1,

cov (B∗(s), B∗(t)) = E(W (s)W (t)− sW (t)W (1)− tW (s)W (1)+ stW 2(1))
= s − st − st + st = s ∧ t − st

= cov(B(s), B(t)).

The proof is complete, when we recall from (8.10) that multinormal distributions are
determined by their first and second joint moments. �

Besides conditional processes, there are several other operations on the Wiener process
that have interesting and important results.
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(11) Example: Scaling For any constant c > 0, the process W ∗(t) = √cW ( t
c ) is also a

Wiener process.

Solution It is immediate that W ∗(t) is continuous, starts at zero, and has independent
normal increments because W (t) does.
Finally, we need only check the variance of an increment by calculating

var(W ∗(t)−W ∗(s)) = cE
[

W

(
t

c

)
−W

(
s

c

)]2
= c

(
t − s

c

)
= t − s.

Hence, W ∗(t) satisfies the conditions to be a Wiener process. �

(12) Example: Ornstein–Uhlenbeck Process This is obtained fromW (t) by another non-
linear scaling of time and size; thus,

U (t) = e−t W (e2t ).

This process has been used by physicists as a model for the velocity of a particle in a fluid
at time t . The joint distributions of U (t) are multivariate normal because those of W (t)
are. In particular, we have

EU (t) = 0
and

varU (t) = E[U (t)]2 = e−2tE(W (e+2t )2) = 1.
Also, for s, t > 0,

E(U (t)U (t + s)) = e−2t−sE[W (e2t )W (e2(t+s))] = e−s .

Hence,U (t) andU (t + s) have the standard bivariate normal density with correlation e−s ;
we can therefore write, if we want,

U (s + t) = e−sU (t)+
√
1− e−2s Z ,

where Z is a normal N (0, 1) random variable that is independent of U (t).
You can show that U (t) is a Markov process (exercise). �

(13) Example: Drifting Wiener Process This is obtained from the standard Wiener pro-
cess W (t) by setting

D(t) = σW (t)+ µt.

If σW (t) represents the position of a particle enjoyingBrownianmotion in some fluid, then
µt may be interpreted as a superimposed global motion of the fluid moving with constant
velocity µ. Alternatively, we may regard D(t) as the continuous limit of an asymmetric
simple random walk. �

(14) Example: Exponential (or Geometric) Wiener Process This is obtained from W (t)
by setting

Y (t) = exp(µt + σW (t)).
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Because this cannot be negative and log Y (t) has independent increments, it is popular as
a model for stock prices. It is also called geometric Brownian motion. �

(15) Example: Reflected Wiener Process This is obtained from W (t) by setting

Z (t) = |W (t)|.
It is interpreted as the Wiener process with a “reflecting barrier” at the origin. It can be
shown to be a Markov process, with density 2φt (z), giving

EZ (t) = (2t/π )1/2 and varZ (t) =
(
1− 2

π

)
t. �

(16) Example: Integrated Wiener Process This is obtained from W (t) by setting

V (t) =
∫ t

0
W (u) du.

Note that the integral exists becauseW (t) is continuous. The process V (t) has multivariate
normal joint distributions becauseW (t) does, but V (t) is not in this case aMarkov process.
Clearly, EV (t) = 0, and you can show that

varV (t) = 1

3
t3

and

cov(V (s), V (t)) = 1

2
s2(t − s/3), s ≤ t. �

We look at some even more interesting functions of the Wiener process shortly, but first
we turn aside to make some important remarks. In our earlier work on Markov processes,
the idea of the first passage time T of the process to some value was most important. This
is for two main reasons. First, such first passage times are often naturally important in
the real world that our processes describe. The second reason is that it is often useful to
condition some event or expectation on the value of T , thus yielding immediate results or
at least tractable equations for solution. These may be difference or differential or integral
equations, or combinations of these. The key to the success of this approach is that the
Markov property of the process is preserved at such first passage times, as we proved in
the discrete case in Example 9.3.17.
It is crucial to our success in studying the Wiener process that these properties remain

true; we summarize the basics here.

(17) Definition (a) The first passage time to b of the Wiener process W (t) is given by

Tb = inf{t : W (t) = b}.
(b) The first exit time from (a, b) of the Wiener process W (t) is given by

T = inf{t : W (t) �∈ (a, b)}, a < 0, b > 0.

Remark We may write T = Ta ∧ Tb, with an obvious notation. �
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(18) Definition Let S be a nonnegative random variable. If the event S ≤ t has probability
0 or 1, given W (s) for 0 ≤ s ≤ t , then S is called a stopping time (or Markov time) for
W (t). �

The two key properties (whose proofs we omit) are these:

(19) Lemma The first passage times Tb and T = Ta ∧ Tb are stopping times for W (t).

(20) Theorem:StrongMarkovProperty If S is a stopping time for the Wiener process
W (t), then W (S + t)−W (S), t ≥ 0, is a Wiener process independent of W (s), s ≤ S.

This last result says that the Markov property is preserved at Markov (or stopping)
times, and this fact is extremely important and useful. Probabilists have been exceptionally
inventive in exploiting the symmetry of theWiener process coupledwith the strongMarkov
property, but we have space for only some simple illustrative results about the maxima of
the Wiener process and the Brownian Bridge.

(21) Example: Maximum Let M(t) = max{W (s), 0 ≤ s ≤ t}. We note these two useful
points: first, for c > 0,

{M(t) ≥ c} ⊇ {W (t) ≥ c}.(22)

Second, for c > 0, denoting the first passage time to c by Tc,

{M(t) ≥ c} ≡ {Tc ≤ t},(23)

and after Tc the process has a symmetric distribution about c that is independent of
W (t), t ≤ Tc.
Therefore,

P(W (t) ≤ c|M(t) ≥ c) = P(W (t) ≥ c|M(t) ≥ c)
= P({W (t) ≥ c} ∩ {M(t) ≥ c})/P(M(t) ≥ c)
= P(W (t) ≥ c)/P(M(t) ≥ c), using (22).

Hence,

1 = P(W (t) ≤ c|M(t) ≥ c)+ P(W (t) ≥ c|M(t) ≥ c)
= 2P(W (t) ≥ c)/P(M(t) ≥ c)

and so

P(M(t) ≥ c) = 2P(W (t) ≥ c)
= P(|W (t)| ≥ c)

=
√
2

π t

∫ ∞

c
exp(−1

2

w2

t
) dw.
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It follows that M has the density

fM (x) =
√
2

π t
exp

(
− x2

2t

)
, x ≥ 0.(24) �

(25) Corollary: First passage Because {Tc ≤ t} ≡ {M(t) ≥ c} it is immediate by setting
w = c(t/v)

1
2 in the integral and differentiating for t that

fTc (t) =
|c|

(2π t3)1/2
exp{−c2

2t
}, t ≥ 0. �

We can use much the same idea on the Brownian bridge.

(26) Example If B(t) is a Brownian Bridge, 0 ≤ t ≤ 1, show that for c > 0

P(max
0<t<1

B(t) > c) = e−2c2 .

Solution Once again, we use the fact that after Tc, theWiener process is symmetrically
distributed about c, and independent of the process before Tc. Hence,

P(Tc < 1; 0 ≤ W (1) < ε) = P(Tc < 1, 2c − ε < W (1) ≤ 2c)

= P(2c − ε < W (1) ≤ 2c)

= 1√
2π

e−2c2ε + o(ε)

But, by definition of B(t), for 0 ≤ t ≤ 1,
P(max B(t) > c) = lim

ε→0
P(Tc < 1|0 ≤ W (1) ≤ ε)

= lim
ε→0

P(Tc < 1; 0 ≤ W (1) < ε)/P(0 ≤ W (1) ≤ ε)

= lim
ε→0

{
1√
2π

e−2c2ε + o(ε)

}
/{φ(0)ε + o(ε)} = e−2c2 . �

Remark The above technique, in which we combined the symmetry of the Wiener
process with the Markov property at Tc, is called the reflection principle. This name is
used because one can display a geometric visualization by taking the segment of a relevant
path of the process after Tc, and reflecting it in the line y = c.
We proved this for the simple random walk in Lemma 5.6.19 and used it in the Hitting

Time Theorem 5.6.17. You can envisage the same idea for the Wiener process by drawing
a much spikier version of Figure 5.2. However, the proof in this case is beyond our scope.
Next, recall that earlier in this sectionwe introduced several functions of theWiener pro-

cess, of various types. It turns out that functions of theWiener process that are martingales
turn out to be particularly useful.

(27) Theorem If W (t) is a standard Wiener process, the following are martingales.

(a) W(t).
(b) Q(t) = {W (t)}2 − t.
(c) Z (t) = exp(aW (t)− a2t/2), a ∈ R.
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Proof Because W (t) = W (s)+ [W (t)−W (s)] and W (t) has independent increments:

(a)

E(W (t)|W (u), 0 ≤ u ≤ s) = E(W (s)+W (t)−W (s)|W (u), 0 ≤ u ≤ s)
= W (s).

(b) See Example (9.2.3).
(c)

E{exp(aW (s) + aW (t)− aW (s))|W (u), 0 ≤ u ≤ s} = eaW (s) exp(+1
2

a2(t − s)),

because a(W (t)−W (s)) is N (0, a2(t − s)). The result follows.

For some applications, see Examples 9.22 and 9.23. �

Remark There is a remarkable converse to this theorem. If X (t) is a continuous
process with X (0) = 0 such that X (t) and X2(t)− t are both martingales, then X (t) is the
Wiener process. We omit the proof.
In fact, the existence of the third of the above martingales is particularly important. It

asserts that

E exp
(
θW (t)− 1

2
θ2t |W (u), 0 ≤ u ≤ s

)
= exp

(
θW (s)− 1

2
θ2s

)
.(28)

If we differentiate (28) with respect to θ and then set θ = 0, we find that

E(W (t)|W (u), 0 ≤ u ≤ s) = W (s),

which is simply the statement that W (t) is a martingale. Differentiating (28) repeatedly
with respect to θ , and then setting θ = 0 at the appropriate moment, suggests that all the
following (and many more) are martingales:

W (t)2 − t(29)

W (t)3 − 3tW (t)(30)

W (t)4 − 6tW (t)2 + 3t2.(31)

These can all be verified to bemartingales just as we did in Theorem (27), but for the higher
order functions of W (t) it is a relief to know that the formal operation of differentiating
with respect to θ and setting θ = 0 can be proved to yield these martingales.
Just as we found in Chapter 8, suchmartingales are particularly useful when takenwith a

stopping time T . Because we are working with continuous martingales having continuous
parameter, there are many technical considerations. We omit all the details and simply
state the useful.
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(32) Theorem: Optional Stopping Let M(t) be a continuous martingale for t ≥ 0.
Suppose T is a stopping time for M(t) such that P(T <∞) = 1. Then M(t ∧ T ) is
also a martingale; further, EM(T ) = EM(0) if any of the following hold for some
constant K :

(a) |M(t)| ≤ K <∞, for t ≤ T .
(b) E supt |M(T ∧ t)| ≤ K <∞.
(c) E M(T ) ≤ K <∞, and

lim
t→∞E(M(t)I (T > t)) = 0.

(d) T ≤ K <∞.

We give several applications later; here is one simple basic corollary.

(33) Example: Exiting a Strip Let T be the time at which W (t) first hits a or b, where
a < 0 and b > 0. Show that

P(W (T ) = a) = b

b − a
, P(W (T ) = b) = − a

b − a
.

Solution We have that W (t) is a martingale, and |W (t)| ≤ a ∨ b = max{a, b}. It is
easy to see that P(T <∞) = 1, and so by the first form of the optional stopping theorem

0 = EW (T ) = aP(W (T ) = a)+ bP(W (T ) = b).(34)

Now using P(T <∞) = 1, we have
1 = P(W (T ) = a)+ P(W (T ) = b),(35)

and solving (34) and (35) gives the result. �

We conclude this section with a brief look at another important application of martin-
gales and the Wiener process.

(36) Example: The Option-Pricing Martingale A popular model for a simple market
comprises two available assets: a bond whose value B(t) grows at a continuously com-
pounded constant interest rate r , so that B(t) = B(0)ert , and a stock whose price per unit
is some suitable random process S(t). The model assumes that no dividends taxes or com-
missions are paid; you may buy negative amounts of stock, which is called “selling short”
and may lead to a “short position.”
In 1900, Bachelier suggested the Wiener process as a model for S(t), but this has the

drawback that it may be negative, which stock prices never are. More recently, it has been
standard to assume that S(t) follows a geometric Brownian motion, which is to say that
for some constants µ and σ 2,

S(t) = exp{(µt + σW (t)},
where W (t) is the standard Wiener process.



448 9 Markov Chains

In many practical situations, to reduce uncertainty and risk, it is desirable to acquire an
option to purchase stock at some time T in the future. One simple and popular type is the
European call option. This confers the right (but not the obligation) to buy a unit of stock
at time T (the exercise date) at cost K (the strike price). Clearly, the value of this option
at time T is

V (T ) = (S(T )− K )+ = max{S(T )− K , 0}.
The key question is, what is the fair price V (t) for this option at any other time t , where

0 ≤ t < T ?
An answer to this question is suggested by our interpretation of a martingale as a fair

game. The point is that because you can always invest in the bond with interest rate r , the
future value of the stock at time t must be discounted now by e−r t .
That is to say, suppose at time 0 you intend to buy a unit of stock at time s and sell

it at time t > s. The present discounted value of the purchase is e−rs S(s), the present
discounted value of the sale is e−r t S(t). If this is to be a “fair game,” then the expected
value of the sale should equal the purchase price so that the expectation E0 taken with
respect to the pay-off odds of this “fair game” must satisfy

E0(e
−r t S(t)|S(u); 0 ≤ u ≤ s) = e−rs S(s).(37)

That is to say, e−r t S(t) is a martingale. It turns out that if we set µ = r − σ 2/2, then
e−r t S(t) is indeed a martingale. It can further be shown also that e−r t V (t) is a martingale
with respect to these same pay-off odds, and then it follows that the fair price of the option
at t = 0 is

v = E0[e
−rT (S(T )− K )+],(38)

where the expectation E0 is taken according to the pay-off odds fixed in (37).
See Example 9.26 for more details. Note that the heuristic argument above can indeed

be made rigorous, but the details are well beyond our scope here. �

It sometimes happens that students seeing the valuation (38) for the first time find it a
little counterintuitive, because the expected value on the right side is taken with respect to
the pay-off odds satisfying (37), not with respect to the “real” probability distribution of
the process S(t).
The following analogy, metaphor, or parable is often useful in reorienting such misdi-

rected intuition.

(39) Example: The Bookmaker Suppose a bookie is setting the pay-off odds (making a
book) for a two-horse race. As it happens, these horses (A and B) are identical twins, their
record in 1000 head-to-head races is 500 wins each, and they have just run shoulder to
shoulder in training. A priori, the probability of A winning is P(A) = 1

2 . But the market
(the gamblers) has laid $5000 on A to win and $10, 000 on B to win.
If the bookie sets the pay-off odds to be evens (the same as the a priori probabilities),

then she loses $5000 if B wins. Of course, she gains $5000 if A wins, and the a priori
expectation of her outcome is 1

25000− 1
25000 = 0, which is “fair.” But if the bookie

wanted to take risks, she could simply gamble, and this is not why she is a bookie.
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In fact, suppose she sets the pay-off odds on A to be 2 : 1, and those on B to be 1 : 2.
Then whatever the outcome of the race, she is all square, which makes it a “fair game.”
These pay-off odds correspond to a probability distribution

P0(A) = 1

3
; P0(B) = 2

3
,

which is different from the empirical a priori distribution. (In practice, of course, she
would shorten all the pay-off odds to guarantee a profit or arbitrage.)
But the point for the price of the option is clear; it is determined by the fair pay-off

odds arising from actual market opportunities, not from any theoretical a priori valuation
of the stocks. �

9.10 Review and Checklist for Chapter 9

The intuitive idea of a Markov process is that conditional on its present state, the future is
independent of the past. We make this idea precise for Markov processes in discrete and
continuous time. For those with discrete state space, we derive the Chapman–Kolmogorov
equations and use them to examine the evolution of the chain over time. We consider first
passage times and recurrence times, and examine the link to stationary distributions. Then
we discuss the link between stationary distributions and the possible long-run behaviour of
the chain.We consider Poisson and birth processes, in particular. Finallywe turn toMarkov
processes, with a continuous state space, that do not have jump transitions. The first and
classic example of such a process is the Wiener process model for Brownian motion. We
examine many of its properties, with a brief glance at other diffusion processes derived
from the Wiener process. Martingales derived from the Wiener process turn out to be
especially useful.

Synopsis of Notation and Formulae

For a discrete time-homogeneous Markov chain Xn , we have
The transition probabilities: pi j = P(Xn+1 = j |Xn = i)
The m-step transition probabilities: pi j (m) = P(Xn+m = j |Xn = i)
The Chapman–Kolmogorov equations:

pik(m + n) =
∑
j∈S

pi j (m)p jk(n).

The first passage time from i to k �= i is Tik , with mean first passage time µik = ETik .
The recurrence time of i is Ti = min{n > 0 : Xn = i |X0 = i], with mean recurrence

time µi = ETi . If µi <∞, then i is nonnull.
A stationary measure is a nonnegative solution (xi ; i ∈ S) of

xk =
∑
i∈S

xi pik .

A stationary distribution is a stationary measure xi such that
∑
i∈S

xi = 1.
In this case, we write xi = πi .
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A chain is regular if pi j (n0) > 0 for all i, j , and some n0 <∞. For a finite state space
regular chain,

� There is a unique stationary distribution π .
� πiµi = 1 for all i ∈ S.
� For all pairs i, j , as n →∞, pi j (n)→ π j = µ−1j .

If the chain is not regular or has infinite state space, a wider range of behaviour is possible.
For a Markov chain Xt with continuous parameter, we have

The transition probabilities: pi j (t) = P(Xs+t = j |Xs = i).
The Chapman–Kolmogorov equations:

pik(s + t) =
∑
j∈S

pi j (s)p jk(t).

The first passage time from i to k �= i is

Tik = inf {t ≥ 0 : Xt = k|X0 = i},
with mean first passage time µik = ETik .
A stationary measure is a nonnegative solution (xi ; i ∈ S) of

xk =
∑

i

xi pik(t).

A stationary distribution is a stationary measure such that
∑

i xi = 1. In this case, we
write xi = πi .
For a finite state space chain with pi j (t) > 0 for all i, j ,

� There is a unique stationary distribution π .
� For all pairs i, j as t →∞, pi j (t)→ π j .

If the chain is not irreducible or has infinite state space, a much wider range of behaviour
is possible.

Checklist of Terms

9.1 Markov property
Markov chain
imbedding

9.2 transition matrix
doubly stochastic matrix
Chapman–Kolmogorov
n-step transition probabilities
regular chain
irreducible
aperiodic
absorbing state

9.3 mean first passage time, mean recurrence time
Markov property at first passage times
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9.4 Stationary distribution
9.5 limiting distribution

coupling
transient
persistent
null

9.6 Chapman–Kolmogorov equations
9.7 Poisson process

birth process
9.8 forward equations

stationary distribution
9.9 Wiener process

Brownian bridge
Ornstein–Uhlenbeck process
drift
reflection
geometric Wiener process
martingales
optional stopping
option pricing
strong Markov property

WORKED EXAMPLES AND EXERCISES

9.11 Example: Crossing a Cube

One vertex O of a unit cube is at the origin (0, 0, 0). The others are at (0, 0, 1), (0, 1, 0)
and so on. A particle performs a randomwalk on the vertices of this cube as follows. Steps
are of unit length, and from any vertex it steps in the x direction with probability α, the y
direction with probability β or the z direction with probability γ , where α + β + γ = 1.
(a) Let T be the first passage time from O to V . Find E(sT ), and deduce that

E(T ) = 1+ 1

α
+ 1

β
+ 1

γ
.

(b) Let X be the number of visits that the walk makes to V before the first return to O .
Show that E(X ) = 1.

Solution The walk visits O whenever an even number of steps has been taken in all
three possible directions (x, y, and z directions). Thus,

u(2n)=P (thewalk visits O at the 2nth step)=
∑

i+ j+k=n

α2iβ2 jγ 2k (2n)!

(2i)!(2 j)!(2k)!
.
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Now write β + γ − α = a, α + γ − β = b, and α + β − γ = c. It is easy to check, by
expanding each side, that

4u(2n) = (α + β + γ )2n + (β + γ − α)2n + (α + γ − β)2n + (α + β − γ )2n

= 1+ a2n + b2n + c2n.

Hence,

U (s) =
∞∑

n=0
s2nu(2n) = 1

4

(
1

1− s2
+ 1

1− a2s2
+ 1

1− b2s2
+ 1

1− c2s2

)
.

Similarly, starting from O , the walk visits V whenever an odd number of steps has been
taken in all three possible directions. Hence,

uV (2n + 1) = P(the walk visits V at the (2n + 1)th step)
=

∑
i+ j+k=n−1

α2i+1β2 j+1γ 2k+1 (2n + 1)!
(2i + 1)!(2 j + 1)!(2k + 1)! .

Now it is easy to check as above that 4uV (2n + 1) = 1− a2n+1 − b2n+1 − c2n+1.

Hence,

UV (s)=
∞∑

n=1
uV (2n+ 1)s2n+1= s3

4

(
1

1− s2
− a3

1− a2s2
− b3

1− b2s2
− c3

1− c2s2

)
.

Now we use (9.3.21) to see that

E(sT ) = UV (s)

U (s)
.

Hence, evaluating d
dsE(s

T ) at s = 1 yields E(T ) = 1+ α−1 + β−1 + γ−1, as required.
(b) Let ρ be the probability that the walk returns to O before ever visiting V . By

symmetry, this is also the probability that a walk started at V never visits O before
returning to V . For X = k, it is necessary for the walk to reach V before revisiting O , then
revisit V on k − 1 occasions without visiting O , and finally return to O with no further
visit to V . Hence, P(X = k) = (1− ρ)ρk−1(1− ρ), by the Markov property. Therefore,

E(X ) =
∞∑

k=1
kρk−1(1− ρ)2 = 1.

(1) Exercise Suppose that at every step the walk may remain at its current vertex with probability
δ, where now α + β + γ + δ = 1. Find:
(a) The mean recurrence time of O; (b) E(X ); (c) E(T ).

(2) Exercise Let W be the vertex (1, 1, 0), and define T̂ to be the number of steps until the walk
first visits V or W starting from O . (That is to say, T̂ is the first passage time from O to {V , W}.)
Show that E(T̂ ) = (α−1 + β−1)γ .
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9.12 Example: Reversible Chains

A collection of random variables (X (n); n ∈ Z) is called reversible if (X (n1),
X (n2), . . . , X (nr )) has the same distribution as (X (m − n1), X (m − n2), . . . , X (m − nr ))
for all m and n1 < n2 < . . . < nr . Let X be an irreducible nonnull recurrent aperiodic
Markov chain.

(a) Prove that the Markov chain X with transition probabilities pi j is reversible if and
only if it is stationary and there exist (πi ; i ∈ S) such that for all i , j ∈ S

πi > 0,(1) ∑
i∈S

πi = 1,(2)

πi pi j = π j p ji .(3)

(b) Prove further that if X is stationary then it is reversible if and only if

pi1i2 pi2i3 . . . pir i1 = pi1ir pir ir−1 . . . pi2i1(4)

for any finite sequence of states i1, i2, . . . , ir in S.

Solution (a) The truth of (1), (2), and (3) implies that πi is the stationary distribution
of X , for summing (3) over j yields

∑
iπi pi j = π j , as required.

Next we note that (3) implies

πi pi j (n) = π j p ji (n).(5)

To see this, consider any n-step path from i to j , and then using (3) gives

πi pii1 pi1i2 . . . pin−1 j = pi1iπi1 pi1i2 . . . pin−1 j = pi1i pi2i1 . . . p jin−1π j

after repeated applications of (3). Now summing over all paths from i to j gives (5).
Now applying (5) shows that

P(Xn1 = i1, Xn2 = i2, . . . , Xnr = ir ) = πi1 pi1i2 (n2 − n1) . . . pir−1ir (nr − nr−1)
= P(Xm−n1 = i1, . . . , Xm−nr = ir ),

as required. The converse is obvious, and so we have finished (a).
(b) If the chain is reversible then (3) holds. Hence,

pi1i2 . . . pir i1 =
πi2

πi1

pi2i1 . . .
πi1

πir

pi1ir ,

which is (4) because all theπi cancel successively. Conversely, if (4) holds, wemay choose
two states i1 and ir (say) as fixed and equal, so i1 = ir = j . Then summing (4) over the
remaining indices yields

pi j (r − 1)p ji = p ji (r − 1)pi j .

Now, as the chain is aperiodic and nonnull recurrent, we can let r →∞ and obtain (3),
as required.
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Remark Equations (3) are called the detailed balance equations. This example is
important because a remarkable number of Markov chains are reversible in equilibrium
(particularly those encountered in examinations). In the exercises, you may assume that
X is aperiodic and irreducible.

(6) Exercise Let (Xn ; n ∈ Z) be a Markov chain, and let Yn = X−n be the chain X reversed. Show
that for n1 < n2 < . . . < nr

P(Ynr = k|Yn1 , . . . , Ynr−1 ) = P(Ynr = k|Ynr−1 ).

Show that if X has stationary distribution π and transition probabilities P, then, in equi-
librium, Y is a Markov chain with transition probabilities qi j = π jπ

−1
i p ji .

(7) Exercise 6 Continued Let X be a Markov chain, with transition probabilities pi j . Show that if
there exists a stochastic matrix (qi j ) and a mass function (πi ) such that πi qi j = π j p ji , then qi j is
the transition matrix of X reversed and πi is its stationary distribution.

(8) Exercise Let Xn be a Markov chain on the nonnegative integers with transition matrix

pi j =


λi if j = i + 1 > 0
µi if j = i − 1 ≥ 0
0 otherwise

p00 = µ0.

Show that X is reversible in equilibrium. Deduce that X has a stationary distribution if
and only if

∑∞
n=1

∏n
k=1

λk−1
µk

<∞.
(9) Exercise Let Xn and Yn be independent reversible Markov chains with stationary distributions

π and ν, respectively. Let Zn = (Xn, Yn). Show that Zn is reversible in equilibrium.

9.13 Example: Diffusion Models

(a) Two separate containers together containm distinguishable particles. At integer times,
t = 1, 2, . . . one of the particles is selected at random and transferred to the other
container. Let Xn be the number of particles in the first container after the nth transfer.
(i) Show that (Xn; n ≥ 0) is a Markov chain and write down its transition matrix.
(ii) Find the stationary distribution of X .

(b) The two containers C1 and C2 are now separated by a semipermeable membrane. At
each time t , a particle is selected at random; if it is in C1, then it is transferred with
probability α; if it is in C2, then it is transferred with probability β. Otherwise, the
particles remain where they are. Show that X has stationary distribution

πi = αm−iβ i

(α + β)m
(

m

i

)
.(1)

Solution (a) Given X0, . . . , Xn = j , the probability that a particle in C1 is selected
for transfer is j/m, and the probability that a particle in C2 is selected for transfer is
(m − j)/m. Hence, X is a Markov chain and

p j, j+1 = (m − j)/m,

p j, j−1 = j/m,

p jk = 0 when |k − j | �= 1.
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The chain is of the type considered in Exercise 9.12.8. Therefore, the chain is reversible
and the stationary distribution may be obtained by solving πi pi j = π j p ji . Thus,

πi+1 = πi pi,i+1/pi+1,i = πi (m − i)/(i + 1) = π0

(
m

i + 1
)

on iterating.

Because
∑m

0 πi = 1, it follows that

π−10 =
m∑

i=0

(
m

i

)
= 2m

and so πi = (m
i )2

−m . This is a symmetric binomial distribution.
(b) By the same reasoning as given in (a), this is a Markov chain with

pi,i+1 = β(m − i)/m

pi,i−1 = αi/m

pii = 1− αi/m − β(m − i)/m

pi j = 0 when |i − j | > 1.
Again, this is reversible, so the stationary distribution is given by

πi+1 = πi pi,i+1/pi+1,i = πiβ(m − i)/(α(i + 1))(2)

= π0

(
β

α

)i+1( m

i + 1
)

on iterating.(3)

Now requiring
∑
πi = 1 yields

πi = αm−iβ i

(α + β)m
(

m

i

)
,

which is an asymmetric binomial distribution.

Remark This is the Ehrenfest model for diffusion (and heat transfer) (1907).

(4) Exercise Is it true that as n →∞, pi j (n)→ π j in either case (a) or case (b)?
(5) Exercise (a) Show that E(Xn) = (1− 2

m )
n
(
E(X0)− m

2

)+ m
2 , when α = β = 1.

(b) What is E(Xn) when α �= 1 �= β?
(6) Exercise: Bernoulli Diffusion Model Two adjacent containers C1 and C2 each contain m

particles. Of these 2m particles, m are of type A and m are of type B. At t = 1, 2, . . . one particle
is selected at random from each container, and these two particles are each transferred to the other
container. Let Xn be the number of type A particles in C1.
(a) Show that X is a Markov chain and write down its transition matrix.
(b) Find the stationary distribution.
(c) Is the stationary distribution the limiting distribution of X?

(7) Exercise In the above exercise, suppose that the containers are separated by a semipermeable
membrane. In this case, if particles of different types are chosen they are exchanged with probability
α if the type A particle is inC1, or with probabilityβ if the type A particle is inC2. Find the stationary
distribution of X .
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9.14 Example: The Renewal Chains

Let ( fn; n ≥ 1) satisfy fn ≥ 0 and
n∑

i=1
fi ≤ 1.(1)

Define a sequence (un; n ≥ 0) by u0 = 1 and

un =
n∑

r=1
fr un−r ; n ≥ 1.(2)

Such a sequence (un; n ≥ 0) is called a renewal sequence.

(a) Show that (un; n ≥ 0) is a renewal sequence if and only if there is a Markov chain Un

such that for some state s ∈ S,

un = P(Un = s|U0 = s).

(b) Let X be a random variable having the probability mass function ( fn; n ≥ 1). Show
that the chain U is recurrent if

∑
n fn = 1 and nonnull if E(X ) <∞.

(c) Explain why un is called a renewal sequence.

Solution (a) Let un and fn be as defined above. Define the sequence (Fn; n ≥ 0) by
F0 = 0 and

Fn =
n∑

r=1
fr ; n ≥ 1.

Next, let (Un; n ≥ 0) be a Markov chain taking values in the nonnegative integers, with
U0 = 0, and having transition probabilities

pi0 = fi+1
1− Fi

(3)

pi,i+1 = 1− pi0 = 1− Fi+1
1− Fi

; i ≥ 0.(4)

Now let us calculate the first return probability f00(n), that is the probability that the chain
first returns to 0 at the nth step. At each stage, the chain either does so return or increases
by 1. Hence,

f00(n) = p01 p12 . . . pn−2,n−1 pn−1,0(5)

= 1− F1
1− F0

·1− F2
1− F1

· · ·1− Fn−1
1− Fn−2

· fn

1− Fn−1
= fn.

It follows by conditional probability and the Markov property that

P(Un = 0) =
n∑

r=1
f00(r )P(Un−r = 0) =

n∑
r=1

frP(Un−r = 0).(6)
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Because P(U0 = 0) = 1, it follows by comparison with (2) that un = P(Un = 0|U0 = 0),
as required.
(b) First, observe that if Fj = 1 for some j <∞, then the chain is finite. Obviously,

in this case, E(X ) <∞ and the chain is recurrent and nonnull. Otherwise, if
∑

fi = 1,
then

∑
n f00(n) = 1 by (5), and hence the chain is recurrent. Because it is irreducible we

can settle whether it is nonnull by seeking a stationary distribution π. Any such stationary
distribution satisfies

πi+1 = πi pi,i+1; i ≥ 0
= πi

1− Fi+1
1− Fi

= π0(1− Fi+1) on iterating.

Hence, π is a stationary distribution satisfying
∑

i πi = 1 if
∑

i (1− Fi ) <∞. That is
to say, U is nonnull if E(X ) <∞, and then

πi = 1− Fi

E(X )
= P(X > i)

E(X )
.(7)

(c) Recall the recurrent event or renewal processes defined in Section 6.7. Events may
occur at integer times and the intervals between successive events are independent and
identically distributed random variables (Xi ; i ≥ 1), where fX (r ) = fr . An event occurs
at n = 0. Now the construction of the chainU in (3) and (4) allows us to identify visits of
U to zero with the occurrence of an event in this renewal process. At any time n, the state
Un of the chain is just the time elapsed since the most recent event of the renewal process.
Thus, Un is the current life (or age) of the renewal process at time n.
Finally, un is just the probability that an event of the renewal process occurs at time n.

(8) Exercise Show that if un and vn are renewal sequences, then unvn is a renewal sequence.
(9) Exercise Show that if un is a renewal sequence, then (und ; u ≥ 0) is a renewal sequence for any

fixed d.
(10) Exercise Let (Xi ; i ≥ 1) be the interevent times of a discrete renewal process, and at any time

n let Bn be the time until the next following event of the process. (That is, Bn is the excess life or
balance of life.) Show that Bn is a Markov chain, and find the stationary distribution when it exists.

(11) Exercise Write down the transition probabilities of the chain Un reversed in equilibrium, and
also write down the transition probabilities of Bn reversed in equilibrium. Explain your answers.
(Hint: Use Exercise 9.11.6.)

(12) Exercise Use Theorem 9.6.5 to show that limn→∞ un = π0.

(13) Exercise Recall the recurrent event (renewal) processes of Section 6.7. Use (12) to show that
as n →∞, un → 1

E(X2)
and vn → 1

E(X2)
.

9.15 Example: Persistence

Let i and j be states of the Markov chain X . We write i → j if there exists n <∞ such
that pi j (n) > 0. Let Vi j be the number of occasions on which X visits j , given that initially
X0 = i . Define

ηi j = P(Vi j = ∞),
and recall that Ti j is the first passage time from i to j .
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(a) Show that

ηi i =
{
1 if i is persistent
0 if i is transient.

(b) Show that

ηi j =
{
P(Ti j <∞) if j is persistent
0 if j is transient.

(c) Show that if i → j and i is persistent then ηi j = η j i = 1.

Solution (a) First note that Vii ≥ 1 if and only if Ti <∞, so P(Vii ≥ 1) = P(Ti <∞).
Next,

P(Vii ≥ 2) = P(Vii ≥ 2|Vii ≥ 1)P(Vii ≥ 1) = P(Vii ≥ 2|Ti <∞)P(Vii ≥ 1).

However, we have shown in Example 9.3.17 that the Markov property is preserved at Ti

when it is finite, and therefore P(Vii ≥ 2|Ti <∞) = P(Vii ≥ 1).
Now an obvious induction shows that

P(Vii ≥ n) = (P(Vii ≥ 1))n = (P(Ti <∞))n →
{
1 if P (Ti <∞) = 1
0 if P (Ti <∞) < 1 ,

as n →∞, as required.
(b) Using the same idea as in (a), we write

P(Vi j ≥ m) = P(Vi j ≥ m|Vi j ≥ 1)P(Vi j ≥ 1)
= P(Vi j ≥ m|Ti j <∞)P(Ti j <∞) = P(Vj j ≥ m − 1)P(Ti j <∞)

because the Markov property is preserved at Ti j . Now allowing m →∞ gives the result,
by (a).
(c) Because i is persistent

1 = P(Vii = ∞) = P({Vi j = 0} ∩ {Vii = ∞})+ P({Vi j > 0} ∩ {Vii = ∞})
≤ P(Vi j = 0)+ P({Ti j <∞} ∩ {Vii = ∞})
= 1− P(Ti j <∞)+ P(Ti j <∞)P(Vji = ∞)

because the Markov property is preserved at Ti j .
Hence, P(Vji = ∞) ≥ 1, and therefore η j i = 1. Hence, P(Ti j <∞) = 1 and so j → i .

It follows that ηi j = 1.

(1) Exercise Show that if i is persistent and i → j , then j is persistent.
(2) Exercise Show that ηi j = 1 if and only if P(Ti j <∞) = P(Tj <∞) = 1.
(3) Exercise Show that if i → j and j → i , then i and j have the same class and period.
(4) Exercise Show that if X is irreducible and persistent, then P(Ti j <∞) = P(Tji <∞) = 1.
(5) Exercise Show that if i → j but j �→ i , then i is transient.
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9.16 Example: First Passages and Bernoulli Patterns

Let X be a finite Markov chain with n-step transition probabilities pi j (n). As usual, Ti j is
the first passage time from i to j , with mean µi j ; Tj is the recurrence time of j with mean
µ j . We write Fi j (s) = E(sTi j ), and Pi j (s) =

∑∞
n=0 pi j (n)sn.

(a) A biased coin is tossed repeatedly, let Xn be the outcome of tosses n + 1, n + 2, and
n + 3; for n ≥ 0. [Thus, (Xn; n ≥ 0) is a Markov chain with state space S comprising
all triples using H and T , namely, H H H , H T H , H H T , and so on.] Show that for
any i and j ∈ S,

µi j = [1+ p j j (1)+ p j j (2)− pi j (1)− pi j (2)]µ j .(1)

Deduce that if i = H H H , j = T H T , and the coin is fair, thenµi j = 10 andµ j i = 14.
(b) Let D be a given subset of the states of a finite Markov chain (Yn; n ≥ 0), and let Ts D

be the first passage time from the state s /∈ D into D, with mean µs D = E(Ts D). Also,
let φs j be the probability that the chain first enters D at the state j . Show that for i ∈ D

µsi = µs D +
∑
j∈D

φs jµ j i .(2)

(c) Hence, show that in an unlimited sequence of tosses of a fair coin, the probability that
the consecutive sequence T H T occurs before H H H is 7

12 .

Solution (a) From Theorem 6.2.13, we have that

µi j = lim
s↑1

1− Fi j (s)

1− s
= lim

s↑1
Pj j (s)− Pi j (s)

(1− s)Pj j (s)
by Theorem 9.3.20.(3)

Now because tosses of the coin are independent, we have

pi j (n) = p j j (n) for n ≥ 3.(4)

Also, using Theorems 6.2.13 and 9.3.20 again gives

lim
s↑1
(1− s)Pj j (s) = µ−1j ,(5)

and now (3), (4), and (5) give (1).
If the chance of a head is p, then pi j (1) = pi j (2) = p j j (1) = 0 and p j j (2) = p(1− p).

Hence,

µi j = [1+ p(1− p)]µ j .

When the coin is fair p = 1
2 and µ j = 8, so µi j = 10. Likewise, p ji (1) = p ji (2) = 0 and

pii (1) = p, pii (2) = p2. Hence, when the coin is fair,

µ j i =
(
1+ 1

2
+ 1

4

)
8 = 14.
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(b) Let D j denote the event that the chain first enters D at j . Then

µsi = E(Tsi ) = E(Tsi − Ts D + Ts D) = E(Tsi − Ts D)+ µs D(6)
=

∑
j∈D

E(Tsi − Tsj |D j )φs j + µs D.

However, given D j , the chain continues its journey to i independently of the past, that
is to say,

E(Tsi − Tsj |D j ) = µ j i .(7)

Substituting (7) into (6) gives (2).
(c) Now let the outcomes of successive tosses be (Sn; n ≥ 1) and define the Markov

chain (Yn; n ≥ 0) by
Y0 = φ = s

Y1 = S1
Y2 = S1S2
Yn = Sn−2Sn−1Sn; n ≥ 3.

Thus, on the third step, the chain enters the closed irreducible subset of sequences of
length 3. Setting H H H ≡ 1, T H T ≡ 2, so D = {H H H, T H T } = {1, 2}, we have from
(2) that

φs1 = µs2 + µ21 − µs1

µ12 + µ21 .

Nowwe showed in Example 6.15 thatµs1 = 14 andµs2 = 10. Also, in (b), we established
that µ12 = 10 and µ21 = 14. Hence

φs1 = 10+ 14− 14
10+ 14 = 5

12

and φs2 = 7
12 is the probability that T H T occurs before H H H .

(8) Exercise Show that for a fair coin the expected number of tosses to obtain H H H after H T H
is 12, and the expected number required to obtain H T H after H H H is 8.

(9) Exercise Show that the probability that H H H is observed before H T H is 3
10 .

(10) Exercise Show that the probability that T T H is observed before H H H is 7
10 .

(11) Exercise A fairground showman offers to play the following game. On payment of an entry
fee of £1, a customer names a possible outcome of a sequence of 3 coin tosses; the showman
then names another possible outcome, and a fair coin is tossed repeatedly until one of the named
sequences is obtained in three successive throws. The player who named that sequence wins.
(i) Show that the probability that T H H beats H H H is 78 .

(ii) Show that the probability that T T H beats T H H is 23 .

(iii) Show that the probability that T T H beats T H T is 78 .

(iv) Show that the probability that H T T beats T T H is 23 .
(v) If the showman wants to make on average 30 p per game, what prize money should he offer:

(a) if customers choose sequences at random?
(b) if customers make the best possible choice?

Remark This game was named Penney–Ante by W. Penney in 1969.
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9.17 Example: Poisson Processes

Let X (t) be a Markov process taking values in the nonnegative integers; suppose that X (t)
is nondecreasing, with X (0) = 0. Suppose that as h → 0 the transition rates satisfy

P(X (t + h) = i + 1|X (t) = i) = λ(t)h + o(h)
P(X (t + h) = i |X (t) = i) = 1− λ(t)h + o(h),

so that X (t) changes its value by jumps of size one. Denote the times at which X (t)
jumps by T1, T2, T3, . . . .

(a) Show that for fixed t , X (t) has a Poisson mass function with parameter "(t) =∫ t
0 λ(u) du. Hence, find the density of T1, the time of the first jump.

(b) Find the joint density of T1 and T2; hence, find the conditional density of T1 given T2.

Remark X (t) is called a nonhomogeneous Poisson process with intensity (or rate)
function λ(t).

Solution (a) Let pn(t) = P(X (t) = n). Then, by conditional probability,

pn(t + h) = pn(t)(1− λ(t)h)+ pn−1(t)λ(t)h + o(h).

Hence, we obtain the forward equations in the usual manner as

dpn(t)

dt
= −λ(t)pn(t)+ λ(t)pn−1(t); n ≥ 0,(1)

where p−1(t) = 0. Setting G(z, t) =∑∞
0 zn pn(t), we find using (1) that

∂G

∂t
= +λ(t)(z − 1)G.(2)

Because X (0) = 0, we have G(z, 0) = 1, and so, by inspection, (2) has solution

G(z, t) = exp
(
(z − 1)

∫ t

0
λ(u) du

)
.(3)

This of course is the p.g.f. of the Poisson distribution with parameter "(t), as required.
Now we note that

P(T1 > t) = P(X (t) = 0) = G(0, t) = exp(−"(t)).
(b) From (2) and (3), we can now see that for w > t ,

E(zX (w)|X (t)) = zX (t) exp

{
(z − 1)

∫ w

t
λ(u) du

}
,

and

E{yX (t)zX (w)−X (t)} = E(yX (t))E(zX (w)−X (t)).
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It follows that this nonhomogeneous Poisson process also has independent increments.
Now

P(T1 > t, T2 > w) = P(X (w) ∈ {0, 1}, X (t) = 0)
= P(X (t) = 0)P(X (w)− X (t) ≤ 1)

by the independence of increments
= e−"(t)[e−("(w)−"(t))(1+"(w)−"(t))].

Hence, differentiating, T1 and T2 have joint density

f (t, w) = λ(t)λ(w)e−"(w); 0 < t < w <∞.

Integrating with respect to t shows that the density of T2 is fT2 (w) = λ(w)"
(w)e−"(w), and so the conditional density is

fT1|T2 (t |w) =
λ(t)

"(w)
; 0 < t < w.

(4) Exercise Show that P(T1 <∞) = 1 if and only if limt→∞"(t) = ∞.
(5) Exercise If λ(t) = λe−λt for λ > 0, show that limt→∞ P(X (t) = k) = 1/ek!
(6) Exercise: Compound Poisson Process Let (Yn ; n ≥ 1) be independent and identically dis-

tributed and independent of X (t). Let Z (t) =∑X (t)
n=1 Yn .

Show that E(eθ Z (t)) = exp(∫ t
0 λ(u) du(M(θ )− 1)), where M(θ ) = E(eθY1 ).

(7) Exercise: Doubly Stochastic Poisson Process Suppose that X (t) is a nonhomogeneous Poisson
process with random intensity λ(t); that is to say, for any realization of the process X (t), λ(t) is
a realization of a random process Y (t), where E(exp[θ

∫ t
0 Y (t) dt]) = M(θ ). Show that X (t) has

probability generating function M(z − 1). Find the mean and variance of X (t) in this case.

9.18 Example: Decay

Let (Tn =
∑n

i=1 Xi ; n ≥ 1) be the partial sums of the independent exponential random
variables (Xi ; i ≥ 1) having parameter λ. A certain class of particles has the property that
when freshly produced their (independent) lifetimes are exponential with parameter µ.
At the ends of their lives, they disappear. At time Tn , a number Yn of fresh particles is
released into a chamber; the random variables (Yn; n ≥ 0) are independent and identically
distributed with p.g.f. GY (z). At time t , the number of particles in the chamber is N (t).
Show that

E(zN (t)) = exp
(
λ

∫ t

0
[GY ((z − 1)e−µv + 1)− 1]dv

)
.(1)

Solution By construction, the batches arrive at the jump times of a Poisson process.
Hence, given that k batches have arrived at time t , their arrival times are independently
and uniformly distributed over (0, t). For any particle in a batch of size Y that arrived
at time U , the chance of survival to t is e−µ(t−U ) independently of all the others. Hence,
given U = u, the p.g.f. of the number S of survivors of Y at t is

E((ze−µ(t−u) + 1− e−µ(t−u))Y ) = GY (ze−µ(t−u) + 1− e−µ(t−u)).
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Hence,

E(zS) = E(E(zS|U )) = 1

t

∫ t

0
GY ((z − 1)e−µv + 1) dv.

Finally, recalling that the total number of particles at t are the survivors of a Poisson
number of such batches we obtain (1).

(2) Exercise What is E(zN (t)) when GY (z) = z? In this case, find limt→∞ P(N (t) = k).
(3) Exercise In the case when GY (z) = z, show that N (t) is a Markov process such that as h → 0,

pi,i+1(h) = λh + o(h)

pi,i−1(h) = iµh + o(h)

pii (h) = 1− λh − iµh + o(h).

Hence, obtain your answer to Exercise 2 by using the forward equations.

(4) Exercise In the case when GY (z) = z, let tn be the time when N (t) makes its nth jump. Let
Zn = N (tn) be the imbedded Markov chain that records the successive different values of N (t).
Find the stationary distribution of Zn .

9.19 Example: Disasters

A population evolves as follows. Immigrants arrive according to a Poisson process of rate
ν. On arrival, each immigrant immediately starts a simple birth process with parameter
λ independently of all other immigrants. Disasters occur independently of the population
according to a Poisson process of rate δ; when a disaster occurs, all individuals then in
existence are annihilated. A disaster occurs at t = 0.
Let X (t) denote the number of individuals in existence at time t ≥ 0.

(a) Show that limt→∞ E(X (t)) is finite if and only if δ > λ.
(b) Find an expression for E(s X (t)).

Solution Because X (t) is a Markov process, we could proceed by writing down for-
ward equations. However, it is neater to use the properties of the Poisson process directly
as follows. We start by assembling some facts established in earlier sections.
At time t , let C(t) be the time that has elapsed since the most recent disaster. From

Example 8.17, we recall that

P(C(t) > x) = e−δx ; 0 ≤ x ≤ t.(1)

Now note that arrivals are a Poisson process independent of disasters, so given thatC(t) =
x , the number of subsequent arrivals up to time t is a Poisson random variable N , with
parameter vx.
Next, we recall from Theorem 8.8.6 that conditional on N = k, these k arrivals are

independently and uniformly distributed over the interval (t − x, t), at times t − Y1, t −
Y2, . . . , t − Yk , say [where the Yi are uniform on (0, x)].
Finally, we remember that given Y1 = y, the expected number of descendants at time t

from this arrival at t − y is eλy ; this is from (9.8.21). Now we remove the conditions one
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by one. First, the expected number of descendants of an arrival at t − Y1 is

1

x

∫ x

0
eλy dy = 1

λx
(eλx − 1)(2)

because Y1 is uniform on (0, x). Second, the expected number of descendants at t of the
N arrivals during (t − x, t) is, using (2),

E(N )
1

λx
(eλx − 1) = ν

λ
(eλx − 1).(3)

Finally, using (1) and (3), we have

E(X (t)) =
∫ t

0
δe−δx ν

λ
(eλx − 1) dx + ν

λ
e−δt (eλt − 1).(4)

You can now see (if you want to) that, in more formal terms, what we have done is to say

E(X ) = E(E(E[E(X |C, N , Y1, . . . , YN )|C, N ]|C)),
and then to successively evaluate the conditional expectations from the inside out.
So from (4), if λ ≥ δ, E(X (t))→∞ as t →∞, whereas if λ < δ, E(X (t))→ ν

δ−λ .
An expression for E(s X (t)) is found by following exactly the same sequence of successive
conditional expectations. Thus, given that C(t) = x , N (x) = k, and Y1 = y1, this arrival
initiates a simple birth process whose size at time y1 has generating function

se−λy1

1− s + se−λy1
by Example 9.8.14.

Hence, because Y1 is uniformly distributed on [0, x], the generating function of the number
of descendants at time x of one arrival in [0, x] is

1

x

∫ x

0

se−λy

1− s + se−λy
dy = − 1

λx
log(1− s + se−λx ).(5)

By independence, the generating function of the sum of k such independent arrivals is

(log(1− s + se−λx )−
1
λx )k .

Next, we recall that N (x) is Poisson with parameter vx, so that using conditional expec-
tation again, the generating function of the descendants at t of the arrivals in [t − x , t]
is

exp(νx(log(1− s + se−λx )−
1
λx − 1)) = e−νx

(1− s + se−λx )
ν
λ

.(6)

Now we recall from Example 8.17 that the current life (or age) of a Poisson process has
density

fC(t)(x) = δe−δx ; 0 ≤ x ≤ t,

with P(C(t) = t) = e−δt . Hence, finally,

E(s X (t)) =
∫ t

0

δe−δx e−νx

(1− s + se−λx )
ν
λ

dx + e−δt
e−νt

(1− s + se−λt )
ν
λ

.(7)
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(8) Exercise Attempt to obtain (7) by writing down the forward equations for P(X (t) = n); n ≥ 0,
and solving them.

(9) Exercise Suppose that each immigrant gives rise to a simple birth and death process with
parameters λ and µ. Show that limt→∞ E(X (t)) <∞ if and only if δ > λ− µ. [See 9.21].

(10) Exercise Suppose that an ordinary immigration–death process with parameters ν and µ is
subject to disasters. Show that the population size X (t) has a stationary distribution with mean ν

δ+µ .
[Set λ = 0 in Exercise 9.]

9.20 Example: The General Birth Process

Let (Yn; n ≥ 1) be a collection of independent exponentially distributed random variables
such that Yn has parameter λn−1. Let

Tn =
n∑

r=1
Yr

and

N (t) = max {n: Tn ≤ t}.
The process N (t) is a general birth process. Show that if

∞∑
0

λ−1r <∞,(1)

then for t > 0,

P(N (t) <∞) < 1.(2)

Also, show that E(N (t)|N (t) <∞) is finite or infinite, depending on whether∑∞
0 rλ−1r

converges or diverges.

Solution First, recall the often-used identity

P(Tn ≤ t) = P(N (t) ≥ n).(3)

Let Tn have density fn(t) and moment generating function Mn(θ ), and define

T = lim
n→∞ Tn = sup {t : N (t) <∞}.(4)

Because the Yn are independent and exponentially distributed, it follows that

Mn(θ ) =
n−1∏
r=0
(1+ θλ−1r )−1.(5)

If (1) holds, then as n →∞ the infinite product converges (uniformly) to a nonzero limit
M(θ ). By the continuity theorem, this is the moment generating function of the density
fT (t) of T . Hence, by (3),

P(N (t) <∞) = P(T > t) =
∫ ∞

t
fT (u)du < 1

for t > 0.
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If (1) does not hold, then the product in (5) diverges to zero as n →∞, for θ �= 0, and
fT (t) = 0.
Furthermore, from (3),

pn(t) = P(N (t) = n) = P(Tn ≤ t)− P(Tn+1 ≤ t) =
∫ t

0
fn(u)du −

∫ t

0
fn+1(u)du.(6)

Now using (6), for θ < 0, we have∫ ∞

0
eθ t pn(t) dt = 1

θ
(Mn(θ )− Mn+1(θ )) on integrating by parts(7)

= 1

λn
Mn+1(θ ) using (5).

Because Mn(θ ) converges uniformly to M(θ ), we can use the inversion theorem on each
side of (7) to find that, as n →∞,

λn pn(t)→ fT (t).(8)

Now

E(N (t)|N (t) <∞) =

∞∑
n=0

npn(t)

∞∑
n=0

pn(t)
,

which converges or diverges with
∑

npn(t). Using (8), it follows that E(N (t)| N (t) <
∞) <∞ if and only if

∑∞
n=0 nλ−1n <∞.

(9) Exercise Write down the forward equations for pn(t) and deduce (7) directly from these.
(10) Exercise Deduce from (7) that pn(t) = 1

λn

∑n
i=0 aiλi e−λi t , where

ai =
n∏

j=0
j �=i

λ j

λ j − λi
.

(11) Exercise Show that if λn = n(log n)γ ; γ > 1 then for any β > 0, E([N (t)]β |N (t) <∞) = ∞.

9.21 Example: The Birth–Death Process

Let the Markov process X (t) represent the number of individuals in a population at time t .
During any interval (t , t + h), any individual alive at t may die with probabilityµh + o(h),
or split into two individuals with probability λh + o(h). All individuals act independently
in these activities. Write down the forward equations for pn(t) = P(X (t) = n) and show
that if X (0) = I , then

E(s X (t)) =




(
s + λt(1− s)

1+ λt(1− s)

)I

if λ = µ(
µ exp (t(λ− µ))+ θ (s)
λ exp (t(λ− µ))+ θ (s)

)I

if λ �= µ,

(1)

where θ (s) = (λs − µ)/(1− s).
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Solution Because individuals act independently, the probability of no change during
(t , t + h) when X (t) = k is

pkk(h) = (1− λh − µh + o(h))k = 1− (µ+ λ) kh + o(h).

Similarly, the probability of just one split and no deaths among k individuals during (t ,
t + h) is

pk,k+1(h) = kλh(1− λh − µh + o(h))k−1 = kλh + o(h),

and likewise the chance of just one death is pk,k−1(h) = kµh + o(h). Other transitions
have probabilities that are all o(h) as h → 0, and so by conditional probability

pk(t + h) = hλ(k − 1)pk−1(t)+ hµ(k + 1)pk+1(t)
+ (1− (λ+ µ)kh)pk(t)+ o(h).

The forward equations now follow as usual, giving

dpk(t)

dt
= λ(k − 1)pk−1(t)+ µ(k + 1)pk+1(t)− (λ+ µ)kpk(t),

with the convention that p−1(t) = 0. Defining G(s, t) = E(s X (t)) and differentiating G
with respect to s, shows that

∂G

∂t
= λs2

∂G

∂s
+ µ∂G

∂s
− (λ+ µ)s ∂G

∂s
= (λs − µ)(s − 1)∂G

∂s
.(2)

Because X (0) = I , we have G(s, 0) = s I , and it is straightforward but dull to verify that
(1) satisfies (2) and the initial condition X (0) = I .

(3) Exercise Let η be the probability that the population ever falls to zero. Show that

η =


1 ifµ ≥ λ(µ
λ

)I
if λ > µ.

(4) Exercise Let T be the time until X (t) first takes the value zero. Show that if X (0) = 1,

E(T |T <∞) =



1

λ
log

µ

µ− λ ; λ < µ

1

µ
log

λ

λ− µ ; λ > µ.

(5) Exercise Let X (0) = 1 and define z(t) = P(X (t) = 0). Show that z(t) satisfies

dz

dt
= µ− (λ+ µ)z(t)+ λ(z(t))2.

Hence, find z(t). What is P(X (t) = 0|X (s) = 0) for 0 < t < s?

(6) Exercise Suppose that X (0) = 1 and λ < µ. Show that

lim
t→∞P(X (t) = k|X (t) > 0) =

(
λ

µ

)k (
1− λ

µ

)
.
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(7) Exercise Suppose that new individuals join the population at the instants of a Poisson process
with parameter ν (independently of the birth and death process). Write down the forward equations
for the process. Deduce that if λ < µ the stationary distribution is

πk = 1

k!

(
1− λ

µ

) ν
λ
(
λ

µ

)k (ν
λ
+ k − 1

) (ν
λ
+ k − 2

)
. . .

ν

λ
.

What is the mean of this distribution?

9.22 Example: Wiener Process with Drift

Let D(t) be the drifting standard Wiener process, D(t) = µt +W (t).

(a) Show that M(t) is a martingale, where

M(t) = exp{λD(t)− 1

2
λ2t − λµt}.

(b) Let Tb be the first passage time of D(t) to b > 0. Show that

Ee−θTb = exp{b(µ−
√
µ2 + 2θ )}.

Solution (a) By definition D(t) = µt +W (t), so M(t) = exp{λW (t)− 1
2λ

2t}, which
we know to be a martingale from 9.9.27.
(b) Because Tb is a stopping time, 1 = EM(Tb ∧ t). But if λ is so large that λµ+ 1

2λ
2 >

0, then 0 ≤ M(Tb ∧ t) ≤ eλb. Let t →∞ and use the dominated convergence theorem
5.9.7 to give

1 = EM(Tb) = eλbEe−Tb( 12λ
2+λµ).

Now setting θ = λµ+ 1
2λ

2 and choosing the larger root of the quadratic (which yields a
moment generating function) gives the result.

(1) Exercise Find P(Tb <∞) in the two cases µ > 0 and µ < 0.
(2) Exercise Show that e−2µD(t) is a martingale.
(3) Exercise Let T be the time at which D(t) first hits a or b, where a < 0 and b > 0. Show that

the probability that D(t) hits b first is

P(D(T ) = b) = 1− e−2aµ

e−2bµ − e−2aµ
.

(4) Exercise Show that if µ < 0, then

P(max
t≥0

D(t) ≥ b) = e2µb.

(Note: In the remaining Exercises (5)–(9), we consider the standard Wiener process
with no drift in which µ = 0.)

(5) Exercise Let W (t) be the Wiener process and Tb the first passage time of W (t) to b > 0. Show
that Ee−θTb = exp(−√2θb).
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Remark We can deduce from (5) that P(Tb <∞) = 1, but see also the next Exer-
cise (6).

(6) Exercise Use Example 9.9.33 to show that P(Tb <∞) = 1.
(7) Exercise Let X (t) and Y (t) be independentWiener processes, and let Tb be the first passage time

of X (t) to b > 0. Use conditional expectation and (5) to show that EeiθY (Tb) = e−|θ |b, and deduce
that Y (Tb) has a Cauchy density.
(Hint for the final part: Look at Example 8.24.)

(8) Exercise Use the fact that the density of Tb is given in Corollary 9.9.25 to calculate the density
of Y (Tb) directly.

(9) Exercise Let c > b. Explain why Y (Tb) is independent of Y (Tc)− Y (Tb). Now recall Example
9.9.11 and use it to deduce that Y (Tb) has the same density as bY (T1). Finally, use this and the fact
thatY (Tb) has the same density as−Y (Tb) to conclude thatEeiθY (Tb) = e−K a|θ |, for some constant K .

9.23 Example: Markov Chain Martingales

Let (Xn; n ≥ 0) be a Markov chain with transition probabilities pi j , and suppose that the
function v(·, ·) is such that∑

j

pi jv( j, n + 1) = λv(i, n), λ �= 0.

Show that λ−nv(Xn, n) is a martingale with respect to Xn , provided thatE|v(Xn, n)| <∞.

Solution Using the Markov property of Xn ,

E(λ−(n+1)v(Xn+1, n + 1)|X0, . . . , Xn) = λ−(n+1)
∑

j

pXn jv( j, n + 1)

= λ−(n+1)λv(Xn, n).

The result follows, on noting that E|v(Xn, n)| <∞.
(1) Exercise Let Xn be a Markov chain with state space {0, 1, . . . , b}, such that Xn is also a

martingale. Show that 0 and b are absorbing states, and that if absorption occurs with probability
one in finite time, then the probability of absorption at b is X0/b.

(2) Exercise Let Xn be a Markov chain with state space {0, 1, . . . , b} and transition probabilities
pi j ; and suppose that the bounded function v(.) is such that v(0) = 0, v(b) = 1, and

v(i) =
∑
j∈S

pi jv( j), i ∈ S.

If 0 and b are absorbing states, show that if absorption occurs in finite timewith probability
one, then the probability of absorption at b is v(X0).

(3) Exercise Let Xn be a birth–death process on the nonnegative integers, with transition probabil-
ities

pii+1 = pi , i > 0

pii−1 = qi , i > 0

pii = ri , i ≥ 0, where r0 = 1.
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Define

v(x) =
x∑

r=1

r−1∏
i=1

qi

pi
, x ≥ 2,

while v(0) = 0 and v(1) = 1. Show that v(Xn) is a martingale. Deduce that the probability of
hitting b before a, given X0 = x < b, is v(x)−v(a)

v(b)−v(a) . Deduce that the process is persistent if and only

if
∞∑
1

r−1∏
i=1

qi

pi
diverges.

9.24 Example: Wiener Process Exiting a Strip

Let W (t) be the standard Wiener process and let T be the first time at which W (t) hits a
or b, where a < 0 and b > 0. Show that ET = −ab.

Solution We know from Theorem 9.9.27 that W (t)2 − t is a martingale. Hence, for
any finite integer n, because T is a stopping time,

0 = EW (T ∧ n)2 − E(T ∧ n).(1)

Because W (t)2 ≤ a2 + b2, we can let n →∞ in (1) to obtain, by using Example 9.9.33,

ET = lim
n→∞E(T ∧ n) = lim

n→∞E(W (T ∧ n)2)

= EW (T )2

= a2P(W (T ) = a)+ b2P(W (T ) = b)

= a2b

b − a
− ab2

b − a
= −ab.

(2) Exercise Let Tb be the first passage time of W (t) to b �= 0. Show that ETb = ∞.
(3) Exercise Use the martingales 9.9.29–9.9.31 to show that

3ET 2 = 3a2b2 − ab(a2 + b2) and 3varT = −ab(a2 + b2).

(4) Exercise Use the martingale eθW (t)− 1
2 θ

2t = Mθ to show that, when a = −b,

Ee−sT = [cosh(a
√
2s)]−1.

(Hint: Show that Mθ + M−θ is a martingale.)

(5) Exercise Use the result of Example 9.23 on first passage times to show that, for any a < 0,
b > 0,

Ee−θT = sinh(
√
2θb)− sinh(√2θa)

sinh[
√
2θ (b − a)]

(Hint: Write

Ee−θTb = E[e−θTb I {Ta < Tb}]+ E[e−θTb I {Tb < Ta}]
and use the Markov property at Ta . Then, do likewise for Ee−θTa .)
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9.25 Example: Arcsine Law for Zeros

Show that the probability that the Wiener process has no zero in (s, t) is

2

π
sin−1

√
s

t
= 2

π
arc sin

√
s

t
.

Solution Let Z be the event that W (t) does have at least one zero in (s, t). Recall that
Tw is the first passage time of W (t) to w, with density fT given in Corollary 9.9.25. By
the symmetry of the Wiener process, if W (s) = w, then

P(Z ) = P(Tw ≤ t − s) = P(T−w ≤ t − s).

Therefore, conditioning on W (s), we have

P(Z ) = 2
∫ ∞

w=0

∫ t−s

u=0
fT (u) fW (s)(−w) dudw

= 1

π
√

s

∫ t−s

u=0
u−3/2

∫ ∞

w=0
w exp

{
−1
2
w2

u + s

us

}
dwdu

=
√

s

π

∫ t−s

0

du

(u + s)
√

u

= 2

π
tan−1

√
t

s
− 1, on setting u = sv2

= 2

π
cos−1

√
s

t
,

using the right-angled triangle with sides
√ s

t ,
√
1− s

t , 1.
Finally, the required probability is

P(Zc) = 1− P(Z ) = 2

π
sin−1

√
s

t
,

on using the same right-angled triangle with sides
√ s

t ,
√
1− s

t , and 1.

(1) Exercise Let V1 be the time of the last zero of W (t) before t , and V2 the time of the first zero
after t . Show that
(i) P(V2 ≤ s) = 2

π
cos−1

√
t
s , t < s.

(ii) P(V1 < s, V2 > v) = 2
π
sin−1

√
s
v
, s < t < v.

(2) Exercise Show that the probability that theBrownian bridge has no zeros in (s, t), 0 < s < t < 1,
is

2

π
cos−1[(t − s)/[t(1− s)]]1/2.

(3) Exercise If M(t) = sup0≤s≤t W (s), argue that

P(M(t) ≤ y|Tc = s) = P(M(t − s) ≤ y − c), s ≤ t.
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Deduce that M(t) and Tc have the joint density

fM,T (y,u) = c

πu
√

u(t − u)
exp

{
−1
2

(y − c)2

t − u
− 1

2

c2

u

}
,

(4) Exercise LetU (t) be the time at whichW (t) attains its maximum in [0, t]. [It can be shown that
U (t) exists and is unique with probability 1.] Use the previous exercise, and the fact thatU (t) = Tx

on the event M(t) = x to show that M(t) and U (t) have joint density

fM,U (x,u) = x

πu
√

u(t − u)
exp

(
− x2

2u

)
.

Deduce that U (t) satisfies

P(U ≤ u) = 2

π
sin−1

√
u

t
, 0 ≤ u ≤ t.

9.26 Example: Option Pricing: Black–Scholes Formula

In Example 9.9.36, we gave the fair price at t = 0 for a European call option with exercise
time T as

v = E{e−rT (S(T )− K )+},

where the stock price S(t) is assumed to be a geometric Wiener process of the form

S(t) = S(0){µt + σW (t)}(1)

and µ+ 1
2σ

2 = r . Show that v can be written explicitly as

v = S(0)�(H )− K e−rT�(H − σ
√

T ),(2)

where �(x) is the standard normal distribution function and

H = {(r + 1

2
σ 2)T + log[S(0)/K ]}/{σ

√
T }.

Solution Consider a random variable Z with the normal N (γ, τ 2) density. We have

E(aeZ − K )+ =
∫ ∞

log K/a
(aez − K )

1

τ
√
2π

exp

(−(z − γ )2
2τ 2

)
dz

=
∫ ∞

α

(aeγ+τ y − K )
1√
2π

exp

(
−1
2

y2
)

dy,

where y = z − γ
τ

, andα = log K/a − γ
τ

,

= aeγ+
1
2 τ

2
∫ ∞

α

1√
2π

exp

(
−1
2
(y − τ )2

)
dy − K�(−α)

= aeγ+
1
2 τ

2
�(τ − α)− K�(−α).
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For the problem in question, we can write S(T ) = aeZ , where a = S(0) and Z is normal
N ((r − 1

2σ
2)T , σ 2T ). Inserting these values of a, γ , and τ in the above, shows that

v = Ee−rT (S(T )− K )+ = e−rT {S(0)e(r− 1
2 σ

2)T+ 1
2 σ

2T�(τ − α)− K�(−α)}

= S(0)�

(
τ 2 − log( K

a )+ γ
τ

)
− K e−rT�(−α)

= S(0)�

(
σ 2T + rT − 1

2σ
2T + log S(0)

K

σ
√

T

)
− K e−rT�(H − σ

√
T ),

as required.

(3) Exercise Show that the value v of the option given in (2) is an increasing function of each of
S(0), T , r and σ , but is a decreasing function of K .

(4) Exercise The “American Call option” differs from the European call in one respect: It may be
exercised by the buyer at any time up to the expiry time T . Show that the value of the American call
is the same as that of the corresponding European call and that there is no advantage to the holder
in exercising it prior to the expiry time T .

PROBLEMS

1 Let (Xn ; n ≥ 1) be a collection of independent identically distributed nonnegative random variables.
Define:
(i) Sn =

∑n
i=1 Xi .

(ii) Mn = max{X1, X2, . . . , Xn}.
(iii) Ln = min{X1, X2, . . . , Xn}.
(iv) Kn = Xn + Xn−1.
(a) Which of the sequences X , S, M , L , K are Markov chains?
(b) For those that are, find the transition probabilities.

2 Classify the chains in Problem 1; that is to say, showwhether the states are persistent, null, periodic.
3 Can a reversible chain be periodic?
4 Let (Xn ; n ≥ 1) and (Yn ; n ≥ 1) be independent irreducible Markov chains, and set Zn = (Xn, Yn);

n ≥ 1.
(a) Is Zn irreducible?
(b) If X and Y are reversible and also aperiodic, show that Z is reversible.

5 Let X be a Markov chain. Show that the sequence (Xi ; i ≥ 0) conditional on Xm = r still has the
Markov property.

6 Show that Definition 9.1.1 is equivalent to each of (9.1.6), (9.1.7), and (9.1.8) as asserted.
7 Let Yn be the number of heads shown in n tosses of a coin. Let Zn = Yn modulo 10. Show that (Zn ;

n ≥ 0) is a Markov chain; find its transition probabilities and stationary distribution.
8 Let (Sn ; n ≥ 0) be a simple random walk with S0 = 0; show that Yn = |Sn| is a Markov chain.
9 Let (Xn ; n ≥ 1) be a Markov chain. Show that if g(Xn) is any function of Xn , then

E(E(g(Xn+m)|Xn)|Xr ) = E(g(Xn+m)|Xr ), for r ≤ n.
10 Let (un ; n ≥ 0) be a sequence defined by u0 = 1 and un =

∑n
k=1 fkun−k , where fk > 0 and∑∞

k=1 fk < 1.
(a) Show that vn defined by vn = ρnun ; n ≥ 0, is a renewal sequence as defined in Example 9.13,

if
∑∞

n=1 ρ
n fn = 1.

(b) Show that as n →∞, for some constant c, ρnun → c.
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11 Murphy’s Law Let (Xn ; n ≥ 1) be an irreducible aperiodic persistent chain. Let s =
(s1, . . . , sm) be any finite sequence of states of the chain such that ps1s2 ps2s3 . . . psm−1sm > 0. Show
that with probability 1 the sequence s occurs in finite time. Explain the implications.

12 Let (Xn ; n ≥ 0) be a Markov chain. Show that for any constant d the sequence (Xnd ; n ≥ 0) is a
Markov chain.

13 Let A be a subset of the states of a regular chain X . Let T1 < T2 < T3 < . . . be the successive times
at which the chain visits A. Show that (XTr ; r ≥ 1) is a Markov chain.

14 Let (Xn ; n ≥ 0) and (Yn ; n ≥ 0) beMarkov chainswith the same state space S, and distinct transition
matrices pX

i j and pY
i j . Let (Wn ; n ≥ 0) be a process defined on S with transition probabilities

qi j (n) = 1

2

(
pX

i j (n)+ pY
i j (n)

)
.

Show that qi j ≥ 0 and $ j qi j = 1, but that (Wn ; n ≥ 0) is not a Markov chain in general.
15 Truncation Let (Xn ; n ≥ 0) be an irreducible Markov chain with state space S, transition

probabilities pi j , and stationary distribution (πi ; i ∈ S). Let A be some subset of S, and suppose
that a new chain Y is formed by banning transitions out of A. That is to say, Y has transition
probabilities qi j , where for i ∈ A, qi j = pi j for j ∈ A and j �= i , and qii = pii +

∑
j∈Ac pi j . Show

that if X is reversible in equilibrium, then so is Y , and write down the stationary distribution of Y .
16 Let Xn and Yn be independent simple random walks. Let Zn be (Xn , Yn) truncated as in Problem

15 to the region x ≥ 0, y ≥ 0, x + y ≤ a. Find the stationary distribution of Zn .
17 Let (Xn ; n ≥ 0) be aMarkov chain with state space S. For each n ≥ 0 independently, Xn is replaced

by s ∈ S with probability p. Is the new sequence a Markov chain?
18 At each time n = 0, 1, 2, . . . a numberYn of particles is injected into a chamber,where (Yn ; n ≥ 0) are

independent Poisson random variables with parameter λ. The lifetimes of particles are independent
and geometric with parameter p. Let Xn be the number of particles in the chamber at time n. Show
that Xn is a Markov chain; find its transition probabilities and the stationary distribution.

19 Let ( fk ; k ≥ 0) be a probability mass function. Let the irreducible Markov chain X have transition
probabilities,

p jk = fk− j+1 if k − j + 1 ≥ 0, j ≥ 1

and p0k = p1k . Show that X is recurrent and nonnull if
∑∞

k=1 k fk < 1 .
20 Let ( fk ; k ≥ 0) be a probability mass function. Suppose the Markov chain X has transition proba-

bilities

p jk =




f j−k+1 for k > 0, j − k + 1 ≥ 0
∞∑

i= j+1
fi for k = 0

0 otherwise.

Show that X is recurrent and nonnull if
∑∞

k=1 k fk > 1.
21 Lumping Let X have state space S and suppose that S = ∪k Ak , where Ai ∩ A j = φ for i �= j .

Let (Yn ; n ≥ 0) be a process that takes the value yk whenever the chain X lies in Ak . Show that Y
is also a Markov chain if pi1 j = pi2 j for any i1 and i2 in the same set Ak .

22 Markov Times Let X be a Markov chain. Let T be a positive random variable such that
P(T = t |X0, . . . , Xt ) is either zero or one. T is called a Markov time. Show that the Markov
property is preserved at T .

23 Let Sn be the random walk, such that P(Sn+1 − Sn = 2) = p, and P(Sn+1 − Sn = −1) = q, where
p + q = 1.
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If the origin is a retaining barrier, show that equilibrium is possible with Sn ≥ 0 if p < 1
3 and

that, in this case, the stationary distribution has p.g.f.,

π (s) = (1− 3p)(s − 1)
s − q − ps3

.

24 Let X (t) be the two-state chain in continuous time, t ∈ R, X (t) ∈ {0, 1}, having stationary distri-
bution {π0, π1}.
(a) Show that as τ→∞

P(X (0) = 1|X (−τ ), X (τ ))→ π1.

(b) Find cov (X (s), X (s + t)); t > 0.
(c) What is lims→∞ cov(X (s), X (s + t))?

25 Let N (t) and M(t) be independent Poisson processes with parameters λ and µ, respectively.
(a) Is N (t) +M(t) a Poisson process?
(b) Is either of min {N (t), M(t)} or max {N (t), M(t)} a Poisson process?

26 Let N (t) be a nonhomogeneous Poisson process with rate λ(t). Find cov (N (s), N (s + t)); t > 0.
27 Mosquitoes land on your neck at the jump times of a Poisson process with parameter λ(t) and each

bites you with probability p independently of the decisions of the others. Show that bites form a
Poisson process with parameter pλ(t).

28 Let X (t) be a Markov chain with transition probabilities pi j (t) and stationary distribution π . Let
(Tn ; n ≥ 0) be the jump times of a Poisson process independent of X (t). Show that the sequence
Yn = X (Tn) is a Markov chain with the same stationary distribution as X (t).

29 Find the mean and variance of the size X (t) of the population in the birth–death process of Example
9.21.

30 A Nonhomogeneous Chain Let X (t) be a Markov chain with X (0) = I and such that, as
h → 0,

P(X (t + h) = k + 1|X (t) = k) = 1+ µk

1+ µt
h + o(h)

and

P(X (t + h) = k|X (t) = k) = 1− 1+ µk

1+ µt
h + o(h).

Show that G = E(s X (t)) satisfies

∂G

∂t
= s − 1
1+ µt

(
G + µs

∂G

∂s

)
.

Hence, find E(X ) and var (X ).
31 Truncation Again Let (Xn ; n ≥ 0) be an irreducibleMarkov chain, with state space S, station-

ary distribution (πi ; i ∈ S), and transition probabilities pi j . Let A be some subset of S, and suppose
that (Zn ; n ≥ 0) is a Markov chain with state space A and transition probabilities

qi j = pi j

pi A
for i, j ∈ A, where pi A =

∑
j∈A

pi j .

If X is reversible, show that Z is reversible with stationary distribution given by

vi = πi pi A

/∑
i∈A

πi pi A.
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32 “Motto” is a coin-tossing game at the start of which each player chooses a sequence of three letters,
each of which is either H or T (his “motto”). A fair coin is then tossed repeatedly, and the results
recorded as a sequence of Hs and T s (H for “heads,” T for “tails”). The winner is the first player
whose motto occurs as three consecutive letters in this sequence. Four players A, B,C , D choose as
their mottoes, respectively, H H T , T H H , T T H , and H T T . Show that if only A and B take part in
a game then B has probability 3

4 of winning. With what probability does C win if he plays a game
with B as the only opponent? If all four players take part simultaneously, what are the respective
probabilities of each player winning?
(You may assume that if a fair coin is tossed repeatedly then with probability 1 any motto will occur
eventually.)

33 Let N (t) be a nonhomogeneous Poisson process. Show that, conditional on N (t) = k, the times
T1, . . . , Tk of the events have conditional joint density

k!
k∏

i=1

{
λ(ti )

"(t)

}
, 0 ≤ t1 ≤ . . . ≤ tk ≤ t.

34 Show that (a) the Brownian bridge, (b) the reflected Wiener process |W (t)|, and (c) the Ornstein–
Uhlenbeck process all satisfy the Markov property.
Explain why the integrated Wiener process R(t) = ∫ t

0 W (u)du does not have this property.
35 Show that the transition density f (s, x ; t, y) of the Wiener process satisfies the Chapman–

Kolmogorov equations

f (s, x ; u, z) =
∫

R

f (s, x ; t, y) f (t, y; u, z) dy,

s < t < u.
36 Let W (t) be the Wiener process. Show that for s < t < u,

E(W (t)|W (u),W (s)) = [(t − s)W (u)+ (u − t)W (s)]/(u − s)

and

var(W (t)|W (u),W (s)) = [u(t − s)+ t(s − t)]/(u − s).

(Hint: Use the result of Exercise 4 in Example 8.20)
Deduce that the conditional correlation is, for u = 1,

ρ(W (s),W (t)|W (1)) =
{

s(1− t)

t(1− s)

}1/2
.

37 The random walk X (n) takes place on the non-negative integers. From any nonzero value r , it steps
to one of {0, 1, 2, . . . , r + 1} with probability 1/(r + 2). From 0 it surely steps to 1.
(a) Find the stationary distribution, and deduce that the expected number of steps to reach 0 starting

from 1 is 2(e − 1).
(b) Show that in equilibrium, if the walk is at 0, the probability that it arrived there from r is

2/{(r + 2)r !}.
(c) If the walk starts at 1, find the probability that it visits 0 before visiting r + 1.

38 I walk to and from work, and I have a total of m umbrellas at home or in my office. If it is raining
when I set off either way, I take an umbrella if I have one to take. For any journey, it is raining
independently with probability p = 1− q. Let U (n) be the number of umbrellas available to hand
when I start the nth journey; ignore the chance of rain starting during the trip.
(a) Verify that U (n) is a Markov chain, and write down its transition matrix.
(b) Show that the chain is reversible in equilibrium with a stationary distribution such that π0 =

q/(m + q).
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(c) Deduce that the expected number w of trips between occasions when I must set off in the rain
is w = (m + q)/(pq). Show that w takes its smallest possible value s when

p = m + 1− [m(m + 1)] 12
and that in this case s = {2m + 1− 2[m(m + 1)] 12 }−1

= 4m + 2− 1/(4m)+ 1/(8m2)+ o(m−2) as m increases.
(d) When I own only one umbrella, and I have it to hand at the start of the first trip, show that the

probability generating function of the number X of trips until I get wet is

Eθ X = pqθ2

1− pθ + q2θ2
.

Find EX , and s and the corresponding value of p in this case.



Appendix: Solutions and Hints for Selected
Exercises and Problems

No experienced mathematician feels well acquainted with a subject until he has tackled some prob-
lems; through attempting and failing, we extend the boundaries of our knowledge and experience.
This observation applies to students also. It would be a big mistake to treat the remarks of this
section as a solution sheet. Many of the hints and comments will be useful only to those who have
spent a half hour, say, on the problem already. The remarks vary in style and content between small
hints and detailed solutions; some problems receive no comments at all (indicating, perhaps, that
they are either very easy or good challenges).

CHAPTER 1

Exercises

1.8.1 P({1, 1} ∪ {1, 2} ∪ {2, 1} ∪ {6, 6}) = 4

36
= 1

9
.

1.8.2 (a)
1

2
; (b)

1

2
; (c)

1

4
.

1.8.3
11

18

1.8.4
5

12

1.8.5
1

3
− 1

18
r

1.9.1 � = {(i, j): 1 ≤ i < j ≤ 2n} and so |�| = n(2n − 1). Likewise,
|{H H}| = 1

2
n(n − 1). Hence, P(H H ) = (n − 1)/(2(2n − 1)).

1.9.2 (a)
1

2
; (b)

1

2
.

1.9.3
1

2

1.9.4
1

2

1.10.1 (a) zero; (b)
2

3
.

1.10.2 Let C j be the event that the j th cup and saucer match. Then

P(C j ) = 1

4
;P(Ci ∩ C j ) = 1

12
, i �= j,P(Ci ∩ C j ∩ Ck) = 1

24
, i �= j �= k �= i .

478
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Hence, by (1.4.5), (1.4.8), (1.6.1),P

(
4⋂

i=1
Cc

i

)
= 1− 4 · 1

4
+ 6 · 1

12
− 4 · 1

24
+ 1

24
= 3
8
.

1.11.1 P(A) = 36

91
;P(B) = 30

91
;P(C) = 25

91
.

1.11.2 Let all the players continue rolling, even after first rolling a 6, and let Hr be the event that

all three roll a 6 in the r th round. Because E ⊆
( ∞⋃

r=1
Hr

)c

, we have

P(E) ≤ 1− P
( ∞⋃

r=1
Hr

)
= 1−

∞∑
r=1

P(Hr ) = 1−
∞∑

r=1
(63 − 1)r−1/63r = 0.

1.11.3 Ignoring Chryseis, P(A) =
∞∑

n=0
52n/62n+1 = 6

11
.

1.11.4 As above, let all players continue rolling irrespective of 6s achieved. A gets his first 6 on
the (3r + 1)th roll in 5r ways; B and C both have at least one already in (6r − 5r )2 ways.

Hence, P(A last) =
∞∑

r=1
5r (6r − 5r )2/63r+1 = 305

1001
.

1.12.2 P(B1) = 5

8
;P(C) = 1

4
.

1.12.3 (a) P(B2) = 3

8
;P(B3) = 1

8
. (b) P(B2) = 1

8
;P(B3) = 1

8
.

(c) P(B2) = 1

8
;P(B3) = 1

8
.

1.12.4 (a) 0; (b)
1

4
; (c)

1

2
.

1.13.1 p2 = n7
36
+ n11
36
+ 1

(36)2
(n24 + n25 + n26 + n28 + n29 + n210) =

97

324
.

1.13.2 p3 = p2 + 2

(36)3
(
27n24 + 26n25 + 25n26

) = 97

324
+ 1

6
.
107

324
.

1.13.3 (a)
436

990
; (b)

526

990
.

1.13.4 Let p j be the chance of winning when the first die shows j . Then

p1 = 361

990
, p3 = p4 = 502

990
, p5 = 601

990
, so you would fix the first die at 5 if you could.

1.14.3
∞∑

r=0

(
1

2

)2r 1
2
= 2

3
.

1.14.4 Let s be a sequence of length m + n in which the first m terms have x heads and m − x
tails, and the next n have x heads and n − x tails. Now change the first x heads to tails
and the first m − x tails to heads, giving a sequence t of length m + n with n heads. This
map is 1–1, so the number of t-sequences equals the number of s-sequences, giving the
result.

Problems

1
1

13

2
1

13

3 (a)
8

15

(
>
1

2

)
; (b)

112

225

(
<
1

2

)
.
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4
1

2
5 2n for some integer n ≥ 1.
6 (a)

25

216
; (b)

125

216
; (c) 1; (d) 17 because

(
5

6

)17
< 0.05 <

(
5

6

)16
.

7 (a) (A ∩ B) ∪ (B ∩ C) ∪ (C ∩ A);
(b) (Ac ∩ B ∩ C) ∪ (A ∩ Bc ∩ C) ∪ (A ∩ B ∩ Cc); (c) (A ∩ B ∩ C)c

8 The loaded die is equivalent to a fair 10-sided die with five faces numbered 6.

(a)

(
5

10

)4
= 81

(
1

6

)4
so the factor is 81; (b) p23 = 4p24.

9 (a)
5

6
; (b)

1

4
; (c)

3

16
; (d)

1

8
.

10
(
35

36

)24
� 0.16

11
19

36

12 (a) Use induction; (b)
1

9
. (Hint: The cups can be arranged in 90 distinct ways.)

13
2

3

14
1

3
in each case.

15 (a) 1−
(
5

6

)4
; (b)

(
3

6

)4
−
(
2

6

)4
.

16 (a)

(
1

2

)n

−
(
1

3

)n

↓ 0; (b) 1−
(
5

6

)n

↑ 1.

17 (a)
1

n

[n

3

]
;
1

n

[n

4

]
;
1

n

[ n

12

]
;
1

n

([n

3

]
+
[n

4

]
−
[ n

12

])
; (b)

1

3
;
1

4
;
1

12
;
1

2
.

(c) You would get the same answers.
19 (c) Use induction.

21 In every case, p = x(x − 1)
(x + y)(x + y − 1) (a) x = 3, y = 1 and x = 15, y = 6;

(b) x = 6, y = 10; (c) when r = 6, x = 2 and y = 7.
22 Always in each case, except (c), which holds when B ⊆ C ⊆ A, and (d), which holds when

A ∩ C = φ.

23 1988 was a leap year, so p = 1− (366)!

(366− m)!(366)m

CHAPTER 2

Exercises

2.6.6 1− r2

2.6.7 P(V |An ∪ Bn) = P(An)/P(An ∪ Bn) = rn−1 p

rn−1 p + rn−1q
= p

p + q
. (Note the lack of any

dependence on n.)
2.7.1 Use induction.
2.7.2 (c + d)/(b + c + d)
2.7.3 (c + nd)/(b + c + nd)→ 1 as n →∞
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2.7.4 Use (2.6.1).
2.7.5 It is also the probability of getting m cyan balls and n blue balls in any given fixed order.

2.8.4 (1− p)n ; np(1− p)n−1

2.8.5 (a) 1− πn ; (b)
n−1∑
k=1

pkπk−1sn−k ; (c) 1− (1− p)n ;
1

2
n(n − 1)p2(1− p)n−2.

2.8.7
∞∏

k=1
(1− pk) > 0, if and only if

∞∑
k=1

pk <∞.

2.9.1 α(1− α)+ α2(1− γ )/(1− (1− α)(1− γ ))
2.9.2 (2− α + αγ (1− γ ))−1
2.9.3 Biggles

2.10.1 (a) P(E) = 0.108;P(Ac|D) = 45

86
.

(b) P(E) = 0.059;P(Ac|D) = 5

451
.

2.10.2
p(µ(1− π )+ ν(1− µ))

p(µ(1− π )+ ν(1− µ))+ (1− p)(1− π ) (a) P(A|D
c) = 1

46
<
45

86
;

(b) P(A|Dc) = 6

61
>

5

451
2.10.3 P(L) = (1− ρ)P(E)+ ρ(1− P(E));

P(Ac|M) = (π (1− ρ)+ ρ(1− π ))(1− p)

ρP(Dc)+ (1− ρ)P(D)

P(A|Mc) = p[(1− ρ)(µ(1− π )+ ν(1− µ))+ ρ(µπ + (1− µ)(1− ν))]
ρP(D)+ (1− ρ)P(Dc)

2.11.4 1− k/K

2.11.6
(1− ρ)(1− ρK )

(1− ρk+1)(1− ρK−k)
, where ρ = 1− p

p
.

2.12.1 When λ = µ.

2.12.2 P(A2|A1)− P(A2) = (µ− λ)2
2(λ+ µ) = 0. When λ = µ.

2.12.3 (a) (µ3 + λ3)/(µ2 + λ2) (b)
µn + λn

µn−1 + λn−1 → max{λ,µ}, as n →∞

2.12.4 (a)
µ

λ+ µ ; (b)
λ

λ+ µ
2.12.5

µn

µn + λn
→ 1, as n →∞, if µ > λ.

2.13.3 (a)
2p1

3p1 + p2(1− p1)
; (b)

3p1
3p1 + p2(1− p1)

.

2.13.4 Yes, if p1 <
1

2
and p2 = p1

1− p1
.

2.14.1 (a) a = 1, b = 1, c = 2; (b) a = b = c.

2.14.1
16

41

2.14.2
20

41
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Problems

1 (a) 0.12; (b) 0.61; (c) 0.4758; (d)
7

13
.

3 (i)
1

6
;
1

3
;
1

2
respectively; (ii)

7

9
; (iii)

1

14
;
2

7
;
9

14
, respectively; (iv)

6

7
.

4 (b) No.

5 (a) 0.36; (b) 0.06; (c) 0.7; (d)
18

41
6 (a) zero; (b) one.

7 (a)
3

5
; (b)

2

3
; (c)

5

6
; (d)

4

5
.

8 (a)
1

2
; (b)(i)

1

2
; (ii)

1

4
; (c)

1

36
; (d)

1

42
.

9 (b)
3

4
; (c) 0.7.

11
83

102

12 (a) (1− p2)2; (b) 1− p + p(1− p2)2; (c)
p(1− p2)2

1− p + p(1− p2)2

13 (a)
r

b + r
; (b)

1

2
; (c) zero if r < b,

1

2
if r = b, 1 if r > b.

14 1− x ≤ exp(−x).

15 Let P(A) = α and P(B) = β. If the claim is false, then (1− α)(1− β) < 4

9
and

αβ <
4

9
and α(1− β)+ β(1− α) < 4

9
. The intersection of these three regions in the α − β

plane is empty, so the claim is true.

16 P(E |A = tail) = (1− (1− p)s−1)P(E |A = head) P(E) = pr−1(1− (1− p)s)

1− (1− pr−1)(1− (1− p)s−1)

17 He must answer k satisfying

(
u(1− b)

b(1− u)

)k

>
p

q

(
1− b

1− u

)n

.

Therefore, the examiners must set questions such that (u/b)n > p/q or the student can never
convince them that he is not bluffing.

18 (i) 0.7; (ii)
2

9
; (iii) Use (2.11.2).

19 The second set of rules.

20
16

31
21 6−2

22 (a)
1

2

(
1−

(
2

3

)n)
; (b)

1

36(λ− µ)
(

λn

1− λ −
µn

1− µ
)
where λ = 5

12
+
√
5

4

and µ = 5

12
−
√
5

4
; (c)

1

2
.
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23 P(ever hit) ≤ 1

4

∑(
2

3

)n−1
= 3

4
.

24 (i)
7

8
; (ii)

83

128
.

25 (i) pA = pB =
1− 1

2 (θ + θ2)
2− θ + θ2 ; (ii) θ = 1

10
(
√
41− 1); (iii)

2(1− θ )
2− θ − θ2 .

26 (a)
197

450
; (b)

77

225
; (c)

25

148
.

27 (a) 5n−1.6−n ; (b)
5

11
; (c)

1

6
.

28 (a) 2




p

(
q

p

)n−1
− q

(
q

p

)n−1
− 1


; (b) (p − q)



1+

(
q

p

)n

1−
(

q

p

)n




(c)
q − p(
q

p

)n

− 1
+

q

(
p

q

)n−1
− p

(
p

q

)n−1
− 1

.

29 (i) pk
m =

1

2
pk

m−1 +
1

2
pk

m+1; pk
0 = 0, pk

n = pk−1
n−1

(ii) p0m = 1−
m

n
;
∞∑

k=0
pk

m = 1−
m

n
+ m

n
= 1.

30 (a)
6∑

k=1

1

6

(
1+

(
q

p

)60/k
)−1

(b) Choose x = 6.

31 (a)
1− p1
3− p1

; (b)
(1− p1)2

2+ (1− p1)2
; (c)

1− p1
3− p1 − p2 − p3

.

32 (i)
1

16
; (ii) 5 metres and one step; (iii) 5 metres.

33 (a)
1

(n!)2
(b) pt =




t − 1
jk

for 2 ≤ t ≤ j ∧ k

( j ∧ k)− 1
jk

for j ∧ k ≤ t ≤ j ∨ k

j + k − t − 1
jk

for j ∨ k ≤ t ≤ j + k − 2

(c) j = k = n!

34 (i) 0.3; 0.1545; (ii) For men, 0.5; 0.6; for women, 0.1; 0.11.

35 (a)
11

23
; (b)

12

23
.

36 No

39 pn = (1− p)

(
1− (q − p)n−1

1− (q − p)n

)
→ 1− p.

44 P(win with 1–6 flat) = 0.534;
P(win with 5–2 flat) = 0.5336.
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CHAPTER 3

Exercises

3.9.1 (a)
(n + r )!

r !
; (b)

(
n + r

r

)
; (c) pr+1(n).

3.9.2 (i) 462, assuming oranges are indistinguishable.

(ii) 7 = x5| (the coefficient of x5) in
7∏

k=1
(1− xk)−1.

3.9.3 4

3.10.1 (a)
6

n(n − 1) ; (b)
6(n − 3)
n(n − 1) ; (c)

5!(n − 5)(n − 6)
2n(n − 1)(n − 2)(n − 3)

3.11.7
1

nr

∑ n!

k!(r − 2k)!(n − r + k)!
, where the sum is over all k such that

max{0, r − n} ≤ 2k ≤ r ≤ 2n.

3.11.8
1

nr

n∑
k=0

(n

k

)
(−)k Mk , where r ≥ 2n and Mk = (n − k)r−k(n − k + 1)k .

3.12.1 n−r
(n

r

)
3.12.3 p(m, n)− p(m − 1, n), where p(m, n) is given in Example 3.11.
3.13.3 Rotational symmetry.
3.13.4 As in the example, k disjoint pairs of seats can be chosen in Mk ways, k given pairs of

twins can occupy the pairs of seats in 2kk! ways, the rest occupy their seats in (2n − 2k)!
ways, so P (no pair adjacent) =

n∑
k=0
(−)k

(n

k

) Mk2kk!(2n − 2k)!

(2n)!
=

n∑
k=0

(−)k
k!

n!(2n − k − 1)!
(n − k)!(2n − 1)!2

k → e−1

as n →∞.
3.13.5 e−2.

3.15.1 b

(
a

k

)/(
n

k + 1
)

3.15.2 Same as 3.15.1

3.15.3
(
1+

(
n − k − 1
a − k + 1

))/(
n

a

)

3.15.4
(

b

(
a

k

)
+ a

(
b

k

))/(
n

k + 1
)

3.16.2 (a) This depends on the order in which you catch the species, so the answer is a horrible

sum. (b)

(
n

x

)
bx cn−x

(b + c)n
. Avoid sampling with partial replacement!

3.16.4
(

n

x

)
px (1− p)n−x in all three cases.

3.17.5 K (20, 3) =
(
22

2

)
= 231.

3.17.6 K (17, 3) =
(
19

2

)
= 171.

3.17.7 Recall Example 3.12.

3.18.5 p(n, r + s)

/ n∑
j=r

p(n, j). Let n →∞.



Appendix 485

3.18.7 (a)
1

n!r !

n−r∑
k=0
(−)k(n − r − k)!/k!; (b)

n∑
k=0
(−)k (n − k)!

n!k!
; (c) (p(n, 0))2.

3.18.8 (a) zero; (b) zero; (c) e−2.

Problems

1
49

153

2 (a)
6a!b!c!

(a + b + c)!
; (b)

1

a!b!c!
; (c)

6

(a + b + c)!
.

3 (a)
4!48!

(12!)4

/
52!

(13!)4
; (b)

16(
52

13

) − 72(
52

13

)(
39

13

) + 72(
52

13

)(
39

13

)(
26

13

) ;

(c)

(
4

(
39

13

)
− 6

(
26

13

)
+ 4

)/(
52

13

)
; (d) 4

(
48

9

)/(
52

13

)
.

4 (a) 13

(
4

2

)(
12

3

)
43
/(

52

5

)
; (b) 44

(
4

2

)2(13
2

)/(
52

5

)
;

(c) 4510

/(
52

5

)
; (d) 4

(
13

5

)/(
52

5

)
; (e) 156

(
4

2

)(
4

3

)/(
52

5

)
.

6
32491

1+ 105
7 (i) 10; (ii) S, where S = max{n : n2 ≤ M}.

8 (a)

(
m + r

m

)
is an integer. (b) You have (k − 1)! colours, and k balls of each colour. How

many arrangements are there?

9 (a) 5

(
5

6

)(
1

6

)4
if the question means exactly 4 aces, or

26

6

(
1

6

)4
if it means at least 4 aces.

(b) 6 times (a). (c) 1− 3
(
5

6

)5
+ 3

(
2

3

)5
−
(
1

2

)5
.

10 (a) 18

/(
64

8

)
; (b) 8!

/(
64

8

)
.

11 (a) 1−
(
3n

r

)/(
4n

r

)
; (b)

(
n

2

)(
3n

r − 2
)/(

4n

r

)
;

(c)

((
4n

r

)
− 4

(
3n

r

)
+ 6

(
2n

r

)
− 4

)/(
4n

r

)
.

12 (a) 15; (b) 2; (c) 36.

14 Pk =
(

b + w − k − 1
w − 1

)/(
b + w
w

)
= w

b + w
(

b

k

)/(
b + w − 1

k

)
.

15 (b)(i)

(
N + m − 1

m − 1
)
; (ii)

(
N − 1
m − 1

)
.
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16 Follows from −1
2
+
(

K n + 1

4

) 1
2

< N <
1

2
+
(

K n + 1

4

) 1
2

.

17 (a) kn ; (b) k! if k ≤ n; (c)

(
n + k − 1

n

)
.

19 See Example 3.11.

20
n∑

m=0

(−)m
m!

(
n!

(n − m)!

)2 (2n − 2m)!

2n!
2m ∼

∞∑
0

(−)m
m!

1

2m
.

23 (a)
(n − 4)(n − 3)
(n − 2)(n − 1) whether Arthur sits at random or not.

(b) Number the knights at the first sitting, and then use Problem 21.

25 (a)
n∑

k=0
(−)k

(n

k

) (2n − k)!

(2n)!
→ e−

1
2 .

(b) Problem 21 again. The limit is e−1.

26
1

2
; (ii) 7

/(
7

3

)
= 1

5
; (iii)

1

3

(
7

2

)
2−7 +

(
4

5

)(
7

3

)
2−7 + 1

2
= 99

128
; (iv)

92

99
.

27
(
2n

n

)
(pq)n = (4pq)n

(
1− 1

2

)(
1− 1

4

)
. . .

(
1− 1

2n

)

≤ (4pq)n exp

(
−1
2

n∑
1

k−1
)
≤ (4pq)n exp

(
−1
2
log n

)
→ 0.

36
1

4
+ 3

4

(−1
3

)n

.

37 The number of ways of choosing k nonoverlapping triples (three adjacent) is(
3n − 2k

k

)
. Now use inclusion–exclusion.

39 Use induction.

CHAPTER 4

Exercises

4.8.2 (a) 992; (b) 32k!(31)k−1.
4.8.3 They give the same chance because trials are independent.
4.8.4 P(T > j + k|T > j) = (31/32)k = P(T > k).
4.9.4 Either form a difference equation or rearrange the sum.

4.9.6 (a) [(n + 1)p − 1]; (b)

[
k

p
− 1

]
.

4.9.7 (a)
1

2
(1+ (2p − 1)n); (b)

1

2
(1− (2p − 1)n);

(c)
n∑

m=k

m!

(m − k)!

( n

m

)
pm(1− p)n−m = pkn!

(n − k)!
; 0 ≤ k ≤ n.

4.10.1 (1− e−λ − λe−λ)/(1− e−λ)
4.10.2 λ(1− e−λ)−1

4.10.4 (a) [λ− 1]; (b) k.
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4.10.5 (a) exp(λ(e − 1)); (b) e−λ; (c) λ; (d) λk .

4.11.3 Choose t to minimize

L(t) = a
∑
x≤t

(t − x) f (x)+ bP(X > t).

(a) t̂ =
[
log a − log(a + bp)

log q

]
+ 1; (b) t̂ =

[(
1+ b

a

) 1
2

]
;

(c) t̂ =
[

b

a
− n

]
if this lies in [−n, n]; otherwise, t̂ = n if b/a > 2n.

(What if a or b can be negative?).

4.11.4 (a) Any median of X ; (b) E(X ).

4.11.5 Minimize L(m) = b
m∑

k=0
(m − k)pk(m)+ c

m+n∑
k=m+1

(k − m)pk(m), where

pk(m) = pk(1− p)m+n−k

(
m + n

k

)
. For no overbooking, you need

L(0) < L(m) for all m > 0; solutions are approximate or numerical.

4.12.2 k(a + b − k).

4.12.3 Let pk be the probability that B wins if A’s initial fortune is k. Then
P(A|B) = P(B|A)P(A)/P(B) = ppk+1/pk and P(Ac|B) = (1− p)pk−1/pk .

Hence, ppk+1E(Xk+1|B)− pkE(Xk |B)+ (1− p)pk−1E(Xk−1|B) = −pk .

When p = 1

2
, we have pk = (a + b − k)/(a + b), giving

E(Xk |B) = 1

3
((a + b)2 − (a + b − k)2), 0 ≤ k < a + b.

4.12.4
a+b∑
k=0

mk

(
a + b

k

)
2−(a+b) =




a + b

q − p

{
1

2
− 1− (2p)−(a+b)

1− (q/p)a+b

}
; p �= q

1

4
(a + b)(a + b − 1); p = 1

2
.

4.12.5 (i) p �= q;
k − (a + b)

q − p
+ p

(q − p)2

((
q

p

)a+b

−
(

q

p

)k
)
.

(ii) p = 1

2
; (a + b)(a + b − 1)− k(k − 1).

4.13.1 (b)
M + 1

j( j + 1)M ; (c)
1− exp(−λ j)

1− exp
(
−1
2
λM(M + 1)

) .
4.13.2 E(X A) = 2.

4.13.3 (b)
∞∑

n=1

m + 1
m + n

= ∞; (c) e−
1
2m(m+1)

∞∑
n=1

e−
1
2 λ(m+n)(m+n+1) <∞.

4.13.4 (i) Median is∞; (ii) E(X A|X A <∞) = ∞.
4.14.1 m̂ = max

{
0,

[
N (b + d)− c

b + d + c

]}
.

4.14.2 m̂ = [m], where m is the positive root of (m + 1)qm = c/(b + c).

4.15.1 You win $1 with probability 1, but your winning bet has infinite expected value.
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4.15.2
p(1− (2q)L+1)

(1− 2q)(1− q L+1)
if q �= p. This→∞ if p <

1

2
or→ p/(2p − 1) if p >

1

2
.

If p = 1

2
, then expectation is

Lp

1− q L+1 →∞ as L →∞.

4.16.2 With an obvious notation mus = 2

3
.
1

4
.

(
3

4

)s−1
= 2.3s−24−s ;

mds = 1

3
.
3

4
.

(
1

4

)s−1
= 4−s . Hence, the r th search downstairs comes after the sth

search upstairs if
2

9
> 3−s4s−r >

1

6
.

The order is duuuuduuuuudu . . .
4.16.3 Place mrs = (1− dr1)(1− dr2) . . . (1− drs)pr in nonincreasing order.

4.17.4 q2(1+ p)/(1− pq) = (1− p2)2/(1+ p3)

4.17.5 (1− q2)2/(1+ q3)

4.17.6 E(X |Bc) = 2

1− pq
+ q

1+ q

4.17.7 P(A1|B) = p

1+ p
;P(A2|B) = qp

1+ p
.

4.17.8 Every number in [2, 3) is a median.

4.17.9 P(B) = p2(1− q3)/(1− (1− p2)(1− q2))
E(X ) = (1+ pq)(1− 2pq)/(1− pq(1− p)(1+ q))

4.17.10 With new rules P(B) = q2

p2 + q2
, which is smaller than old P(B) if p >

1

2
.

Brianchon is making a mistake. E(X ) = 4 with new rules.
4.18.2 Because the answer “yes” is false with probability (1− p)/(2p), individuals should be

much more likely to tell the truth. Then
2Yn

n
− 1 should not be too far from p in the

long run.

4.18.3 P

( ∞⋃
n

Ak(ε)

)
≤

∞∑
n

P(Ak(ε)).

4.18.4 Use 4.18.3
4.18.5 Use 4.18.1
4.18.6 Use Markov’s inequality and Chebyshov’s inequality

4.18.8 a(m, k) = m(m − 1) . . . (m − k + 1)
(m + 1) . . . (m + k)

. Hence, for large enough m with k fixed

∣∣∣∣log a(m, k)+ 1

m
+ 2

m
+ · · · + k − 1

m
+ 1

m
. . .+ k

m

∣∣∣∣ ≤
2

k∑
1

r2

m2
→ 0 as m →∞.

Hence, [a(m, k)]mek2 → 1. The inequalities follow from(
2m

m

)
4−m <

2m(2m − 2) . . . 2
(2m + 1) . . . 3.1 =

1

2m + 1
((

2m

m

)
4−m

)−1

and

2

(
2m

m

)
4−m >

(2m − 2) . . . 4.2
(2m − 1) . . . 3.1 =

1

2m

((
2m

m

)
4−m

)−1
.
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4.19.6 For the left inequality, prove and use the fact that for any collection of probabilities

p1, . . . , pr , we have −
∑

i

pi log

(∑
i

pi

)
< −

∑
i

pi log pi . Equality holds when g(.)

is a one–one map. For the right-hand inequality, note that

fi = exp(−cg(xi ))

/∑
i

exp(−cg(xi ))

is a mass function and use 4.19.1. Equality holds if fi = fX (xi ) for all i .

Problems

1 (b) f (0) = 1

140
, f (1) = 18

140
, f (2) = 66

140
; f (3) = 55

140
,E(X ) = 9

4
.

3
35

12

4 If X is uniform on {1, 2, . . . , n}, then var (X ) = 1

12
(n2 − 1).

5 (a)(i)(e2 − 1)−1; (ii) p−1 − 1; (iii) (log(1− p)−1)−1; (iv) 6π−2; (v) 1.
(b)(i) 2e2(e2 − 1)−1; (ii) (1− p)−1; (iii) p((1− p) log(1− p)−1)−1; (iv)∞; (v)∞.

6 Yes, in all cases.

7 c = 4(M + 1)(M + 2)
M(M + 3) → 4;E(X ) = 2(M + 1)

M + 3 → 2.

8 Condition on the appearance of the first tail to get

P(An) = 1

2
P(An−1)+ 1

4
P(An−2)+ 1

8
P(An−3), n > 3. Hence, P(An) = Aαn + Bβn + Cγ n ,

where α, β, γ are roots of 8x3 − 4x2 − 2x − 1 = 0, and A, B,C are chosen to ensure that

P(A1) = P(A2) = 0 and P(A3) = 1

8
. Similar conditioning gives

E(T ) = 1

2
(1+ E(T ))+ 1

4
(2+ E(T ))+ 1

8
(3+ E(T ))+ 3

8
.

Hence, E(T ) = 14. To find E(U ), consider the event that a sequence of n tosses including no
H T H is followed by H T H . Hence, either U = n + 1 or U = n + 3, and so

P(U > n)
1

8
= P(U = n + 1)1

4
+ P(U = n + 3).

Summing over n gives
1

8
E(U ) = 1

4
+ 1;E(U ) = 10.

9 E(X ) = ∞.
14 (i)

1

b − a + 1 for a ≤ k ≤ b; (ii)
m − n − k

m − n
.

15 e.g. f (−2) = 1

2
, f (1) = f (3) = 1

4
.

16 (i)
∞∑
−∞
( f (2n)− f (2n + 1)); (ii) zero.
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17 FY (y) =




FX

(
y − b

a

)
; a > 0

P
(

X ≥ y − b

a

)
; a < 0{

0 y < b
1 y ≥ b

}
; a = 0.

19 (a) When λ = 0; (b) p−1 − log(1− p)−1 − 1.
20 (a) If the type is uncommon and the population is large. (c) X is roughly Poisson with

parameter 10 so P (this is the only one) � 10(e10 − 1)−1, which is very small.
21 fR(r + 1) =

(
n − r

n

)2
, fR(r − 1) =

( r

n

)2
;E(R)→ 1

2
n.

22 fX (1) = 5

18
; fX (3) = 2

7
;E(X ) = 2− 5

18
+ 2

7
.

24 P(X ≤ n) = 1

2
(m + n)(m + n + 1)m−2 for −m ≤ n ≤ 0. For

0 ≤ n ≤ m,P(X ≤ n) = 1− 1

2
(m − n)(m − n − 1)m−2.

25 Mean µp.

26 (i)
6!

(2!)3
; (ii)

6

5
+ 16

15
+ 5

3
= 59

15
.

27 (a) pkqn−k

(
n − 1
k − 1

)
; (b) (r p)k(1− r p)n−k

(
n − 1
k − 1

)
;

(c) (1− r )k pk(1− p)n−k

(
n

k

)
(1− pr )−n ;E(X ) = n(1− r )p

1− r p
.

28 (i) Choose A if 2000(1− p) < 1000p (i.e., if p >
2

3
).

(ii) Choose A if 2000

(
1− 9p

4+ 5p

)
< 1000

(
9p

4+ 5p

)
, but p >

8

17
, so choose B.

29 (a) pn ; (b) (1− p)pn−1; (c) (1− p)−1.

31 M(n)/n → C = 1

1+ p
as n →∞.

32 (a) 1− (1− p)7; (b) p(1− p)x−1/(1− (1− p)7);

(c)
7∑
1

x fX (x) = 1

p
− 7(1− p)7

1− (1− p)7
; (d)

1

p
(1− (1− p)4).

36 (b) 102(1− p)10 + 103 p(1− p)9; (c) [102(1− p)10 + 990p(1− p)19]b
+(1− r )102c.

37 (c)
2

3
(n + 1).

38 (a) Y is B

(
n,
1

36

)
;E(Y ) = n/36. (b) X − r is B

(
n − r,

6

7

)
;E(X − r )

= (n − r )
6

7
.

39 (a)

(
p2

1+ p
+ q2

1+ q

)−1
;

p2

1+ p

(
p2

1+ p
+ q2

1+ q

)−1
.

(b)
1

1− r

(
2(1− r )2 + pq

(1− r )2 − pq

)
;

p2

p + q

(
p2 + 2q

p2 + q2 + pq

)
.

The second set of rules.
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41 B

(
n,
1

32

)
, use the Poisson approximation.

43 n − E(H ) = E(n − H ) =
n∑

k=0
(n − k)pk =

n−1∑
0

(2n − k)

(
2n − k − 1

n

)
2k−2n .

=
n∑
1

(2n − k + 1)
(
2n − k

n

)
2k−1−2n

= 1

2
E(2n + 1− H )− 2n + 1

22n+1

(
2n

n

)
.

So E(H ) = 2n + 1
22n

(
2n

n

)
− 1.

44
∑
k

q(1− q)k−1ak

45 With an obvious notation, m = 1+ 1

2
m1 + 1

3
m2 + 1

6
m3, also m1 = 1+ 1

2
m1+

1

3
m12 + 1

6
m13 (and two similar equations), also m12 = 1+ 5

6
m12 (and two similar

equations). Solve to get m.

CHAPTER 5

Exercises

5.11.3 ρ = −
(

qr

(1− q)(1− r )

) 1
2

5.11.4
(m

x

)( p

p + q

)x ( q

p + q

)m−x

5.11.5
9∑

k=0

18!(pq)9−kr2k

((9− k)!)2(2k)!

5.11.6
p

p + r
(n − Y )

5.11.7 n − Y − Z
5.12.1 S is B(m, p2) with mean mp2, variance mp2(1− p2).
5.12.5 A is the sum of two binomial random variables B(m, φ) and B(m, µ). Hence,

f A(a) =
a∑

k=0
φk(1− φ)m−k

(m

k

)
µa−k(1− µ)m−a+k

(
m

a − k

)
Therefore E(A) = m(φ + µ).

5.12.6 E(A|S) = 2S + (m − S)φ + (m − S)µ

5.13.3 E(Rn) = 2+ 2

3

2n − 1
2n−1 + 1 +

1

3

2n−1 − 1
2n + 1 → 7

2

5.13.4 pr = r

r + b
5.13.5

m

n
5.14.4 When Xi = c, where c is constant.
5.14.5 We assume that “at random” means an individual is selected at random from n

independent families X1, . . . , Xn . Define

I (Xi ≥ k) =
{
1 if Xi ≥ k

0 if Xi < k.
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Then

fR(k) = E
(∑n

i=1 I (Xi ≥ k)∑n
i=1 Xi

)
= nE

(
I (X1 ≥ k)∑n

i=1 Xi

)

and

E(R) = E
(∑

k k I (X1 ≥ k)∑n
1 Xi/n

)
.

5.14.6 Let X be uniform on {x1, . . . , xn} and Y uniform on {y1, . . . , yn}.
5.15.1 S + (n − S)

p − pγ

1− γ p

5.15.2 Nγ

5.15.3 ρ(N , S) =
(
γ (1− p)

1− γ p

) 1
2

5.15.4 (i) P(T = k, S = j, N = i) =
(

j

k

)
τ k(1− τ ) j−k

(
i

j

)
γ j (1− γ )i− j

(n

i

)
×pi (1− p)n−i for k ≤ j ≤ i ≤ n.

(ii) P(N = i |T = k) =
(

n − k

n − i

)(
1− p

1− pγ τ

)n−i ( p − pγ τ

1− pγ τ

)i−k

, which is binomial.

5.15.5
(

n − s

i − s

)(
p(1− γ )
1− pγ

)i−s ( 1− p

1− pγ

)n−i ( s

k

)
τ k(1− τ )s−k ; k ≤ s ≤ i .

5.15.6 Zero

5.17.2 No

5.17.3 E(Z ) = 1

2
; var (Z ) = 5

12
.

5.17.4
1

6
n;
5

36
n.

5.18.7 Recall the ballot theorem.

5.19.3 na(b − a)(b − n)/(b2(b − 1)).

5.19.4 E(Zm) = b

a
+ b − 1

a − 1 + · · · +
b − m + 1
a − m + 1 .

5.19.5 P(X = k|X + Y = j) =
(n

k

)( n

j − k

)/(
2n

j

)
.

5.20.5 E(Rr ) = ∞
5.20.7 For a walk starting at zero, the expected number of visits to zero including the first is

1

|p − q| . Hence, for p < q and r > 0,E(V ) =
(

p

q

)r 1

|p − q| ; for p < q and

r < 0,E(V ) = 1

|p − q| . Likewise, if p > q ,

E(V ) =




(
p

q

)r 1

|p − q| r < 0

1

|p − q| r > 0.
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5.20.8 E(V ) =
∑

n

P(SX = SY = 0) =
∑

n

1

42n

n∑
k=0

(2n)!

(k!)2((n − k)!)2
=

∑
n

1

42n

(
2n

n

)2

=
∑

n

(2n − 1)2(2n − 3)2 . . . 12
(2n)2(2n − 2)2 . . . 22 ≥

∑
n

1

2n
= ∞.

5.21.5 P(X ≥ Y ) = ∫
FY (x) fX (x)dx ≥ ∫

FX (x) fX (x)dx = 1

2
.

5.21.7 (i) Let I j be independent Bernoilli random variables with parameter p. Then

m∑
1

I j ≤
n∑
1

I j for m ≤ n.

(ii) Let I j be independent Bernoulli with parameter p2, and let K j be independent

Bernoulli with parameter
p1
p2
. Then I j K j is Bernoulli with

parameter p1 and
n∑
1

I j K j ≤
n∑
1

I j .

Problems

1 f (2, 0) = f (0, 2) = 1

36
, f (1, 0) = f (0, 1) = 8

36
, f (0, 0) = 16

36
, f (1, 1) = 2

36
;

cov (X, Y ) = − 1

18
; ρ(X, Y ) = −1

5
.

2 (a) Zero; (b)
1

16
; (c)

1

2
; (d) 1.

3 e.g. X = ±1 with probability 1
2
each, Y = |X |.

7 cov (U, V ) = ac + bd + (ad + bc); ρ(X, Y ) = 0 for many choices of a, b, c, d .

8 (i) P(correct) = 2
(

p − 1

2

)2
+ 1

2
; (ii) P(correct) = p3 + 3p(1− p)2.

9 (b) P(U = m, V = n) = pm+1qn + qm+1 pn ; cov (U, V ) = (4pq − 1)/(pq);
ρ(U, V ) = −|p − q|.

10 You need results like
n∑

i=1
i2 = 1

3
n(n2 − 1)+ 1

2
n(n + 1) and

∑
i �= j

1≤i, j≤n

i j =
(

n∑
i=1

i

)2
−

n∑
i=1

i2.

Then cov (X, Y ) = −n + 1
12

; ρ(X, Y ) = − 1

n − 1 → 0.

11 (b) a − 4a2; (c) E(X |Y = 0) = a

1− 2a
;E(X |Y = 1) = 1

2
; (d) a = 1

4
.

12 cov (U, V ) =
(
5

6

)2 (7
6

)2
.

13 (a) E(|XY |) = E(|X ||Y |) = E(|X |)E(|Y |) <∞; (b) E(X2)E(Y 2) <∞.
14 (a) Yes, when θ = 3− 2√2; (b) no; (c) yes, when θ = 1

2
(
√
5− 1);

(d) yes, when θ = 1

2
(3− 2

√
2) and independence holds; (e) yes, when

αβ

1− β = 1;
(f) yes, when α = 6π−2.
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15 (a) fX (i) =



1+ θ
1− θ θ

|i |, i �= 0
2θ

1− θ , i = 0

(c) fX (i) = θ2i+3

1− θ , i ≥ 0 (d) fX (i) = θ i+1

1− θ , i ≥ 0

(e) fX (i) = α

(
iβ

c − iβ
− (i − 1)β

c − (i − 1)β
)
, 1 ≤ i ≤ c (f) fY ( j) = α j−2, 1 ≤ j .

17 (c) P(X1 = x1) =
(

a1
x1

)(∑k
2 ai∑k
2 xi

)/(∑k
1 ai∑k
1 xi

)
.

18 (a)
1− pc

1− p
;

(b) P(min{X, Y } > n) = pn
1 pn

2 so E(Z ) =
1

1− p1 p2
.

20 (a)
pβ

1− qβ
; (b)

αp

βq

βmqn

1− βmqn
.

26 Let (x, y, z) take any of the 8 values (±1,±1,±1). Then

1− xy = |1− xy| = |(1− xy)||(−xz)| because |(−xz)| = 1,
= |(1− xy)(−xz)| = |yz − xz| ≥ ±(yz − xz).

Now use Corollary 5.3.2 to get the result.

27 fY ( j) = 1

2n + 1 ; fX (i) = 1

2m + 1 .

28 f (0, 1) = f (1, 2) = f (2, 0) = 1

3
. Then fX (i) = fY (i) = 1

3
, and P(X < Y ) = 2

3
,

P(Y < X ) = 1

3
.

29 (a) E(Ur ) = U 2

U + V
+ U V

U + V

(
1− U + V

U V

)r

→ U 2

U + V
.

(b) Let T be the number of tosses to the first head,

E(UT−1) = U 2

U + V
+ pU 2V 2

(U + V )(U V p +U + V − p(U + V ))
.

When U = V = 1

p
, this is

U

2

(
1+ U

3U − 2
)
∼ 2

3
U .

31 The total T =∑k
1 Si , where Si is the score on the i th ball.

(a) E(T ) = 1

2
k(n + 1),E(Si S j ) = 2

n(n − 1)
∑
i> j

i j = 1

12
(3n + 2)(n + 1). Hence,

var (T ) = 1

12
(n + 1)k(n − k). If M is the maximum,

P(M = m) =
(

m − 1
k − 1

)/(n

k

)
without replacement;

P(M = m) =
(

m

n

)k

−
(

m − 1
n

)k

with replacement.
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33 (a)
1

2
; (b)

3
√
5− 1
6

; (c)
5

6
.

34 Use the argument of Theorem 5.6.7; pr3− r + q = 0; r = (−p+ (p2+ 4pq)
1
2 )/(2p).

35
(n

r

) 3n−r

4n
;
∞∑

n=r

(n

r

) 3n−r e−88n

4n n!
= e−22r

r !
; mean = variance = 12.

38 (a) P(M ≥ r ) =
(

p

q

)r

;P(M = r ) =
(

p

q

)r

−
(

p

q

)r+1
;E(M) = p

q − p
.

(b) P(M = r |S0 = −k) = αβk

(
1− p

q

)(
p

q

)r+k

;P(M = r ) = α(q − p)

q − βp

(
p

q

)r

;

P(S0 = −k|M = r ) =
(
1− βp

q

)(
βp

q

)k

; k ≥ 0.
40 For a neat method, see Example (6.6.6).
41 No

CHAPTER 6

Exercises

6.10.7 E(sTa0 )+ E(sTaK )
6.10.8 (λ2(s))a

6.10.9 (i)P(Ta0 <∞) =
{
1 p ≤ q
q

p
p ≥ q

(ii)E(Ta0|Ta0 <∞) = a

|p − q| .
6.10.10 (i) E(sT ) = psE(sT10 )+ qsE(sT01 );

(ii) E(T |T <∞) = 1+ 1

|p − q| .
6.11.1 (0, 2, 2, 4) and (2, 3, 3, 4).

6.11.2 (b) f (x) and g(x) have nonnegative coefficients and
f (x)

f (1)

g(x)

g(1)

=
(

x(1− x12)

12(1− x)

)2
.

6.11.4 Yes, trivially
6.11.5 No

6.12.10 nσ 2

6.12.13 r is the chance of extinction derived in Example 6.3.16.
6.13.7 Use induction.
6.13.9 (a) By Jensen’s inequality (4.6.14), we have

E(X2) = E(X2|X > 0)P(X > 0) ≥ (E(X |X > 0))2P(X > 0)

= E(X |X > 0)E(X ).

(b) Hence, E(Znρ
−n|Zn > 0) ≤ E

(
Z2nρ

−2n
)

6.13.10 Let E(s Z∗n ) = G∗n(s). Then

E(s Z∗n t Z∗n+m ) = G∗m−1(t)G
∗
n(sGm(t))→ sG∗m−1(t)Gm(t)(ρ − 1)/(ρsGm(t)− 1).
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6.14.4 Set z = y + 1 in (3) and equate coefficients.
6.15.10 For HHH, E(X ) = 2+ 4+ 8 = 14; for HTH, E(X ) = 2+ 8 = 10; for HHT, E(X ) = 8;

for THH, E(X ) = 8. The others all follow by symmetry from these.

6.15.16
1

p
+ 1

p2q
+ 1

p3q2
(= 42 in the fair case).

6.16.6 Arguing directly

E(T ) = E(X1 Ia)+ E
((

X1 + T ′
)
I c
a

) = E(X1 Ia)+ E
(
X1 I c

a

)+ E(T )E(I c
a ).

Hence,

E(T ) = E(X1)

1− E
(
I c
a

) = E(X1)
P(X1 ≤ a)

= 1

q(1− pa)
,

if X1 is geometric.

6.16.7 E(T ) = b + E(X1 I c
b )/P(X1 > b) = (1− pb)/(qpb), if X1 is geometric.

6.16.8 This is (1) with a = 0 and b = r .
6.16.9 This is (8) with X geometric.

6.16.10 P(Ln < r ) = P(W > n), where W is as defined in (9). Hence,

1+
∑

n

snπn,r =
∑

n

snP(W > n) = 1− E(sW )

1− s
= 1− pr sr

1− s + qpr sr+1 .

Problems

1
∑

P(X < k)sk =
∑

P(X ≤ k)sk+1

2 (a) G = 1

n

n − sn+1

1− s
(b) G = 1

2n + 1
s−n − sn+1

1− s
; s �= 0

(c) G = 1− (1− s−1) log(1− s); |s| ≤ 1
(d) G = 1− 1

2
(1− s) log(1− s−1)− 1

2
(1− s−1) log(1− s); |s| = 1

(e) G = 1− c

1+ c

{
1+ cs

1− cs
+ cs−1

1− cs−1

}
; |s| = 1.

3 (a) A p.g.f. wherever G X (s) exists; (b) not a p.g.f. (c) a p.g.f. for |s| < p−1;
(d) a p.g.f. for all s; (e) a p.g.f. for |s| ≤ 1; (f ) a p.g.f. if α log(1+ β) = 1, β < 0, for
|βS| < 0.

5 Let N have p.m.f. fN (k) = 2−k , k ≥ 1, and (Xi ; i ≥ 1) be independent and identically
distributed with p.g.f. G, then Y =

N∑
1

Xi .

6 If it were possible, then 1− s11 = (1− s)R1(s)R2(s), where R1 and R2 are polynomials
(with real positive coefficients) of degree five. Because the imaginary roots of unity form
conjugate pairs, this is impossible.

7 (b) Yes, make it a flat with f (2) = 0.
9 (b) Gn

Y (1)+ G ′Y (1)− (G ′Y (1))2 = var(N )(E(X ))2 + E(N )var(X ).

10 (c)
1

3
(G X (1)+ G X (ω)+ G X (ω

2)), where ω is a complex cube root of unity.
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11 G = G X , if and only if G = (1+ µ)−1
1− s(1+ µ)−1 , so X is geometric.

13 Use conditioning. So E(s N ) = s

2
E(s N )+ s2

4
E(s N )+ s2

4
;

E(N ) = 1

2
(1+ E(N ))+ 1

4
(2+ E(N ))+ 1

2
;E(N ) = 6.

14 (a)
1

2
λ+ 1. (b) P(R = r ) =

∑
P(R = r |X = x)P(X = x) =

∞∑
x=r

cpx

x(x + 1) .

Hence, (1− s)G R(s) = cd(1− p)s + cs

(
1− 1

ps

)
log(1− ps),

where d =
(
1

p
log(1− p)

)
. ER = 1

2
cp/(1− p).

15 By the independence var(H − T ) = var(H )+ var(T ) = λ = var(N ).
16 With the notation of Problem 15,

E(s H tT ) = E(s H t N−H ) = E((ps + qt)N ) = G N (ps + qt).

If H and T are independent, then

G N (ps + qt) = G H (s)GT (t) = G N (ps + q)G N (p + qt).

Write s = x + 1, t = y + 1, G N (v) = f (v − 1) to get f (px + qy) = f (px) f (qy). The
only continuous solutions of this are f (z) = eλz , so G N (s) = eλ(s−1).

17 G Xn (s) =
(

p

1− qs

)n

=


 1− λ

n

1− λs

n




n

→ eλ(s−1).

18 (b) E(s N ) = s + (s − 1)(exp(se−a)− 1); E(N ) = ee−a
.

19 Do not differentiate G(s)!

20 (i) G X (s) = s

3− 2s
. (ii) GY (s) = s .

(m − 1)s
m − s

.
(m − 2)s
m − 2s

. . .
s

m − (m − 1)s .
Do not differentiate this to find the mean!

21 Use L’Hopital’s rule.

22 Gn(s) = s

2− Gn−1(s)
; Gn(1) = 1; G ′n(1) = n.

24 Differentiate.

25
(

a

1+ a − s

)λ
26 E(s X+Y t X−Y ) = exp(λ(st − 1)+ µ(st−1 − 1)). Hence, for X − Y , κr = λ+ (−)rµ and for

X + Y , µ(k) = (λ+ µ)k .
27 (ps + q)n(p + qs−1)msm = (ps + q)m+n .

28 (a)
αp

1− [1− p + p(1− α)s]t ; (b)
p(1− α)
1− αp

.

29 For all 0 ≤ r ≤ n, we have

n∑
k=0

(
n − r

k

)
xk = (1+ x)n−r =

(
1− x

1+ x

)r

(1+ x)n

=
n∑

k=0

(
r

k

)( −x

1+ x

)k

(1+ x)n .
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Because the sums are polynomials in r of degree at most n, it follows that they must be
identically equal. Hence, setting r = −n − 1 and x = 1 gives

n∑
k=0

(
n + k

k

)
2−k+n =

n∑
k=0

(
2n + 1

k

)
= 1

2

2n+1∑
k=0

(
2n + 1

k

)
= 22n .

Hence,
n∑

k=0
ak = 1

2n+1

n∑
k=0

(
n + k

k

)
2−k = 1

2
.

Recognising the p.g.f. of the negative binomial distribution with parameter 12 , this says that
in a sequence of coin tosses the chance of getting up to n tails before n + 1 heads equals the
chance of getting n + 1 or more tails before n + 1 heads equals 12 . Now remember the ant of
Example 3.7.1.

30 Let Sn = Xn + Yn . Then Sn is a simple random walk with p = α1 + α2 and
q = β1 + β2 = 1− p.

31 Sn is symmetric so (a) E(T ) = ∞ and (b) E(sT1 )|s=1 = 1.
(c) Let Un = Xn − Yn and Vn = Xn + Yn , so

E(sU1 t V1 ) = 1

4
(st + st−1 + ts−1 + s−1t−1)

= 1

2
(s + s−1)

1

2
(t + t−1).

Hence, Un and Vn are independent simple random walks and

E(s XT−YT ) = E(E(sVT |T ))

= E

((
s + s−1

2

)T
)

=
(

F1

(
s + s−1

2

))m

, where F1(s) = 1− (1− s2)
1
2

s
.

40 E(s Xm |Xm > 0) = (E(s Xm )− P(Xm = 0))/P(Xm > 0)

=
((

p

1− qs

)m

− pm

)
/(1− pm) = pm(e−m log(1−qs) − 1)/(1− em log p)

= pm(m log(1− qs)+ O(m2))/(m log p + O(m2))

→ log(1− qs)

log(1− q)
as m → 0. [O(.) is defined in Section 7.5]

41 We know U (s) =
∑

u2ks2k = (1− s2)−
1
2 . Let r2n =

n∑
0

u2k . Then

∑
s2kr2k = U (s)

1− s2
= (1− s2)−3/2 = 1

s

d

ds

(
1

(1− s2)
1
2

)
= 1

s

∑ d

ds

(
2k

k

)
4−ks2k

=
∑

2k

(
2k

k

)
4−ks2k−2 =

∑
(2k + 2)

(
2k + 2
k + 1

)
4−k−1s2k . The result follows.
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CHAPTER 7

Exercises

7.11.4 f (x) = 3

4
+ 1

4
. 12

(
x − 1

2

)2
, so you toss a coin twice and set

X =



(

U

4
− 1

8

) 1
3

+ 1

2
if you get two heads

U otherwise.

7.11.5 P(Y ≤ y) = P

(
− logU ≤

(
y

γ

)β)
= 1− exp

(
−
(

y

γ

)β)

7.11.7 (a) (π (1+ x2))−1;−∞ < x <∞ (b) 2(π (1+ x2))−1; 0 ≤ x <∞.

7.12.7 First note that the coefficient of xn in Hn is 1, so Dn Hn = n! Now integrating by parts∫ ∞

−∞
Hn Hmφ = [(−)m−1Hn Hm−1φ]∞−∞ +

∫ ∞

−∞
DHn(−)m−1Dm−1φ.

The first term is zero, and repeated integration by parts gives zero if m > n, or∫ ∞

−∞
φDn Hn = n! if m = n.

7.12.8 By Taylor’s theorem φ(x)
∑ tn Hn(x)

n!
=

∑
tn(−)n Dnφ(x)/n! = φ(x − t).

Hence,
∑ tn Hn(x)

n!
= e−

1
2 (x−t)2+ 1

2 x2 = e−
1
2 t2+xt .

7.12.9 Set φ = −φ′/x in the integral in (6), and integrate by parts again.

7.12.10 E(X − t |X > t) =
∫ ∞

t

1− F(x)

1− F(t)
dx = e(λt)2

∫ ∞

t
e−(λx)2dx

= e(λt)2π
1
2 λ−1(1−�(λ+

√
2)) and the inequality follows using (3).

7.13.2 Still
1

3
.

7.14.5 The policy is essentially the same with the one difference that x̂ = ŷ.
7.14.6 The new expected cost function λ∗ is related to λ by λ∗(x) =

λ(x)+ mP(Z > x) = λ(x)+ m(1− F(x)). Then
∂µ

∂y
= 0 yields 0 = c − h

− (h + p + mλ) exp(−λ(ŷ − a)). Thence, λ∗(x̂)+ cx̂ = k + cŷ + λ∗(ŷ).
7.15.6 Let g(s) = log s − (s − 2)(s + 1). At s = 1, we have g(1) = 2 > 0; at s = e4, we have

g(e4) = 4− (e4 − 2)(e4 + 1) = (3− e4)(2+ e4) < 0. There is thus at least one root.
However, log s lies below its tangent and s2 − s − 2 lies above, so there can be no more
than one root in this interval.

7.15.7 Use log s ≤ s − 1.
7.16.2 r (t) = λ. Your part has no memory.
7.16.3 (a) Use Bayes’ theorem. (b) π → 1 if λ > µ;π → 0 if λ > µ;π = p if λ = µ.

7.16.4
d2

dθ2
logM(θ ) =

(
E(X2eθX )E(eθX )− (E(XeθX ))2

(M(θ ))2

)
.

By Cauchy–Schwarz, (E(XeθX ))2 = [E(XeθX/2eθX/2)]2 ≤ E(X2eθX )E(eθX ).

7.16.5 P(T > t) = E(exp(−"t)) = M"(−t). But
dr (t)

dt
= − d2

dt2
P(T > t) = − d2

dt2
M"(−t) < 0, by (4). Hence, T is DFR.
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7.16.6 As above r ′(t) = E( f ′T" )(1− E(FT" ))+ (E( fT" ))
2. Now because FTλ is DFR, we have

(1− FTλ) f ′Tλ + f 2Tλ ≤ 0; hence,
(E( fT" ))

2 ≤ (E(− f ′T" (1− FT" ))
1
2 )2 ≤ E(− f ′T" )E(1− FT" ) by Cauchy–Schwarz.

Hence, r ′(t) ≤ 0.
7.17.4 (i)

d

dt

1

t

∫ t

0
r (v)dv = r (t)

t
− 1

t2

∫ t

0
r (v)dv = 1

t2

∫ t

0
[r (t)− r (v)]dv > 0

if r ′(v) > 0 for all v. Hence, IFR⇒ IFRA. (ii) Use (7.8.6) and Theorem 7.8.7.

7.17.5 (i) E(T − t |At ) =
∫ ∞

0

P(T > t + s)

P(T > t)
ds ≤

∫ ∞

0
P(T > s)ds if NBU.

by Definition 7.7.8 (iii). Hence, NBU⇒ NBUE.

7.17.6 P(T > t) =
∫ ∞

t
λ2xe−λx dx = (1+ λt)e−λt . Hence

H (t) = − log(1+ λt)+ λt, r (t) = λ− 1

1+ λt
, and r ′(t) = 1

(1+ λt)2
> 0.

7.18.3 Uniform on

(
0,
1

2

)
.

7.18.4 E{X ∧ (1− X )} = 1

4
;E{X ∨ (1− X )} = 3

4
.

7.18.5 E(sin!) = 2
∫ 1

2

0

x

(x2 + (1− x)2)
1
2

dx = 1√
2
(1+ log(1+

√
2))− 1.

Likewise, E(cos!) = 1√
2
(−1+ log(1+

√
2))+ 1, so

E(sin!)
E(cos!)

= log(1+√2)+ 1−√2
log(1+√2)− (1−√2) � 0.36.

7.18.7 E(cot!) =
∫ 1

2

0

1

B(a, b)
xa−2(1− x)bdx +

∫ 1

1
2

1

B(a, b)
xa(1− x)b−2dx .

7.19.6 Remember (or prove) that  (n) = (n − 1)! when n is an integer.
7.19.7 By the reflection principle, the number of paths that visit b on the way from (0, 0) to

(2n, 0) is the same as the number of paths from (0, 0) to (2n, 2b), namely,

(
2n

n − b

)
.

Hence, the probability required is

(
2n

n − b

)/(
2n

n

)

= (n!)2

(n − b)!(n + b)!
� n2n+1

(n − b)n−b+ 1
2 (n + b)n+b+ 1

2

using Stirling’s formula

=
(
1− b

n

)−n+b− 1
2
(
1+ b

n

)−n−b+ 1
2

→ e−y2 .

7.19.8 (a) Use Stirling’s formula. (b) Take logs. (c) Use the Riemann integral.

7.19.9 The number of paths from (0, 0) to (2n, 2 j) is

(
2n

n − j

)
; the number from (0, 0) to

(2r, 0) is

(
2r

r

)
; and the number from (2r, 0) to (2n, 2 j) that do not visit 0 is

j

n − r

(
2n − 2r

n − r + j

)
; (recall the reflection principle, or the hitting time theorem). Hence,

the required probability is
j

n − r

(
2n − 2r

n − r + j

)(
2r

r

)/(
2n

n − j

)
= fr . Now use

Stirling’s formula and take logs in the usual way.
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Problems

1 x lies between α and β, c(α, β)−1 =
∣∣∣∣
∫ β

α

(x − α)(β − x)dx

∣∣∣∣.
2 P(X = x) = lim

n→∞

(
F(x)− F

(
x − 1

n

))
.

3 var (X ) = B(a + 2, b)

B(a, b)
−
(

B(a + 1, b)

B(a, b)

)2
.

4 1 = c
∫ π/2

0
(sin x)α(cos x)βdx = c

2
B

(
α − 1
2

,
β − 1
2

)
.

5
2

π
sin−1 x1/2

6 exp(− exp(−x))
7 E(Y ) <∞ for λ > 2a > 0

9
(
1−�

(
x + a

x

))/
(1−�(x)) =

φ(x + a

x
)r (x + a

x
)

φ(x)r (x)
→ e−a ,

using the properties of Mills ratio r (x), and φ(x).

11 (i) F(x) = (b − 4π2ml0x
−2)/(b − a) for 2π

(
ml0
b

) 1
2

≤ x ≤ 2π
(

ml0
a

) 1
2

.

(ii) E(X ) = (4π (ml0)
1
2 )/(
√

a +
√

b).

12 Choose xl such that F(xl ) < 2−(n+1) and xu such that 1− F(xu) < 2−(n+1). Then set

Sn(X ) = xl + rε for xl + rε < X ≤ xl + (r + 1)ε, for all r in 0 ≤ r ≤
[

xu − xl

ε

]
.

14 P(X > x) = (1− 2
√
3x)2, so fX (x) = 4

√
3(1− 2

√
3x).

15 c = E(X )

16 exp

(
−2
3
λt

3
2

)
, t > 0

17 F ′(x) ∝ g(x) and F(∞) = 1
18 κ1 = µ; κ2 = σ 2; κr = 0, r ≥ 3
19 logMX (t) = − log

(
1− t

λ

)
=

∞∑
r=1

tr

rλr
, so κr = (r − 1)!

λr

20 Set X =




U if 0 ≤ V ≤ 3

5
U

1
2 if

3

5
< V ≤ 9

10
U

1
3 if

9

10
< V ≤ 1

21 (a) Set u = v/a (b) Set u = b/v after differentiating. (c) Integrate
∂ I

∂b
= −2aI with the

boundary condition I (a, 0) = π
1
2/(2a).

22 (a) Set x = v2 to get MX (t) = 2αI ((γ − t)
1
2 , β

1
2 ) = α

(
π

γ − t

) 1
2

exp(−2(β(γ − t))
1
2 ), so

α =
(γ
π

) 1
2
exp(+2(βγ ) 12 ).) (b) exp

(
−2

(
− t

2

) 1
2

)
for t ≤ 0.

23 Use Problem 22.

24 E(etX2
) =

∫
(2π )−

1
2 exp

(
(2t − 1) x

2

2

)
dx = (1− 2t)−

1
2 . Hence X2 has the χ2(1) density.
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25
αµ

µ+ t
+ βλ

λ− t
for −µ < t < λ, where α + β = 1.

26 P(X > k) = P
(

logU

log(1− p)
≥ k

)
= P(U ≤ qk) = qk .

27 X =




U with probability
24

25(
1

4
U − 1

8

) 1
3

+ 1

2
with probability

1

25
.

28 Use Example 7.9.8.

29
∫ ∞

0
f (θ, x)g(θ )dθ = v

(v + x)2
. This is nonnegative and

∫ ∞

0

v

(v + x)2
dx = 1.

30 E(exp(t(Xn − n)n−
1
2 )) = e−tn 1

2 exp(n(e−tn− 1
2 − 1))

= exp(−tn
1
2 + tn

1
2 + 1

2
t2 + O(n−

1
2 ))→ e

1
2 t2 ; now use the continuity theorem.

31 (1−U )−d−1

32 Xα has mean and variance α, and m.g.f.
1

(1− t)α
. Hence,

Mα(t) = E
(
exp

(
t√
α
(Xα − α)

))
= e−t/

√
α

(
1− 1√

α

)−α
.

Now for fixed t , and

∣∣∣∣ t√
α

∣∣∣∣ < 1,
logMα(t) = − t√

α
− α log

(
1− t√

α

)

= − t√
α
+ α

∞∑
r=1

1

r

(
t√
α

)r

→ t2

2
as α→∞.

Using the continuity theorem gives the result.
33 Use Chebyshov’s inequality.

CHAPTER 8

Exercises

8.11.3 By definition, fY |X (y|x) = f (x, y)/ fX (x) = 1

(2π (1− ρ2)) 12
exp

(
− (y − ρx)2

2(1− ρ2)
)
.

This is N (ρx, 1− ρ2); therefore, E(etY |X ) = exp
(
ρXt + 1

2

(
1− ρ2) t2

)
.

8.11.4 By conditional expectation,

E(esX+tY ) = E(E(esX+tY |X )) = E(e(s+ρt)X )e
1
2 (1−ρ2)t2

= exp
(
1

2

(
s + ρt

)2
+ 1

2
(1− ρ2)t2

)

as above.

8.11.5 E(esW+tZ ) = E
(
exp

∑
(αi s + βi t)Xi

)
= exp

(
1

2

∑
(αi s + βi t)

2

)
. This factorizes as

required for the independence if and only if
∑

αiβi = 0
(or in geometrical terms, α.β = 0).
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8.11.6 E(et(aX+bY )) = exp
(
1

2
t2(a2 + 2ρab + b2)

)
. Hence, aX + bY

is N (0, a2 + 2ρab + b2).
8.12.4 A triangle is feasible if U < V +W and V < U +W and W < U + V . In terms of X

and Y , this gives (when X < Y ) the constraints X <
1

2
, Y − X <

1

2
and Y >

1

2
. A

similar possibility arises when X > Y . Now a sketch of these two regions shows that they

form two triangles with combined area
1

4
, and this is the required probability because (X ,

Y ) is uniform on the unit square.
8.12.6 By symmetry, it is the same as X (1), namely n(1− x)n−1; 0 ≤ x ≤ 1.
8.12.7 By symmetry, this is the same as the joint density of X (1) and 1− X (n). Now P(X (1) > x ,

1− X (n) > y) = (1− x − y)n , so f = n(n − 1)(1− x − y)n−2.
8.12.8 Given neither point is on the diameter, the density of the angle they make at the midpoint

of the diameter is given by (1) with a = π . Hence, the expected area in this case is∫ π

0

2(π − x)

π2

1

2
sin xdx = 1

π
.

Given one on the diameter and one not, they are jointly uniform on
(0, π ) × (−1, 1), so the expected area is

2
∫ π

0

1

2π

∫ 1

0

y sin x

2
dxdy = 1

2π
.

Hence, the expected area is
1

π

(
π

π + 2
)2
+ 1

2π

4π

(π + 2)2 =
1

2+ π .
8.13.4 The easy method uses (1) and (2) to see that

P(Ac ∩ Bc) = 1− P(A ∩ B)− P(A ∩ Bc)− P(Ac ∩ B), which gives the answer. The
other method observes that Q can be divided into five regions in which (given C = (x ,
y)), P(Ac ∩ Bc) takes the values

0,1− 2

π
cos−1

( y

l

)
,1− 2

π
cos−1

( x

l

)
,1− 2

π
cos−1

( x

l

)
− 2

π
cos−1

( y

l

)

respectively. Identify the regions and do the integrals.
8.13.5 The easy method allows b →∞ in (2). You should also do it via an integral.
8.13.6 Draw a picture with no B-lines to see that the probability of an intersection is

1

πa

∫ π/2

0
min {l cos θ, a}dθ .

8.13.7
(a − l)(b − l)

ab
for l ≤ a ∧ b. Evens if 2l2 − 2(a + b)l + ab = 0, which implies that the

coin has diameter a + b − (a2 + b2)
1
2 .

8.14.1 (2n + 3)−1
8.14.2 πn/(n + 1)
8.14.3 π (n − 1)/(n + 1)
8.14.4 Integrate (2) remembering that (1) is a density and  (α + β)

=
∫ ∞

0
λα+βuα+β−1e−λudu.
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8.14.5 Let X and Y be independent with density
1

 

(
1

2

) x−
1
2 e−x . Then U = X + Y has density

(
 

(
1

2

))−2
e−u

∫ u

0
v−

1
2 (u − v)− 1

2 dv = πe−u

(
 

(
1

2

))−2
.

The result follows.
8.15.6 Set (1+ x2)−1 = v and use Exercise 5.

8.16.4 P(N = n) =
(
1− 1

a

)n 1

a
with E(N ) = a − 1. Hence, a should be as small as (1)

permits.
8.16.5 We choose a so that ae−x is as small as possible (since e−X is uniform). Hence,

a = sup
x

{
ex− 1

2 x2
(
2

π

) 1
2

}
= sup

x

{(
2

π

) 1
2

e−
1
2 (x−1)2+ 1

2

}
=

(
2e

π

) 1
2

.

Thus, we get a variable with density fS(x) if we set X = − logU1 whenever
e
1
2 U1U2 < exp(−(logU1)2/2).

8.16.6 Now − logUi is exponential with parameter 1, so

P(X ≤ x |Y >
1

2
(X − 1)2) ∝

∫ x

0

∫ ∞

1
2 (v−1)2

e−ye−vdydv ∝
∫ x

0
e−

1
2 v

2
dv.

Hence, fX |A =
(
2

π

) 1
2

e−x2/2.

8.17.3 Use independence of increments.
8.17.4 Conditional on N (24) = k, the k calls are independent and uniform over (0, 24). Given

X = x and Y = y, a call at time U finds you in the shower if x < U < x + y, with
probability y/24. Hence, P(a call at U finds you in the shower |N = k) = E(Y )/24 = p
(say). Hence, the number Z of calls that finds you in the shower given N = k is binomial
with parameters k and p. Hence, E(s Z |N = k) = (ps + 1− p)k ; hence,
E(s Z ) = E((ps + 1− p)N ) = exp(24λ(ps + 1− p)) = exp(λE(Y )(s − 1)).

8.17.5 Argue as in (4). Given N (t) = n, then R1 and R2 have a trinomial mass function with
p.g.f. E(x R1 y R2 |N = n) = (p1x + p2y + 1− p1 − p2)n . Hence, E(x R1 y R2 ) factorizes
into two Poisson p.g.f.s.

8.17.6 λmin{s,t}
8.18.5 X R−1 is always the smallest of X1, . . . , X R . So P(X R−1 ≥ x) =

∞∑
r=2

r − 1
r !

× (1− F(x))r = 1− Fe1−F . Hence P(X R−1 ≤ x) = Fe1−F , with density
f (x) = (1− F(x)) exp(1− F(x) fX (x).

8.18.6 T > n if and only if X1 = X (n); by symmetry, therefore, P(T > n) = 1

n
. Hence,

P(T = n) = 1

n − 1 −
1

n
= 1

n(n − 1) , n ≥ 2. When T = n, XT = X (n), so

P(XT ≤ x) =
∞∑

n=2

(F(x))n

(n − 1)n , as required.
8.18.7 If X1 represents your loss at some hazard and (Xr ; r ≥ 1) represents the losses of your

successors, then the expected time until someone does worse than you is infinite. The
argument is symmetrical, of course, but we do not feel so strongly about our good luck.
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Problems

1 f is a density if 12a + 1 ≥ 0, 12b + 1 ≥ 0, a + b = −1
2
. Independence is impossible.

2 cov (X ,Y ) = (1− ab)/144.

3 (a) c = 1; (b) 2e−1; (c)
1

2
.

4 fZ (z) =
∫ z

0
g(z)du = zg(z).

5 (a) c = (2π )−1; (b)
∫ y

0
(a + y2)−

3
2 dy = y

a(a + y2)
1
2

, so X has a Cauchy density.

7 f (x, y) = 4y3x(1− x) for 0 < x < 1, 0 < y <
1

x
∧ 1

1− x
. Hence, you can simulate X

with density 6x(1− x) by forming U
1
2 /(U

1
2 + V

1
2 ) and accepting it as a value of X if

U
1
2 + V

1
2 ≤ 1.

9 6x(1− x)

10 E(esU+tV ) = E(e(s+t)X+(s−t)Y ) = exp
(
µX (s + t)+ 1

2
σ 2X (s + t)2 + µY (s − t)

+1
2
σ 2Y (s − t)2

)
, which factorizes if σX = σY .

11 Given Z < 1, the point (2U − 1, 2V − 1) has the uniform density over the unit disc, namely,
r

π
in polar coordinates. Thus, Z = R2 and 0 < ! < 2π . Make the transformation

X = (2 log R−2)
1
2 cos!,Y = (2 log R−2)

1
2 sin!, with inverse

r2 = exp
(
−1
2
(x2 + y2)

)
, θ = tan−1 y

x
and J = 1

2
exp

(
−1
4
(x2 + y2)

)
.

The result follows.
12 (i) zero for a < 1; (ii)

aµ

λ+ aµ
for a ≥ 1.

13 ye−xy/(1− e−y2 )
14 Let A be at the top of the melon; let angle AOB be θ , where O is the centre of the melon.

Then the probability that all three remain is, when
π

2
< θ < π , (π − θ )/(2π ).

But fθ (θ ) = 1

2
sin θ ; 0 < θ < π .

Hence, P (all three remain) =
∫ π

π/2
(π − θ ) sin θ

4π
dθ = 1

4π
.

Likewise, P (any one of the three remains) = 3P (given one remains)
= 3

∫ π

π/2
θ
sin θ

4π
dθ = 3(π − 1)

4π
.

16 P(U = X ) = P(Y > X ) = λ

λ+ µ .
17 Use induction

18 (a)
1

2
(X + Y ) by symmetry.

(b) E(X |X + Y = V ) = σ 2 + ρστ
σ 2 + 2ρστ + τ 2 V ; E(Y |X + Y = V ) = τ 2 + ρστ

σ 2 + 2ρστ + τ 2 V

19 P(T ≥ j + 1) = P

(
j∑

i=1
Xi < 1

)
= p j (say). Trivially, p1 = 1

1!
, p2 = 1

2!
. Now p j is the

volume of the “ j-dimensional pyramid” with apex O and corners (1, 0, . . . , 0), (0, 1, . . . ,0),
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etc. Because p j =
∫ 1

0
x j−1 p j−1dx , the result follows by induction. Finally,

E(T ) =∑
P(T ≥ j + 1) = e.

20 A triangle is impossible if X1 > X2 + X3. This has the same probability as

1− X1 > X2 + X3, namely,
1

3!
by Problem 19. Two more similar constraints give

P(triangle) = 1− 3. 1
3!
= 1

2
.

21 P(n(1− Mn) > x) =
(
1− x

n

)n

→ e−x .

22 E

(
exp

(
t

N∑
1

Xi

))
= E

(
E

(
exp

(
t

N∑
1

Xi

)
|N

))

= E((Eet X1 )N )

= (1− p)

(
µ

µ− t

)/(
1− pµ

µ− t

)

= (1− p)µ

µ(1− p)− t
.

So Y is exponential with parameter µ(1− p).

23 E(C(t)X1) = E(X1E(C(t)|X1))
=

∫ ∞

t
utλe−λudu +

∫ t

0
u

(
1

λ
− 1

λ
e−λ(t−u)

)
λe−λudu

= t2e−λt + te−λt

λ
+ 1

λ2
− te−λt

λ
− e−λt

λ2
− 1

2
t2e−λt .

So cov (C(t), X1) = 1

2
t2e−λt .

24 Let the condition be A. Now we notice that

P(X ≤ x, A) ∝
∫ x

xα−1e−
α−1
α e−

x
α dx = xα−1e−x .

Hence, the result is true by the rejection method Example 8.16, provided that(ex

α

)α−1
e−

α−1
α

x ≤ 1 for x ≥ 0. Because α − 1 ≥ 0, this is equivalent to
log

( x

α

)
≤ x

α
− 1, so the result holds. This clearly provides a method for simulating gamma

random variables, given a supply of uniform random variables.
25 Hint: (X1, . . . , Xn) has the same joint distributions as, (Xn, . . . , X1).
26 (a) Recalling Theorem 8.4.6 on quotients gives the required density as∫ ∞

−∞

1

|u|
u2

w2

1

2π
exp

(
−1
2

(
u2 + u2

w2

))
du = 2 . 1

2πw2
.

1

(1+ 1/w2) , as required.

(b) E(et X1X2 ) = E(E(et X1X2 |X1)) = E(e
1
2 t2X2

2 ) =
∫ ∞

−∞

1√
2π

e−
1
2 x2(1−t2)dx

= (1− t2)−
1
2 .

Hence, Eet(X1X2+X3X4) = 1

1− t2
= 1

2

[
1

1− t
+ 1

1+ t

]
= 1

2
(E(etY )+ E(e−tY )),

where Y is exponential with parameter 1. The result follows.
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28 Let V = max {U1, . . . ,UY }. First, we notice that by conditioning on Y

FV = P(max {U1, . . . ,UY } ≤ v) =
∞∑

y=1

vy

(e − 1)y! =
ev − 1
e − 1 .

Now let us find the m.g.f. of Z ,

E(et Z ) = E(et X )E(e−tV ) = (e − 1)et−1

1− et−1

∫ 1

0
e−tv ev

e − 1dv = 1

1− t
.

Hence, Z is exponential with parameter 1. Alternatively, you can find FV directly.

29
X

Z
has a beta density.

30 Consider their joint m.g.f. E(es X+t Z ) = E(e(s+tρ)X+t(1−ρ2) 12 Z ) = e
1
2 (s

2+2ρst+t2), as required.

35 f (x) = e−x . Calculate:

E(etU (X1+X2)) = E
(
E(etU (X1+X2)|U )E

(
1

(1−Ut)2

))
=

∫ 1

0

1

(1− ut)2
du

= 1

1− t
= E(etY ).

CHAPTER 9

Exercises

9.11.1 (a) Column sums are one, as well as row sums. Hence, πi = 1

8
satifies π = πP, and so

µ0 = 8 = µV . (b) E(X ) = 1 by the same argument. (c) E(T ) is different. We use the
following device. T is the sum of the M steps at which the walk moves to a different
vertex and the steps at which it does not move. The number N of nonmoving steps
before leaving O has the same expectation (and distribution) as the number at every
other vertex on the way from O to V , so E(T ) = E(M)E(N ). By the example,
E(M) = 1+ (α + β + γ )× (α−1 + β−1 + γ−1), and it is easy
to find that E(N ) = δ

1− δ . Hence E(T ) = δ((α + β + γ )−1 + α−1 + β−1 + γ−1).
9.11.2 Consider a random walk on a unit square that takes x-steps with probability p and

y-steps with probability q. Then if T is the first passage time from (0, 0) to (1, 1),
arguments similar to those of the example show that

E(sT ) = UV (s)

U (s)
,

where

U (s) = 1

2

(
1

1− s2
+ 1

1− (p − q)2s2

)

and

UV (s) = s2

2

(
1

1− s2
− (p − q)2

1− (p − q)2s2

)
,

which yields E(T ) after some plod. More simply, by conditional expectation we have
E(T ) = 1+ p(1+ pE(T ))+ q(1+ qE(T )), which yields E(T ) = p−1 + q−1. If the
walk can wait at vertices with probability r , then by the same device as used in (1),
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we find E(T ) = r

p
+ r

q
. Now we recognise that the question is equivalent to this

problem with p = α, q = β, r = γ .

9.12.6 LHS = P(Ynr = k, Ynr−1 = k1, . . . , Yn1 = kr−1)/P(Ynr−1 = k1, . . . , Yn1 = kr−1)

= P(X−nr = k, . . . , X−n1 = kr−1)
P(X−nr−1 = k1, . . . , X−n1 = kr−1)

= P(X−nr = k|X−nr−1 )P(X−n1 = kr−1, . . . |X−nr−1 )

P(X−n1 = kr−1, . . . |X−nr−1 )
= P(Ynr = k|Ynr−1 ),

where we used (9.1.8) at the crucial step. In equilibrium,

qi j = P(Y2 = j, Y1 = i)/P(Y1 = i)

= P(X−1 = i |X−2 = j)P(X−2 = j)/P(Y1 = i) = p jiπ jπ
−1
i .

9.13.4 No for (a) because of periodicity. Yes for (b).

9.13.5 (a) E(Xn+1|Xn) = 1− 2

m
Xn + 1

(b) E(Xn) =
(
1− α + β

m

)n (
E(X0)− βm

α + β
)
+ βm

α + β .
9.14.8 Because vn is a renewal sequence, there is a Markov chain Vn such that

vn = P(Vn = 0|V0 = 0). Let Un and Vn be independent. Then ((Un,Vn); n ≥ 0) is a
Markov chain and unvn = P((Un,Vn) = (0,0)|(U0,V0) = (0,0)), thus (unvn ; n ≥ 0) is a
renewal sequence.

9.14.9 Consider the chain (Und ; n ≥ 0).
9.14.10 If Bn > 0, then Bn − 1 = Bn+1, and if Bn = 0, then Bn+1 is the time to the next event,

less the elapsed unit of time. Hence, B is a Markov chain with

pi, i−1 = 1; i > 0

and

p0 j = fX ( j + 1) = P(X = j + 1).
Hence, for a stationary distribution π with π (s) =∑

i siπi ,

π j = π j+1 + π0 fX ( j + 1),
whence

π (s) = π0
G X (s)− 1

s − 1 ,

and so if
∑

i

πi = 1,

π (s) = 1

E(X )
1− G X (s)

1− s
if E(X ) <∞.

Hence,

πi = P(X > i)

E(X )
.
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9.14.11 The transition probabilites of U reversed are

qi, i−1 = 1− Fi

1− Fi−1
.
πi−1
πi

= 1; i > 0

and those of B reversed are

qi, i+1 = 1 . πi+1
πi

= 1− Fi+1
1− Fi

; i ≥ 0.
Hence, U reversed is B and B reversed is U .

9.15.1 Using (b) and (c) shows that j is persistent.
9.15.2 Follows from (b).
9.15.3 By assumption, pi j (n) > 0 and p ji (m) > 0 for some finite n and m. Hence,

p j j (m + r + n) ≥ p ji (m)pii (r )pi j (n).
Now sum over r to get

∑
p j j = ∞ if

∑
pii (r ) = ∞. So if i is persistent so is j .

Interchange the roles of i and j .
If j has period t , let r = 0 to find that when p j j (m + n) ≥ 0, m + n is a multiple of t .

Hence, the right-hand side is nonzero only when r is a multiple of t , so i has period t .
9.16.8 With HTH = 1, HHH = 2, we have

p12(1) = 0,p12(2) = p2 = 1

4
= p22(2) = p21(2) = p11(2)

p22(1) = 0 = p21(1) = p11(1); p22(1) = p = 1

2
.

Hence,

µ12 =
(
1+ 1

2
+ 1

4
− 1

4

)
8 = 12

and

µ21 = (1+ p2 − p2)8 = 8.
9.16.9 We set HHH = 1, HTH = 2, then

φs1 = 10+ 12− 14
8+ 12 = 3

10
.

9.16.10 Here TTH = 1, HHH = 2. Calculate µs1 = 8. Now
p11(1) = p11(2) = p21(1) = p21(2) = p12(1) = 0,

p12(2) = 1

4
,p22(1) = 1

2
, p22(2) = 1

4
.

Hence,

φs1 = 14+ 8− 8
12+ 8 = 7

10
.

9.17.4 P(T1 <∞) = P(X (t) > 0) = 1− exp(−"(t)). Now let t →∞.
9.17.5 E(s X (t)) = exp

(
(z − 1)

∫ t

0
λe−λudu

)
→ ez−1 = e−1

∑
zk(k!)−1, and we use the

continuity theorem for p.g.f.s.
9.17.6 By conditional expectation

E(eθ Z ) = E(E(eθ Z |X )) = E((EeθY )X ).

You can also get this using forward equations with a lot more work.
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9.17.7 E(zX ) = E(E(zX |Y )) = E
(
exp

[
(z − 1)

∫ t

0
Y (u)du

])

G ′X (z)|z=1 = M ′(0) =
∫ t

0
E(Y (u))du.

G ′′X (1)+ G ′X (1)− (G ′X (1))2 = M ′′(0)− (M ′(0))2 + M ′(0)

= var
∫ t

0
Y (u)du +

∫ t

0
E(Y (u))du.

9.18.2 exp

(
λ

µ
(z − 1)(1− e−µt )

)
→ exp

(
λ

µ
(z − 1)

)
9.18.3 The forward equations are:

p′n(t) = λpn−1(t)+ µ(n + 1)pn+1(t)− (λ+ µn)pn(t).

Set G =
∑

sn pn to get
∂G

∂t
= (s − 1)

(
λG − µ∂G

∂s

)
.

9.18.4 πk = 1

2(k!)

(
1+ kµ

λ

)(
λ

µ

)k

exp

(
− λ
µ

)
.

9.19.10 E(s X (t)) = e−δt +
∫ t

0
δe−δx exp

(
ν

µ
(s − 1)(1− e−µx )

)
dx ,

where ν is the immigration rate, µ the death rate and δ the disaster rate. Hence,

lim
t→∞E(s X (t)) =

∫ 1

0

δ

µ
exp

(
ν

µ
(s − 1)(1− y)

)
y(δ/µ)−1dy,

where we have set e−µx = y in the integrand. Differentiating with respect to s and
setting s = 1 gives the stationary mean ν/(δ + µ).

9.20.9 The forward equations are

dpn(t)

dt
= λn−1 pn−1(t)− λn pn(t).

From (3), we have fn+1(t) =
∞∑

n+1
p′k(t) = λn pn(t), so

Mn+1(θ ) = λn

∫ ∞

0
pn(t)e

θ t dt , as required.

9.20.10 Use (5) and partial fractions.
9.21.3 η = lim

t→∞P(X (t) = 0) = lim
t→∞G(0, t)

9.21.4 P(T > t) = 1− G(0, t). If λ < µ then extinction is certain, so

E(T ) =
∫

P(T > t)dt =
∫ ∞

0

(µ− λ) exp((λ− µ)t)
µ− λ exp((λ− µ)t) dt = 1

λ
log

µ

µ− λ .

However, if λ > µ, then P(T <∞) = η = µ

λ
, so

E(T |T <∞) =
∫ (

1− P(T ≤ t)

η

)
dt =

∫ ∞

0
1− G(0, t)

η
dt

=
∫ ∞

0

(λ− µ) exp((µ− λ)t)
λ− µ exp((µ− λ)t) dt = 1

µ
log

λ

λ− µ.
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9.21.5 Condition on events in (0, h) (and use the fact that if the first individual splits the
replacements act independently) to get

η(t + h) = 1.µh + η(t)(1− λh − µh)+ (η(t))2λh + o(h).

Rewrite the equation as
dη

(1− η)(µ− λη) = dt and integrate to get η(t) = G(0, t), as

expected. P(X (t) = 0|X (s) = 0) = η(t)

η(s)
.

9.21.6 E(s X (t)|X (t) > 0) = G(s, t)− G(0, t)

1− G(0, t)
→ (µ− λ)s

µ− λs
.

9.21.7 pi, i+1(h) = (ν + λi)h, pi, i−1(h) = µih

pii (h) = 1− (ν + λi)h − µih + o(h).

Hence,

dpn

dt
= µ(n + 1)pn+1 − (ν + (λ+ µ)n)pn + (ν + λ(n − 1))pn−1.

Setting
dpn

dt
= 0, you can check that the given πk satisfies the resulting equations.

Problems

1 (α) Xn is, with pi j = P(X1 = j). (β) Sn is, with pi j = P(X1 = j − i). (γ ) Mn is, with
pi j = P(X1 = j); j > i , pii = P(X1 ≤ i). (δ) Ln is, with pi j = P(X1 = j), j < i ,
pii = P(X1 ≥ i). (ε) Kn is not a Markov chain.

2 X is persistent; S is transient unless P(X1 = 0) = 1; M is absorbing if X1 is bounded,
transient otherwise; L is absorbing.

3 Only if the period is 2.
4 (a) Not necessarily if X and Y are periodic.
5 Check that P(Xk+1 = j |X0,X1, . . . ,Xk,Xn) = P(Xk+1 = j |Xk,Xn) by expanding the

conditional probabilities.
6 These all work by expanding the appropriate conditional probabilities and rearranging

them.
7 It is Markov because coins are independent. Then pi, i+1 = p; 0 ≤ i ≤ 8, p90 = p, pii = q;

πi = 10−1.
10 ρnun =

n∑
1

ρn−kun−kρ
k fk , so vn satisfies vn =

n∑
1

f ∗k vn−k with f ∗k = ρk fk . Hence, it is a

renewal sequence provided
∑
ρn fn = 1. It follows that there is a Markov chain such that

vn = P(Xn = s)→ πs as n →∞. Hence, ρnun → πs = c.
11 Zn = (Xn,Xn+1, . . . ,Xn+m−1) is also a persistent chain.
13 The Markov property is preserved at each first passage time.

14 In the obvious notation, we require Q2 = 1

4
(PX + PY )

2 = Q(2); multiplying out

(PX + PY )2 shows that this requires (PX − PY )2 = 0. Hence, W is Markov if PX = PY .
17 No. Pick j �= s �= i , then P(Xn+1 = j |Xn = s,Xn−1 = i) = pi j (2) �= P(Xn+1 = j |Xn = s).
18 The lack-of-memory of the geometric distribution means that X is a Markov chain. If Xn = i

then Xn+1 is the survivors Sn of Xn plus the new arrivals. The probability that a geometric
lifetime survives one step is p = 1− q, so Sn is binomial with parameters Xn and p.



512 Appendix

Hence pi j = P(Sn + Yn = j). In equilibrium Xn+1 and Xn have the same distribution, so

E(s Xn+1 ) = G(s) = E(sSn+Yn )

= E(sY n)E(E(sSn|Xn)) = E(sY n)E((ps + 1− p)Xn )

= eλ(s−1)G(ps + 1− p) = eλ/q(s−1)

after a simple induction. So the stationary distribution is Poisson with parameter λ/q, just
after the fresh particles. The stationary distribution just before the fresh particles is Poisson
with parameter λp/q.

19 We seek a stationary distribution that must satisfy

π j = π0 f j +
j+1∑
i=1

πi f j−i+1 for j ≥ 0.

The sum on the right is nearly a convolution, so we introduce π (s) =∑
πi si and

G(s) =∑
fi si to get

π (s) = π0G(s)+ 1

s
(π (s)− π0)G(s).

Hence,

π (s) = π0(s − 1)G(s)
s − G(s)

,

which has π (1) = 1 if π0 > 0 and G ′(1) < 1.
20 Seek a stationary distribution that satisfies

πk =
∞∑

j=k−1
π j f j−k+1 for k ≥ 1, with π0 =

∞∑
j=0

π j

∞∑
i= j+1

fi .

Let
∑
θ r fr = G(θ ). In an optimistic spirit, we seek a solution of the form π j = (1− θ )θ j ,

giving

θ k =
∞∑

j=k−1
θ j f j−k+1 =

∞∑
r=0

θ k+r−1 fr = θ k−1G(θ ),

and

1 =
∞∑
j=0

θ j
θ∑

i= j+1
fi = 1− G(θ )

1− θ .

These both reduce to G(θ ) = 0. Hence, π j exists if G(θ ) = θ has a root less than 1. By
convexity, it does if G ′(1) > 1, as required.

22 Recalling Example 9.3.17, we define the event A(t) as we did there; that is, as the event that
the chain follows a path consistent with T = t . Then the condition of the problem can be
rewritten as

P(T = t, A(t), Xt = j) = zero or P(Xt = j, A(t)).

Now the proof follows exactly the same route as Example 9.3.17.
23 π must satisfy π j = pπ j−2 + qπ j+1 with π0 = qπ0 + qπ1 and π1 = qπ2. Hence,

sπ (s) = ps3π (s)+ q(π (s)− π0)+ qsπ0. This gives π (s) = q(s − 1)π0
s − q − ps3

; now insist that

π j ≥ 0 and π (1) = 1.
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24 (a) P(X (0) = 1|X (−τ ) = i, X (τ ) = j)

= P(X (−τ ) = i,X (0) = 1,X (τ ) = j)/P(X (−τ ) = i,X (τ ) = j)

= P(X (−τ ) = i)pi1(τ )p1 j (τ )

P(X (−τ ) = i)pi j (2τ )
→ π1π j

π j
.

(b) P(X (s + t)= X (s)= 1)−P(X (s)= 1)P(X (s+ t)= 1) (c)→ π1(p11(t)− π1),
as s →∞.

25 (a) Yes, with parameter λ+ µ; (b) No.
26 "(s)
28 Let A(t) be any event defined by X (s) for s ≤ t . Then by the Markov property

P(Yn+1 = k|Yn = j,Tn = t,A(Tn)) = P(Yn+1 = k|Yn = j,Tn = t).
Hence,

P(Yn+1 = j |Yn = i,A(Tn)) =
∫ ∞

0
P(Yn+1 = j |Yn = i,Tn = t) fTn (t)dt

= P(Yn+1 = j |Yn = i), so Y is Markov

=
∫ ∞

0
pi j (t)λe−λt dt = qi j , say.

Then
∑

πi qi j =
∫ ∑

πi pi j (t)λe−λt dt =
∫
π jλe−λt dt = π j , as required.

29 E(X (t)) = I e(λ−µ)t var (X (t)) =


2Iλt ; λ = µ

I
λ+ µ
λ− µe(λ−µ)t (e(λ−µ)t − 1); λ �= µ.



Further Reading

There are many attractive books on probability. To compile a list as short as this requires regrettably
ruthless selection from their number.

Intermediate Probability
If you want to read further at an intermediate level, then high on your list should be the classic text:
Feller, W. (1968) An introduction to probability theory and its applications, Vol. I (3rd edn.)

John Wiley, New York.

Other books at this level or a little above include:
Grimmett, G.R. and Stirzaker, D.R. (2001) Probability and random processes (3rd edn.) Clarendon

Press, Oxford.
(2001) One thousand exercises in probability, Clarendon Press, Oxford.

Ross, S.M. (2003) Introduction to probability models (8th edn.) Academic Press, Orlando.

Combinatorics
A classic text on combinatorics for probabilists is:
Whitworth. W.A. (1901) Choice and Chance (5th edn.) reprinted 1948 by Hafner, New York.

Recent introductions include:
Anderson, I. (1974) A first course in combinatorial mathematics, Clarendon Press, Oxford.
Hall, M. (1967) Combinatorial theory, Blaisdell, Waltham, Mass.
Slomson, A. (1991) An introduction to combinatorics, Chapman and Hall, London.

Advanced Probability
To advance in probability requires the student to plunge into measure theory. Excellent texts at this
level include:
Billingsley, P. (1995) Probability and measure (3rd edn.) John Wiley, New York.
Dudley, R.M. (1989) Real analysis and probability, Wadsworth, Belmont, Calif.
Durrett, R. (1996) Probability: theory and examples, (2nd edn.) Duxbury, Belmont. Calif.
Feller, W. (1971) An introduction to probability theory and its applications, Vol II (2nd edn.)

John Wiley, New York.
Laha, R.G. and Rohatgi, V.K. (1979) Probability theory, John Wiley, New York.
Shiryayev, A.N. (1984) Probability, Springer, New York.
Williams, D (1991) Probability with martingales, Cambridge University Press.

Markov Chains and Other Random Processes
Most of the above books contain much material on Markov chains and other random processes at
their own levels. However, mention should be made of the classic text:
Doob, J.L. (1953) Stochastic processes, John Wiley, New York.

History
Finally, if you wish to find out more about the origins of probability read:
Hald, A. (1990) A history of probability and statistics and their applications before 1750,

John Wiley, New York.
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Index of Notation

B(n, p) binomial distribution
cov(X, Y ) covariance
f (x), fX (x) mass or density function
fX |Y (x |y) conditional mass or density
fX,Y (x, y) joint mass or density
i

√−1
i, j, k,m, n indices
max(x, y) = x ∨ y maximum of x and y
min(x, y) = x ∧ y minimum of x and y
p, pi , pi j , p(t), pi j (t) probabilities
x+ max(x, 0)
var(X ) variance
|A| cardinality or size of A
Ac complement of A
B(a, b) beta function
F(x), FX (x) distribution function
FX |Y (x |y) conditional distribution
FX,Y (x, y) joint distribution
G(s),G X (s) generating function
IA indicator of the event A
J Jacobian
MX (t) moment generating function
H, T head, tail
N (µ, σ 2) normal distribution
N (t) Poisson process
X, Y, Z , X (ω) random variables
X,Y,W random vectors
W (t) Wiener process
F σ -field or event space
η probability of extinction
χ2(.) chi-squared distribution
φ(x) standard normal density
�(x) standard normal distribution
x vector
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xT vector transpose
A matrix
AT matrix transpose
µ(k) fractional moment
µ mean
µi mean recurrence time
π, πi stationary distribution
σ 2 variance
ρ(X, Y ) correlation
 (t) gamma function
� sample space
EX expectation of X
E(X |Y ) conditional expectation
P(A) probability of A
P(A|B) conditional probability
φ empty set, impossible event
O(.), o(.) order notation

ENVOY

Probability begins and ends with probability.
John Maynard Keynes.



Index

Abbreviations used in this index: distn distribution; eqn equation; fn function; mgf moment generating function; pgf
probability generating function; pr process; rv random variable; rw random walk; thm theorem

absolutely convergent, 22
absolute probabilities, 403
absorbing state, 405
abuse of notation, 309
accidents and insurance, 72–73
Acme gadgets, 144–145
addition rules, 32–34
ageing and survival, 312–314, 330
Alea, 14
α-field, 31
American call option, 473
American roulette, 5–6
AM/GM (arithmetic-geometric

means) inequality, 133–134
ant on square lattice, 94, 112
aperiodic state, 404
arcsine law, 216, 262–263, 471–472
arcsine law for zeros, 471–472
arithmetic sum, 21
ark, 87
astronomy, need for models in, 3
asymptotic equipartition, 423–424
attractive events, 56–57
atypical sequences, 424
augury, 4
average, definition, 120. See also

expectation
averages, law of, 196–199
axioms of probability, 32

Bachelier, L., 438
backward martingales, 195–196
bad luck, 385
balance of life, 382–383
ballot thm, 112, 189–190
barriers, retaining, 413
base rate fallacy, 12
basic addition rule, 32
Bayes’s thm, 54–55, 64
Bell’s inequality, 229
Bernoulli, Daniel, 208
Bernoulli diffusion model, 455
Bernoulli patterns, 275–276,

459–460

Bernoulli’s urn, 229
Bernoulli trials, 115, 134, 172. See

also indicator fns
Bertrand’s paradox, 63–64,

324–325, 346
beta rv, 334
biased dice, 7–8, 82, 270–271
bilateral exponential, 294–295, 297
binomial
distn, 116–118, 138–139
factorial moments, 167
limits, 149–150
pgf, 238, 240, 242–243, 264
rv, 134
sums, 172, 176–177
symmetric, 455

binomial coefficients, 85, 89
binomial thms, 21, 91–92, 95–96,

139
binormal distn, 387–388
birthdays, 50, 109
birth-death pr, 465–470
birth pr
birth-death pr, 465–470
boys and girls, 8, 73–74, 87
disasters, 463–465
family planning, 44–45
forward eqns, 428–431
general, 465–466

bivariate generating fns, 90
bivariate normal density, 342,

348–349, 352, 359–360,
373–376, 440

bivariate rejection, 392
Black-Scholes formula, 472–473
bookmaker example, 448–449
Boole’s inequalities, 36, 39, 50
bounded convergence thm, 201
boys and girls, 8, 73–74, 87
branching pr
family tree, 243–244
geometric, 272–273
Markov chains, 397
martingales for, 278

pgf, 243–244, 264, 271–272, 278
total population in, 280

broads, 82
Brown, Robert, 438
Brownian bridge, 441, 444–445,

471
Brownian motion, 438, 442, 447.

See also Wiener pr
Buffon’s needle, 377–379

calculus, 265–267
call option, 448, 472–473
Camelot, 111
cans without labels, 153
capture-recapture, 216–217
cardinality (size), 19, 29
cards, 51–53, 114, 160–161, 178,

179
Carroll, Lewis, 81–82, 394
Cauchy-convergent, 200
Cauchy density, 295–296, 304, 320,

391
Cauchy distn, 295–296
Cauchy-Schwarz inequality,

170–171, 211, 352
central joint moments, 167
Central Limit Theorem (CLT), 370,

388–389, 394
central moments, 123, 124–125, 135
certain events, 26
chain. See Markov chain in

continuous time; Markov chain
in discrete time

chance, examples of, 1–3
change of variables technique,

342–344, 361, 381
Chapman-Kolmogorov eqns, 402,

426, 428, 439, 449–450
characteristic fns, 390–391
Chebyshov-Hermite polynomials,

324
Chebyshov’s inequality, 131–132,

156, 306, 370
chi-squared density, 297, 299

517



518 Index

closed state, 405
coats, 223–224
coincidences, 12–13, 258
coin tosses
Bernoulli patterns, 275–276,
459–460

conditional distn, 129–130
fair, 190–191
generating fns, 235–236,
242–243, 278

geometric distn, 124–125,
175–176

independence, 57–58
joint distn, 161–162
by machine, 389
Motto, 476
Murphy’s law in, 46–47
notation, 27
runs, 103–104, 111, 275–276
simulations, 301
visits of a rw, 219

colouring, 106
combinations, 86–87
complacency example, 67–68
complements, 17–18, 26, 39
composition, 302
compound Poisson pr, 462
conditional density, 310–312, 319,

355–361, 365–366, 373, 440
conditional distn, 127–130,

135–136, 310–312, 319,
356, 373

conditional entropy, 214, 405
conditional expectation, 128–129,

136, 177–183, 204–205, 311,
357, 373

conditional Gambler’s Ruin, 70–72,
180–181, 230–231

conditional independence, 57–58,
65, 177–183, 205

conditional mass fns, 116–121,
127–128, 178, 211–212

conditional mgf, 359–360
conditional probability, 51–82
Bayes’s thm, 54–55
conditional distn, 127–130
definition, 52
generating fns, 235
independence and, 57–60
overview, 51–57
rv, 127–130
rw, 189
recurrence and difference eqns,
60–62

repellent and attractive events,
56–57

conditional property of Poisson pr,
365–366

conditional rw, 189
conditional variance, 205, 440
conditional Wiener pr, 440
conditioning rule, 64, 135–136, 319
congregations, 210–211

constant of proportionality, 5
continuity, in calculus, 265–266
continuity thm, 251, 308
continuous partition rule, 361, 373,

376–377
continuous rv, 287–336. See also

jointly continuous rv
ageing and survival, 312–314
conditional distn, 310–312
density, 291–297
discrete approximation, 300–301
expectation, 302–306, 319
fns of, 297–301, 318–319
inverse fns, 299–300
mgf, 306–310, 319
normal distn, 296, 299, 303,
306–310, 320, 323–324

random points, 315–318
step fns, 300
stochastic ordering, 314–315
uniform distn, 287–290,
297–299

continuous set fns, 37
continuous time. See Markov chain

in continuous time
convergence, 22, 199–203, 265
convexity, 132–133
convolutions, 91, 175, 257, 411
cooperation, 214–215
correlation coefficient, 170, 172,

204, 206–207, 352, 373
countable additivity, 34–35
countable sets, 27
countable union, 27
counting, 83–113
coin tosses, 103–104
colouring, 106
combinations, 86–87, 95
derangements, 88, 96
dice example, 84
first principles, 83–84
generating fns, 90–93, 95
Genoese Lottery, 98–99
identity example, 102–103
inclusion-exclusion, 87–88
lottery examples, 98–101
matching, 107–108, 153, 173
Ménages problem, 101–102
permutations, 84–86, 95
railway trains, 97–98
recurrence relations, 88–89
ringing birds, 99–100
techniques, 93–95

couples survival, 208–209
coupling technique, 419–420
coupon collectors, 92–93, 110,

126–127, 156–157, 166, 386
covariance, 167–169, 204, 248,

352–353
craps, 45–46, 59–60, 82
Crofton, M. W., 315, 317, 376
crossing the road, 277
cubes, rw on, 417, 451–452

cumulant generating fns, 247, 271
cumulative distn fn, 117–118
cups and saucers, 42
current life or age, 382–383
cutting for the deal, 160–161,

168–169, 178, 179

dart throws, 26, 115
decay, 462–463
decomposition thm, 425
defective rv, 239, 244
delayed renewal, 256–258
de Moivre, Abraham, 15, 20, 137,

334
de Moivre-Laplace thm, 309,

333–334
de Moivre’s thm, 122
de Moivre trials, 247–248
de Morgan’s laws, 37–38
density. See also distribution
beta, 334
bivariate normal, 342, 348–349,
352, 359–360, 373–376

calculus, 266
Cauchy, 295–296, 304, 320, 391
chi-squared, 297, 299
conditional, 310–312, 319,
355–361, 365–366, 373, 440

definition, 291, 318
expectation and, 304–305,
355–361

exponential, 292–294, 297–298,
303, 311–312, 314, 320

gamma, 297, 299, 307, 320,
380–381

independence and, 344–345,
347

joint. See joint density
Laplace, 320
marginal, 341, 356, 371
mixtures, 297, 318, 335
mgf and, 306–310
multinormal, 373–374
multivariate normal, 373–374,
394

normal. See normal density
order statistics, 363–364
Pareto, 303
standard normal, 296, 299
sums, products, and quotients,
348–351

triangular, 228
trinormal, 373–374, 387–388
two-sided exponential, 294–295,
297

uniform. See uniform density
Weibull, 313, 322

dependence, 169–171, 177–183
derangements, 88, 96, 113
derivatives, 266
detailed balance eqns, 454
determinism, 11
“De Vetula,” 6, 14
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dice
cooperation, 214–215
counting principles and, 84
craps, 45–46, 59–60, 82
dodecahedral, 270
models for, 6, 25–26, 34, 40–41
regeneration, 255
sixes, 43–44, 182
tetrahedral, 270
unorthodox numbers on,
269–271
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