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Preface 

The ideas of probability are all around us. Lotteries, casino gambling, the al­
most non-stop polling which seems to mold public policy more and more­
these are a few of the areas where principles of probability impinge in a 
direct way on the lives and fortunes of the general public. At a more re­
moved level there is modern science which uses probability and its offshoots 
like statistics and the theory of random processes to build mathematical 
descriptions of the real world. In fact, twentieth-century physics, in embrac­
ing quantum mechanics, has a world view that is at its core probabilistic in 
nature, contrary to the deterministic one of classical physics. In addition to 
all this muscular evidence of the importance of probability ideas it should 
also be said that probability can be lots of fun. It is a subject where you 
can start thinking about amusing, interesting, and often difficult problems 
with very little mathematical background. 

In this book, I wanted to introduce a reader with at least a fairly decent 
mathematical background in elementary algebra to this world of probabil­
ity, to the way of thinking typical of probability, and the kinds of problems 
to which probability can be applied. I have used examples from a wide 
variety of fields to motivate the discussion of concepts. Each chapter con­
tains a number of such problems and applications, many of these related 
to gambling and games of chance, an important and picturesque source of 
probability thinking. I have explained the problems and the ideas they gen­
erate in what I hope is an intuitive way understandable to beginners, using 
almost entirely elementary algebra. One of the glories of the subject is that 
many of its fundamental concepts are intuitively appealing and accessible 
to non-specialists, especially if you look at them in the "right" way, often 
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in a gambling or betting framework. In particular, I have tried to explain 
the basic ideas and importance behind two of the most profound themes in 
probability that thread their way throughout this book: the circle of ideas 
concerning the Law of Large Numbers and The Central Limit Theorem. 

I see several different possible audiences for this book. The general reader, 
armed with basic algebra, interest, and some perseverance, can enjoy the 
problems and pick up as much of the theory as desired. If such a reader 
comes away from the book with an improved ability to assess the chances 
of winning a fortune by casino gambling or playing the lottery, I will have 
already succeeded in my aim. At another level, students, scientists and 
mathematicians who want an elementary overview that still manages to 
tread into deep waters in an informal way will find it useful and, I hope, 
entertaining. The book could also be used as a text for a first course in 
probability or as a companion to a text. But this book is not a text in 
the conventional sense. There is a lot of non-rigorous, intuitive argument, 
no attempt to be comprehensive, and the style, in its freewheeling and 
informal treatment of topics I find important or beautiful, is perhaps more 
suitable to a book of essays than a textbook with its strict structure and 
aims. Nevertheless, the range of topics covered includes most of those in 
a standard elementary introduction. But rather than give you a text-like 
agenda of "things you have to learn," my goals are more playful; my rallying 
cry is "enter this world and see the fascinating things it has to offer." 

To get the most from the book the reader should be able to do basic 
elementary algebra fairly competently. In addition, there should be a will­
ingness to think hard about what is being said and to check out assertions 
with paper and pencil. If the reader wishes to read more passively by es­
chewing paper and pencil and perhaps hard thought, that is all right too, 
for a general sense of what is going on. Perhaps a second reading will be 
more aggressive. Although elementary algebra is used almost entirely in ar­
guments (there are a few places where calculus is mentioned briefly and the 
ideas explained), readers who bring more background in mathematics and 
science to the book are likely to get more out of it. For example, those who 
are familiar with a programming language can use the algorithms described 
in Chapter 14 to test probability ideas using the computer. 

I am, of course, indebted to many books and articles on probability. 
Many of the examples discussed in this book are classical, and can be 
read about in a number of places, although I sometimes spend more time 
analyzing these problems than other sources do. Each chapter ends with 
a few problems for the reader to try; some are very easy, others a little 
harder. The answers to all problems are given at the end of the book. 

Morton D. Davis and Paul R. Meyer read the manuscript and made 
many valuable corrections and suggestions. They were very helpful in get­
ting me to clarify obscure presentations and think more carefully about 
what I was saying in many places. Of course, any errors or obfuscations 
in this finished product are entirely my responsibility. Shaul Foguel also 
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offered useful comments. Richard Mosak and Melvin Fitting helped me use 
the M\TEX document preparation system. Melvin Fitting offered a wealth of 
information about preparing illustrations. Esther Phillips aided in creating 
some of these illustrations. To all of these people lowe much thanks. I also 
want to thank the people at Springer-Verlag and especially my editor, Ina 
Lindemann, for their help. Finally, I thank my wife, Anna, for her encour­
agement and support throughout this project. 

Richard Isaac 
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1 
Cars, Goats, and Sample Spaces 

Behold, there stand the caskets noble prince: 
If you choose that wherein I am contain'd, 
Straight shall our nuptial rites be solemnized: 
But if you fail, without more speech, my lord, 
You must be gone from hence immediately. 

William Shakespeare, Portia in The Merchant of Venice 

1.1 Getting your goat 

It's a critical moment for you. The master of ceremonies confronts you with 
three closed doors, one of which hides the car of your dreams, new and shiny 
and desirable. Behind each of the other two doors, however, is standing a 
pleasant but not so shiny and somewhat smelly goat. You will choose a door 
and win whatever is behind it. You decide on a door and announce your 
choice, whereupon the host opens one of the other two doors and reveals 
a goat. He then asks you if you would like to switch your choice to the 
unopened door that you did not at first choose. Is it to your advantage to 
switch (assuming, of course, that you are after the car, not the goat)? 

This popular puzzler created a stir in 1991 when it appeared in the news­
paper and (see [32] 1) received a lot of wrong answers from readers, even 
from some who were mathematicians. How do we think about a problem 

1 Numbers in square brackets refer to the references at the end of the book. 
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like this, and why is it so tricky? (The most common wrong answer was that 
switching is irrelevant because each of the two unopened doors would hide 
the car with equal probability.) What I'd like to do is use this problem to 
introduce you to the branch of mathematics called probability. When you 
finish this chapter you should be able to think about the car-goat problem 
and many other probability problems in a reasonable way. Let's begin with 
a capsule description of probability theory, its significance and history, in 
a few action-packed paragraphs. 

1.2 Nutshell history and philosophy lesson 

Probability can be described as the mathematical theory of uncertainty. 
Its origins are undoubtedly ancient, since an early cave dweller looking at 
the sky for some clue about the weather was using primitive notions of 
probability. In fact, one could argue that all of us use probability daily to 
assess risks; the probabilities used are rough estimates based on previous 
experience. (Dark clouds today mean rain is likely since it has rained in the 
past when the clouds had that look. Better carry an umbrella.) Primitive 
or instinctive probability, however, is very different from a developed math­
ematical discipline. Officially, probability as a formal theory is sometimes 
said to have begun in the seventeenth century with a famous correspon­
dence between the two French mathematicians Blaise Pascal and Pierre 
Fermat. The gambling halls of Paris were giving life to the new science. In 
a sense, a casino is almost a perfect laboratory of probability in action; a 
serious gambler has to have a pretty good idea of the risks in order to bet 
rationally. After a while the gambler either has to become a mathematician 
or consult one. 

From these somewhat frivolous beginnings, the theory developed to its 
present status, with applications to all branches of science, technology, and 
even to that citadel of uncertainty, the stock market. Moreover, the twen­
tieth century provided a new and rather startling star role for probability 
ideas within the framework of modern physics. In the physics of the eigh­
teenth century, Newton's era, it was supposed that if you only had all the 
data you could use the equations of physics to predict the position and 
velocity of a particle exactly. Physicists viewed probability as a useful tool, 
mainly because it was often too hard to get all the data input for a prob­
lem. So probability was tolerated, in a sense, as a lesser discipline, because 
if our ignorance were only eliminated we wouldn't need probability, there 
wouldn't be any uncertainty, it was argued. For example, if we knew all 
about how a coin was tossed, the accelerations, angles, and forces involved, 
we could in principle predict whether a head or tail would come up. That 
was fine, until the new physics came along and Werner Heisenberg pos­
tulated the "uncertainty principle," that for very small particles it was 
impossible to know both the position and velocity exactly; the better you 
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know the position, the fuzzier your idea of the velocity becomes, and vice 
versa, and there isn't anything you can do about it. This idea revolutionized 
the foundations of physics. Here was Heisenberg now saying that in princi­
ple you could not make exact predictions; the best you could do would be 
to make probability statements no matter how much data you collected. 
It was all very distressing to Einstein, who rejected Heisenberg's theory 
with his famous statement "God does not play dice." However, modern 
physicists now believe that Heisenberg was correct. 

1.3 Let those dice roll. Sample spaces 

Let's begin rolling dice, tossing coins, and other such things, because this is 
where the heart of probability lies. Since probability measures uncertainty, 
we have to measure something, and these objects probabilists like to call 
events since this is a reasonable name to give to the something that hap­
pens. Now suppose we are interested in what happens when we roll a pair 
of dice once. Assume one die is red and the other is green. When the red die 
falls it can come up in six ways, and the same holds for the green die. Each 
possible result can be represented by an ordered pair (a, b), where a is one 
of the numbers from 1 to 6 and represents what the red die's number is, 
and b is also one of the numbers 1 to 6 representing the green die's number. 
So what actually happens when you roll the pair of dice once? Well, there 
are 36 ordered pairs (a, b) where a and b vary between 1 and 6 (just write 
these all out to see that for a = 1 there are six possibilities for b, for a = 2, 
another six possibilities for b, etc.). What happens when you roll the dice 
can be conveniently described by exactly one of the 36 ordered pairs possi­
ble. Each of those 36 possible ordered pairs we call an outcome. Outcomes 
are the simplest kind of event. More complicated events contain a number 
of outcomes. For example, the event defined by the phrase "rolling a seven" 
contains six outcomes; it can be described as the event 

A = {(I, 6), (2,5), (3,4), (4,3), (5,2), (6, I)}. 

Here the curly braces tell us to regard the enclosed items as being lumped 
together to form the event called A. We can say that the "experiment" of 
rolling a pair of dice once gives rise to a sample space S, which is just the 
set of all 36 of the possible outcomes, and that any event is simply a set 
of some collection of these 36 elementary outcomes or building blocks for 
events. For instance, the event 

11 = {(1,1),(1,2),(1,3)} 

could be described in words as ''rolling 1 with the red die and rolling be­
tween 1 and 3 inclusive with the green die." Figure 1.1 shows how the 
sample space S and the event 11 can be represented in a sketch, with the 
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s 

B 

FIGURE 1.1. Venn diagram of a set B in sample space S 

outcomes designated as points in the picture. Such a pictorial representa­
tion of sets is called a Venn diagmm. 

As we have seen above, an event is just a suggestive word probabilists use 
to talk about a set, namely, a collection of objects which, in the probability 
situation, is a collection of outcomes from a random experiment (the word 
mndom here means you can't predict the outcome in advance). As another 
example, the experiment of tossing a coin twice gives us a sample space S 
with four outcomes where, if we use Hand T for head and tail, respectively, 
we can write: 

S = {(H, H), (H, T), (T, H), (T, Tn 

where the first entry in the ordered pair represents what happens on the 
first toss and the second entry what happens on the second toss. The event 
C, "at least one head occurs," can be written, for example, as 

C = {(H, H), (H, T), (T, Hn. 

There are a number of important points we should keep in mind about 
sample spaces. First, we used the word "experiment" to describe the hap­
pening that gives rise to the sample space. Experiments are usually things 
that can be repeated, and this is appropriate. That is because we will be 
considering probabilities for the most part for the kind of events that can 
arise only from some repeatable circumstance such as rolling dice or tossing 
coins. Suppose we are at a trial by jury; we will not consider an event like 
"the defendant is guilty" to be the kind of event to which we are going to 
attach a probability (at least for the moment) because it is not the kind 
of event arising from a repeatable experiment like rolling dice or tossing 
coins. 
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Another point is that a sample space provides what is called a math­
ematical model of the real-life situation for which it is supposed to be an 
abstraction. The reason for constructing this abstraction is that mathemat­
ical analysis can only be performed on the ideal structure of the sample 
space, not on the real-life situation itself. Once you have this model you 
may derive some nice mathematical relationships about the ideal structure, 
the abstraction. Since the abstraction resembles the real world, you might 
think that the mathematical relationships you found say something about 
the real world. You can now perform scientific experiments to check out the 
real-world situation. If you were clever and lucky, the mathematical model 
helped you decipher the real world; you know this because the results of 
your experiments are consistent with the mathematical relationships you 
obtained from the model. It could also happen that your model was too 
simple or otherwise in error and did not give a true picture of the real-world 
situation. In this case, the mathematical relationships, while true for the 
model, cannot be verified by laboratory experiment. Then it's back to the 
drawing board to look for a more accurate model. 

It follows that since a sample space is constructed to model a real-life sit­
uation and is therefore only a construct, a figment of the imagination of the 
observer of that situation, it depends on what that observer thinks is im­
portant. For example, let us say that every now and then when you roll the 
dice, your dog jumps up on the table and grabs the red die in his jaws and 
runs under the couch with it. If you wanted, you could consider the sample 
space including with the 36 outcomes in S another six outcomes which could 
be represented as (D, 1), (D, 2), (D, 3), (D, 4), (D, 5), (D, 6). Here (D, 5), for 
example, means that the dog has run off with the red die so no number 
has turned up on it but the green die came up with 5. Similarly, if the dog 
occasionally runs off with the green die or with both dice and we want to 
include sample points for these occurrences, we could add points to denote 
this (the geometric word "point" is a convenient and suggestive word for 
an outcome; it derives from the practice of drawing a picture of a sample 
space as in Fig 1.1, with the list of all possible outcomes as a scattering 
of dots or points inside it). The sample space representing what happens 
when a pair of dice is rolled is therefore not unique; it may be considerably 
more complicated than the one originally given by S. It all depends on 
what the problem is and what you judge to be the relevant information. 

1.4 Discrete sample spaces. Probability 
distributions and spaces 

So far, as you have noticed, we don't have the idea of probability at all 
in our mathematical structure, the sample space. All we have is the list of 
all possible outcomes that can be generated by the performance of some 
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repeatable actual or mind experiment. Then we consider sets of these out­
comes to form the objects whose uncertainty we are interested in measuring. 
I should also say that for the moment let us restrict ourselves to what are 
called discrete sample spaces. These are sample spaces where the outcomes 
can be counted off using the positive integers. This includes all sample 
spaces with a finite number of outcomes like the ones considered above as 
well as certain infinite sample spaces. 

Here is an example of an infinite discrete sample space which will be of 
great interest to us later: imagine that you have a coin and you are going 
to toss it repeatedly in successive trials until you get a head for the first 
time, and then you are going to stop. For the purposes of the problem, you 
are immortal as is the universe; if after a million years the coin has still not 
come down a head you and the universe will still be there to experience 
another toss. The sample space of this experiment can be represented by 

S = {(H), (T, H), (T, T, H), (T, T, T, H),· .. }. 

Here the first term, (H), represents the outcome of getting a head on the 
first toss and then stopping, the second term, (T, H), the outcome of getting 
a tail on the first toss, a head on the second, and then stopping, etc., where 
the dots express that this sequence goes on ad infinitum. If n is any positive 
integer, S has an nth term given by an n-tuple of n - 1 tails followed by a 
terminal head; this represents the outcome that can be described by "a head 
for the first time at trial n." Since there is no largest value for n, there is an 
outcome for each positive integer. S is a discrete sample space because the 
elements of S are in one-to-one correspondence with the positive integers; 
namely, you can count them all off and not have any left over when you 
are done. 

What is an example of a sample space that is not discrete? Consider the 
set W of all non-terminating decimal expansions of the form .ala2a3··· 
where the entries are any of the ten digits 0 through 9. We can think of 
W geometrically as representing the numbers in the interval from 0 to 1. 
Any such number can be written uniquely by giving its decimal expan­
sion (the representation is not quite unique since terminating decimals like 
.5 = .5000· .. have another representation as .4999· ... The representation 
becomes unique if we always agree to choose the expansion ending, say, in 
zeros). W can be considered as a sample space by thinking of the experi­
ment of choosing a point from the interval 0 to 1. It can be shown that W is 
not a discrete sample space. There are just too many points in an interval 
to be able to count them all off as first, second, etc., using the positive 
integers. The sample space W turns out to be useful for many problems. 
We will return to it later. 

And now, finally, probability is about to make her entrance. (Tyche, 
the Greek goddess of chance, was, of course, a female.) Start with any 
discrete sample space, for example, S, the list of the 36 outcomes of rolling 
a pair of dice. To each of the outcomes in such a sample space associate a 
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number between 0 and 1 such that the sum of all these numbers over all 
outcomes is equal to 1. The number associated with a particular outcome is 
called the probability of that outcome, and the entire assignment is called a 
probability distribution, probability measure or probability mass on S. Now 
we can define the probability of any event A. If A is the event with no 
outcomes in it (namely, what is called the empty set), let its probability 
be 0; otherwise, let its probability be the sum of the probabilities of all 
outcomes in the event. So, given the probability distribution on S, we can 
figure out the probabilities of all events in S. 

The preceding paragraph tells you how to set up a probability distribu­
tion on a discrete sample space; there are an infinite number of ways to 
do this-as many ways as there are of assigning numbers between 0 and 1 
to the outcomes such that the sum of the numbers over all outcomes is 1. 
But this doesn't answer the question about how to find a useful probability 
distribution in a particular problem. The usefulness of a probability distri­
bution is not a mathematical question; it is determined by what you want 
the sample space to model in the real world. The particular application 
suggests the appropriate distribution. 

Here is an important example using the sample space S of the 36 pairs 
of numbers (a, b), where a and b are both numbers between 1 and 6 inclu­
sive. If S is modelling the rolls of a pair of dice, it usually seems natural 
to assign the number 1/36 to each of the 36 outcomes of S. This gives us 
what is called the uniform or equally likely distribution. It corresponds to 
a real-life situation in which we feel that no outcome is favored over any 
other outcome. This is often a reasonable way to feel about dice; they have 
been constructed (we believe) with physical properties and symmetries that 
present quite a strong case for having us assign to each outcome the same 
degree of uncertainty. Since the uncertainties must add to 1, each outcome 
is assigned uncertainty 1/36. In the case of n outcomes, the uniform distri­
bution assigns probability l/n to each outcome. Now let us calculate the 
probability of "rolling a seven," namely, P(A), the probability of the event 
A as defined in Section 1.3 (we use P(X) to denote the probability of the 
general event X). The event A contains six outcomes, and the sum of the 
probabilities of the six gives 6/36=1/6. In similar fashion the set B defined 
in Section 1.3 has probability 3/36=1/12, and the probability of any event 
in S can be calculated using the rule of adding up the probabilities of the 
outcomes that make up the event. 

Let us summarize: a sample space is a mathematical model of a real or 
mind experiment which we imagine can be repeated under similar condi­
tions (like rolling dice or tossing coins). If the sample space is discrete, a 
probability distribution can be defined on the sample space by associating 
with each one of the discrete outcomes a number between 0 and 1 which 
we call the probability of the outcome. The sum of the probabilities of all 
of the outcomes must add up to 1. The probability of a more general event 
is defined by adding up the probabilities of all the outcomes comprising 
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the event. An event is just a set in the sample space-the words event and 
set are used interchangeably. The sample space with its probability distri­
bution is sometimes called a probability space. The event with no elements, 
the empty event, has probability 0, and the sample space, sometimes called 
the sure event, has probability 1. The probability of an event is therefore a 
weighting of the event by means of the probability distribution-a "light" 
event is one of low probability; a "heavy" event is one of high probabil­
ity. The heavier an event is, namely, the higher the probability, the less 
uncertain is the event. 

As an example, let x be one of the numbers between 2 ("snake eyes" 
in gambling parlance) and 12, and suppose you and I are playing a game 
whereby I will give you a dollar if x comes up on one roll of a pair of dice 
(that is, x is the sum of the faces) and you give me a dollar otherwise. If 
you are able to choose the value of x, it is to your advantage to choose 
x = 7 since P(x = 7) = 1/6 and the probability of any other value coming 
up is less than 1/6, as you can calculate quite easily. Your choice of x = 7 
in this game, that is, your belief that events of higher probability are less 
uncertain than events of lower probability and therefore better to bet on, 
is not an immediate or obvious consequence from the abstract discussion 
of probability spaces as just described. That discussion only tells us how 
to calculate probabilities, not how to interpret what they mean. But we 
will see when we come to the Law of Large Numbers that the probability 
of an event has a remarkable relationship with the relative frequency of 
its occurrence--seven will come up roughly 1/6 of the total number of 
rolls if you perform a large number of repeated rolls, and snake eyes will 
come up only about 1/36 of the time, if the uniform distribution model 
is a good one. The Law of Large Numbers will justify our intuition about 
probabilities and relative frequencies. But until then we will rely on our 
intuition in supposing events of higher probability to be better bets than 
ones of lower probability. 

1.5 The car-goat problem solved 

We are ready to solve the car and goat problem. What we have to do 
is construct a sample space to model the experiment. But first we must 
know exactly what the experiment is in this case. That means we have to 
translate the somewhat fuzzy and ambiguous phrasing of the problem into 
an exact mathematical description. Let us make the problem more precise 
by assuming you do indeed decide to switch, whatever happens, and let's 
see what this leads to. The situation can be abstracted as follows. The game 
consists of three actions: (a) first you make your initial choice of one of the 
three possible doors, (b) the host chooses one of the other two doors with 
a goat behind it, (c) you switch your choice. Now suppose the door with 
the car behind it is labelled 1, and the remaining two doors with goats are 
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labelled 2 and 3. Let us describe a typical outcome from this game by a 4-
tuple (u, v, w, x), where u will be the label of the door you initially choose, 
v is the label of the door the host opens, W is the label of the door you 
switch to, and x stands for the letter "w" or "L" depending on whether 
you win or lose the car. For example, the 4-tuple (1,2,3, L) is shorthand 
for "you choose door 1 (with the car behind it), the host opens door 2, and 
since you switch you must switch to 3, thereby losing the car." The sample 
space S can be written 

S = {(1, 2, 3, L), (1,3,2, L), (2,3,1, W), (3,2,1, WH. 

If you choose doors 2 or 3 initially, the rules of the game must lead to your 
winning; this is seen in the third and fourth outcomes of S. If you choose 
door 1 initially you must lose, although there are two different ways to lose 
depending upon which door the host opens; this is seen from the first and 
second outcomes of S. (By the way, the use of the L or W in the fourth 
place in the 4-tuples above is just a convenience. It helps us see at a glance 
which of the outcomes lead to a loss and which lead to a win. An entirely 
equivalent sample space would consist of the four triples formed by taking 
each outcome in S and chopping off the L or W in the last component.) 
Please do not read any further until you are convinced that the above four 
outcomes in S are the only possible ways the "game" we are describing can 
be played. 

So far, so good. We have a probability space, but how do we get a reason­
able probability distribution for it? Well, we are making a mathematical 
model of a real-life situation, so we have to go back to the real-life situa­
tion and ask ourselves what kind of assumptions might be realistic here. If 
you are in front of the three doors before you make your initial choice, on 
what are you going to base your decision on which door to choose? Assume 
you have no reason to favor anyone door over any other door (you do 
not hear the shuffling of animal haunches nor do you smell any suspicious 
goatlike odors behind any particular door). This means you will probably 
guess at random. In probability problems, "at random" is a code phrase 
meaning you should choose all outcomes equally likely; that is, you assume 
a uniform distribution. In this case, if you had a three-sided die with the 
numbers 1,2,3 on the faces, you would roll the die and choose the door 
whose number had come up. So let's say your initial choice is selected ac­
cording to the uniform distribution: each of the doors has probability 1/3 
of being chosen. Now go back and look at S. You are initially going to 
choose door 2, say, with probability 1/3. The only outcome in S with 2 
in the first position is (2,3,1, W). Therefore, we must assign 1/3 as the 
probability of this outcome. Similarly, you are going to choose door 3 with 
probability 1/3, and the outcome in S corresponding to this occurrence is 
(3,2,1, W), and this outcome also is assigned probability 1/3. Finally, you 
choose door 1 with probability 1/3. But in S, when you choose door 1 you 
lose, and you can lose in two distinct ways. Our reasoning here only tells 
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us that the event 

you initially choose door 1 = {(I, 2, 3, L), (1,3,2, L n 
has probability 1/3; without further assumptions the probabilities of the 
individual outcomes (1,2,3, L) and (1,3,2, L) are not uniquely determined. 
But for our problem these outcome probabilities are irrelevant, as we now 
see. For let P(I,2,3,L) = a, P(I,3,2,L) = b where a+b = 1/3. The event 
we are interested in is 

you win = {(2, 3,1, W), (3,2,1, Wn. 
From the rules, 

P(you win) = 1/3 + 1/3 = 2/3. 

Moreover, 

P(you lose) = P(you initially choose door 1) = 1/3. 

So this answers the question-according to our assumptions about the 
game, switching choices gives you probability 2/3 of winning and 1/3 of 
losing. 

Now, what happens if you don't switch? To calculate this, let's start 
afresh with a new sample space based on not switching and simply go 
through all the possibilities as we just did above for the case of switching. 
We have a sample space S that can be written 

S = {(I, 2,1, W), (1,3,1, W), (2,3,2, L), (3,2,3, Ln. 

The third component of each 4-tuple contains the same number as the 
first component since now you do not switch your choice. Using the same 
argument as in the case of switching, and assuming your initial choice of 
door is again dictated by a uniform distribution, we calculate 

P(you lose) = P(2, 3, 2, L) + P(3, 2, 3, L) = 2/3, 

and then P(you win) must be 1/3. Our conclusion is: switching gives you 
probability 2/3 of winning the car, and not switching gives you probability 
1/3 of winning it. So you are twice as likely to win if you switch than if 
you don't. 

Notice how we had to convert the original somewhat loose verbal de­
scription of the problem into a precise mathematical abstraction by making 
implicit assumptions apparent (i.e., each of your possible initial choices of 
door are equally likely). This is typical of many problems in probability­
they are often phrased in an ambiguous way leading to more than one 
possible interpretation, and therefore resulting in several possible mathe­
matical models. In Chapter 3 we will meet another version of the car and 
goat problem. 
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1.6 Exercises for Chapter 1 

1. A single die is rolled, and then a coin is flipped twice. (a) Describe a 
sample space S giving all outcomes from this experiment. (b) Assume 
all outcomes in (a) have the same probability. Find the probability 
of the following events: 6 is rolled and at least one head turns up; an 
even number is rolled, and head turns up on the second toss; at least 
one head turns up, and a number less than 5 is rolled. 

2. Consider the following variation of the car-goat problem. This time 
there are four doors, three goats, and one car. You choose a door 
at random and then the host selects a door with a goat behind it 
at random, which he opens. Suppose you switch to one of the other 
two doors, picking one at random. What is the probability now of 
winning the car? What is the probability of winning the car if you 
don't switch? 

3. Suppose my alarm clock goes off sometime between 6 and 7 AM. 
Describe a sample space with each outcome a possible instant the 
alarm can ring. Is the sample space continuous or discrete? 

4. Suppose in exercise 3 the alarm can only ring at 5 minute intervals: 
at 6 AM, 6:05 AM, 6:10 AM, etc. Now describe a sample space with 
each outcome a possible instant the alarm can ring. Explain why this 
sample space is discrete. 

5. Assume that the discrete sample space in exercise 4 has the uniform 
distribution, and that I always have the same dream between 6:18 
and 6:43 AM if I am sleeping. Suppose I will be sleeping during this 
time unless the alarm awakens me for the day. Find the probability 
of the alarm interrupting my dream. 



2 
How to Count: Birthdays and 
Lotteries 

Yet they, believe me, who await 
No gifts from chance, have conquered fate. 

Matthew Arnold, Resignation 

2.1 Counting your birthdays 

There is a very famous problem about birthdays showing how the answers 
to certain problems can defy our intuition. The problem can be phrased 
this way: suppose you are at a party, in a hall filled with people. How many 
people do you think have to be present before the probability that at least 
two people have the same birthday is about 1/2? Having the same birthday 
here means the month and day must match; the year is irrelevant. Suppose, 
for example, there are 30 people at the party and someone comes over to 
you claiming at least two people there have the same birthday. You know 
he is a stranger to the group-he has no inside information. He wants to 
bet $10 that he is right. Is this a good bet to make? If you take this bet 
you will win only if everyone in the hall was born on a different day of the 
year. Since there are 365 days in the year and only 30 people present, it 
might seem quite likely that there are no repeats of birthdays in the place 
and that the $10 bet would be quite favorable to you. 

Let's digress briefly to develop some ideas and language useful for talking 
about events. An event is just a set, and there is a standard way mathemati­
cians discuss sets and build new ones from old ones by means of certain 
set operations. Suppose in a sample space S there are two events which 



14 2. How to Count: Birthdays and Lotteries 

we denote by A and B. A consists of some bunch of the outcomes and B 
consists of some other bunch of them. We now want to consider a new set 
(event) defined in terms of A and B, namely, the set of all the outcomes in 
S that are in either A or in B. This set will be expressed by the notation 
A U B, called the union of the sets A and B. This is the union operation. 
An outcome in the union is allowed to be in both A and B. If we consider, 
for example, the sample space S of all possible outcomes when you toss a 
coin twice and let the following sets be defined 

A={ the first toss shows head}, B={ the second toss shows head}, 

then we can write the sets in terms of their outcomes explicitly as 

S 
A 

B 
AuB 

{(ll,ll), (ll,Jr), (Jr,ll), (Jr,Jr)} 
{(ll,ll), (ll,Jr)} 
{(ll,ll), (Jr,ll)} 
{(ll,ll), (ll,Jr), (Jr,ll)}. 

In this example the outcome (ll, ll) happens to be an element in both A 
and B. In similar fashion, let us write An B for the set of all elements in A 
and also in B. In the above example An B = {(ll, ll)}. This set is called 
the intersection of A and B. There is a third important operation which 
builds a new set using a single set rather than two sets as in union and 
intersection. Define ACto be the set of all outcomes in the sample space S 
that are not in A, called the complement of the set A. In the above example 
AC = {(Jr, ll), (Jr, Jr)}. It is always true that P(A) + P(AC) = 1; just use 
the rules for computing probabilities. 

The notions of union and intersection can be extended to more than two 
sets in the obvious manner: if there is a collection of sets given, the union 
of the collection is the set of all outcomes in at least one of the sets of the 
collection, and the intersection of the collection is the set of all outcomes 
in all of the sets of the collection. 

There is also an important way to show how two sets are related, written 
A c B. This is the inclusion relation, read "A is included in B," and means 
that every outcome in A is an outcome in B. For instance, both of the 
relations A nBc A and A nBc B are always true. Whenever A c B it 
is always the case that P(A) ::::; P(B), since any outcome contributing to 
the probability of A also contributes to B. Figure 2.1 gives a Venn diagram 
illustrating the above operations. 

Now let us consider the empty set, the set with no outcomes. At first, 
some people think this is just one of those useless ideas mathematicians 
think up to torture the rest of humanity. But the empty set is important if 
we want the above operations on sets always to produce a set. For example, 
consider rolling a pair of dice once. If A is the set of all outcomes giving 
the sum of the faces a number greater than or equal to 8, and B is the set 
of all outcomes with the first die showing 1, then An B has no outcomes 
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s 

FIGURE 2.1. Venn diagram showing set operations 

in it, and so would not even be a set if the empty set were to be shunned. 
So, embracing the empty set allows the above operations to have a very 
desirable property, what mathematicians call closure: you start with a set 
or sets and after you form a union, intersection, or complement you still 
have the same kind of object, a set. The empty set is also important from an 
epistemological point of view-it makes perfectly good sense, for instance, 
to refer to the set of all green-eyed winged unicorns in the Sahara desert 
without having to worry whether there really are such creatures. 

Returning from this brief excursion into set theory, let us try to construct 
a sample space for the birthday problem. As usual, we must think carefully 
in order to construct an appropriate probability space, a reasonable ab­
straction of the problem. Let us generalize the problem and suppose there 
are r people in the hall, and let us simplify slightly by assuming only 365 
possible birthdays-if someone was born on leap year day we will agree to 
give that person's birthday as March 1, say. Now, if r > 365 then at least 
two people must have the same birthday, so we will assume r less than or 
equal to 365. Suppose each person has been numbered from 1 to r, and 
that we have a list of r blank spaces as follows: 

(--, --, --, ... ). 

We shall approach each person in the group, find out that individual's 
birthday, and enter it in the blank space corresponding to that individual's 
assigned number. We end up with a list telling us the birthday of each 
person in the hall; the 25th person, for instance, has birthday entered in 
the 25th blank line of the list. The sample space is the set of all the possible 
lists you could get in this way. How can one calculate this number of possible 
lists? When we go up to the first person and ask his birthday there are 365 
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possible answers he could give. In the first blank space on our list above, 
there could then be one of 365 different entries. Similarly, for the second 
person there are 365 different possible answers for her birthday, and so on 
for each of the r people. We can phrase the question this way: given the 
above list of r blank spaces, each of which can be filled in 365 different 
ways, how many distinct lists of birthdays are possible where two lists are 
distinct if they differ in at least one place? The answer to this problem 
depends on a mathematical notion called the counting principle: 

If there are m ways of performing a first task, and for each of 
those ways there are n ways of performing a second task, then 
there are m . n distinct ways of performing the sequence of the 
two tasks. 

This principle was quietly used in Chapter 1 several times. If a pair of dice 
are rolled, the first die can come up in six possible ways and for each of 
those the second die can come up in six possible ways, so the counting 
principle shows there are 6 . 6 = 36 possible pairs of the first roll matched 
with the second roll. The counting principle is proved by enumerating all 
the possibilities---each one of the m possible ways of performing the first 
task can be matched with n possible ways of performing the second task, 
so if you add up all the distinct ways of matching you get m . n j this is 
exactly how we counted the 36 distinct ways of rolling two dice. Now it is 
not hard to see the truth of the counting principle for any finite number of 
tasks, not just for two. If we have r tasks and the first can be done in ml 
ways, and for each one of those ways the second can be done in m2 ways, 
and so on until the rth can be done (whatever the preceding choices) in 
mr ways, then the totality of distinct ways of performing the sequence of 
all the tasks is the product m = mlm2'" m r • 

Now let's apply the counting principle to the present situation. Each time 
we fill in a birthday we are performing a task with 365 possible results. Once 
we have filled in any first bunch of blanks with birthdays, the next blank 
can be filled in 365 different ways. By the counting principle, the totality 
of distinct lists is 365 . 365 . .. , r times, or 365r . This is great-now we 
know what the sample space looks like. It consists of 365r outcomes, each 
outcome being a list (or r-tuple) of r days of the year. For example, if r = 3, 
there are 3653 different lists, and the list (March 3, January 20, June 6) 
would indicate that persons numbered 1, 2, and 3 have birthdays on March 
3, January 20, and June 6, respectively. Before we ask the r people their 
birthdays we know only that exactly one of the lists in the sample space 
describes the true situation, but we don't know which list it is until we 
have the birthday information for all r people. 

The next job is to decide on a probability distribution for the outcomes. 
Let us assume each list is equally likely, namely, that the distribution is 
uniform. Is this assumption reasonable for our mathematical model? Con­
sider a civilization where the inhabitants are only fertile in the month of 
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June, and there is a nine month gestation period. In this civilization every­
one would celebrate birthdays around February or March, certainly nobody 
would be born in August, say. The uniform distribution assumption for this 
society would lead to an inappropriate mathematical model. Instead, what 
is needed in this case is a distribution assigning probability zero to most 
of the lists, any containing August dates, for example, and concentrating 
the distribution mass on lists primarily in the February-March range. How 
would such a distribution be determined? We will return to this question 
later; again it relates to the important Law of Large Numbers. The essen­
tial anSwer to the question is that we should estimate the probabilities of 
particular lists by studying the birth certificates of the society and looking 
at the relative frequencies of particular lists in many random selections of 
lists. In the ordinary human society we are part of, the uniform distribu­
tion is indeed confirmed by such data to be a reasonable approximation 
to the true state of affairs. Therefore, we adopt a model with the uniform 
distribution-each list has probability 1 divided by 365r , more easily writ­
ten 365-r • 

So we are done in the sense that we have constructed what looks like a 
reasonable probability set-up: a sample space together with a probability 
distribution. The only thing left to do now is calculate the probability of 
events that we may be interested in, in particular the event "at least two 
people have the same birthday," which we call the event A. Now the uniform 
distribution has the pleasant property that to calculate the probability of 
an event all you have to do is count the number of outcomes in the event 
and divide by the total number of outcomes in S, the sample space; this 
follows since each outcome has the same probability, 1 divided by the total 
number of outcomes in S, and probabilities of an event are calculated by 
adding up probabilities of all outcomes in it. The problem has been boiled 
down to counting the number of outcomes in A. Fine, how do we actually 
do it? You can see this is a messy situation. Any time a list has at least two 
dates the same on it, it will be in A. There are an awful lot of those lists 
around and it doesn't seem easy to get a handle on how to count them. 
Not until we think of a little trick, that is. 

Consider AC, the complementary event to A. We can describe AC as the 
totality of lists where all the birthdays are different. It is easy to count the 
outcomes in AC: the first entry on such a list has 365 possible days, the 
second entry must be different from the first and so has 364 possible days, 
the third entry must differ from the first two and so has 363 possible days, 
and so forth. When we reach the last, rth entry, there are 365 - (r - 1) 
possible days since this last entry must differ from each of the preceding 
r - 1 days. By the counting principle, the total number of ways the list of r 
days can be filled out is 365 . 364 ... (365 - (r - 1)). According to the rules 
for calculating probabilities, we obtain 

P(N) 
365·364· .. (365 - (r - 1)) 

365r 
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The above formula can be evaluated with a calculator for any value of r. As 
r increases, we feel intuitively that it becomes less likely for all birthdays 
to differ since the number of people and hence the number of possibilities is 
increasing. This is indeed true; a calculation shows that as r increases the 
probability that all birthdays differ, P(AC), decreases. When r = 23 this 
probability dips below 1/2 for the first time, and so peA) exceeds 1/2 for 
the first time when r = 23. Put another way, if there are 23 people in a room 
the odds are in your favor that at least two people have the same birthday. 
Moreover, the more people there are the better the odds are in your favor, 
and they go up quickly: for r = 30, peA) is already approximately .7, and 
for 50 people it is .97. Most of us find it surprising on first hearing of this 
problem that so few people are necessary to get such high probabilities of 
a duplication of birthdays. So beware of the person who approached you at 
the beginning of this chapter with a $10 bet; from your point of view it's 
a bad one. 

2.2 Following your dreams in Lottoland 

I have before me a New York State Lotto ticket for the Pick 6 game. The 
game is played this way: there is a panel of numbers from 1 to 54. The 
player marks 6 of these numbers. When the lottery drawing occurs, the 
player wins (at the first prize level) if all six numbers he chose match the 
drawn numbers. All the winners split the purse. The minimum play is two 
game panels for $1. At the bottom ofthe ticket it says "Follow your dreams 
... within your means." What we'd like to do now is investigate if, after 
following your dreams in Lottoland, you are likely to attain them, or will 
your dreams be more likely to be so far ahead of you that you will lose 
them (as well as all the money you gambled away). 

The probability of winning is 1/25,827,165 on one game panel; this is 
written on the ticket. This number is very small. One way we can feel its 
smallness is to compare it to an event whose probability we have some gut 
instincts about. Take a fair coin ("fair" means each side is assumed to have 
probability 1/2 of turning up). Then it is less likely that you will win on 
one game panel than it is to obtain 24 consecutive heads in tossing the coin. 
This hardly seems to be the stuff reasonable dreams are made of. 

Let's see how to compute the probability they give on the ticket. This 
is an instructive exercise teaching us something about a bunch of things 
where the order in which they are written down is important and the con­
trary case where it is just the set of things given without the order being 
important. You must choose six numbers, so let's consider the set S of all 
6-tuples (a, b, c, d, e, f), where each coordinate represents a distinct num-
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ber from 1 to 54. How many such 6-tuples are there? The first entry can 
be written in 54 different ways, the second in 53 different ways (since the 
second must differ from the first), the third in 52 different ways, etc., until 
the sixth entry can be filled out in 54 - 5 = 49 ways. The counting principle 
gives us a total of 54 . 53 . 52 . 51 . 50 ·49 ways of filling out this ordered list. 
Our counting procedure, for example, counts the lists (21,54,1,17,8,32) 
and (1,32,8,17,54,21) as different because weare counting ordered ar­
rangements. But in the Lotto problem the order is irrelevant; it is only the 
set of numbers we write down, not the order in which we write them, that 
is important. So our total number of ways given above is bigger than we 
actually want because for any set of numbers it counts all the permutations 
(that is, orderings) of that set. Suppose we had chosen the numbers in the 
set {21, 54, 1, 17, 8, 32}. In how many ways could we have written these six 
numbers in an ordered 6-tuple? Think of six blank spaces. You can fill the 
first in six possible ways, the second in five ways, etc., so you have for each 
choice of numbers a total of 6 . 5 . 4 . 3 . 2 . 1 = 720 ways of writing them 
down. 

If we have all the possible ordered arrangemen~s, then the way to calculate 
all the unordered arrangements is to divide by 720. The number of these 
sets of six numbers is therefore 

54 . 53 . 52 . 51 . 50 . 49 
720 = 25,827,165. 

A convenient sample space for this problem is the set of all these 25,827,165 
outcomes, each one representing one of your possible selections on a game 
panel. The rules of the game are supposed to ensure the randomness of 
the drawing, that is to say, the agreement with the uniform distribution. 
A nice way to think of the Lotto drawing is this: one of the selections in 
your sample space is chosen at random by New York State. If it is the 
unique one (written in red ink, say) that was your choice, you win. But the 
probability of the event that New York State chooses this special 6-tuple 
is 1/25,827,165. 

Of course, if you buy lots of tickets you increase your chances of winning. 
Recently a group tried to select all possible numbers in a Lotto game; 
the high value of the purse made it worthwhile for them to try and do 
this. Now, buying all the numbers creates practical problems and they 
failed to get them all, but they got enough so they did win. This idea of 
forming a company that tries to cover the field was thought by some to 
be illegal but the winnings were paid. It is very difficult for the typical 
individual Lotto player to unleash his fantasies adequately if he knows 
he is competing against such large groups with much capital. This could 
endanger the popularity of the games. It will be interesting to see whether 
laws are passed to prevent such groups from trying to corner the market 
in the future. 

From the point of view of betting, then, Lotto is a pretty miserable game, 
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and it would be better for you to follow your dreams by just going to sleep 
and saving your money. "But someone has to win," the avid player shouts, 
and that's true, but someone also has to get struck by lightning. Probability, 
in this case, is not claiming impossibility for your big win, only its extreme 
unlikelihood. If you want to play Lotto for the thrill of gambling, that's 
another story. Probability only talks about the rational realm, the chances 
of your success. And those chances in this game are quite slim. 

2.3 Exercises for Chapter 2 

1. Suppose Max is attending the convention for People Born in January. 
Max and seven others there get stuck in an elevator and, to pass the 
time until help arrives, Max tries to calculate the probability that all 
eight trapped people have different birthdays. What answer should 
Max get? What is the probability that at least two have the same 
birthday? (Assume all birthdays are in January.) 

2. A party of six people goes to the theatre. In how many ways may 
they be seated in six adjacent seats? 

3. Suppose three men and three women from a singles club are to be 
seated in the six seats of exercise 2 in such a way that two people of 
the same sex never sit next to each other. In how many ways can this 
be done? 

4. Suppose I have seven adjacent spaces and I want to fill the spaces 
with the letters H and T such that I write the letter H four times 
and the letter T three times. How many distinguishable patterns can 
be formed in this way? 

5. Suppose the Lotto game in Section 2.2 is altered by marking six 
numbers from a panel that now contains only the numbers from 1 to 
40. Without doing any computation, tell whether the probability of 
winning on one game panel is more or less than the game given in Sec­
tion 2.2, and explain your reasoning. Now calculate this probability 
explicitly. 



3 
Conditional Probability: From 
Kings to Prisoners 

The naked hulk alongside came, 
And the twain were casting dice; 
"The game is done! I've won! I've won!" 
Quoth she, and whistles thrice. 

Samuel Taylor Coleridge, Rime of the Ancient Mariner 

3.1 Some probability rules. Conditional 
Probability 

Again let's roll a pair of dice once, and let's consider the probability set-up 
with our now familiar 36 possible outcomes and the uniform distribution on 
the resulting sample space. Let A be the event "rolling a 7"; in Chapter 1 we 
saw that this event consists of six outcomes each having probability 1/36, 
so P(A) = 6/36 = 1/6. Let B be the event "the first (red) die comes up 1." 
If we write down all the outcomes in B, we find again six outcomes, namely, 
(1,1), (1,2), (1,3), (1,4), (1, 5), (1,6). So P(B) = 1/6 too. Now suppose we 
compute P(AUB). By definition AUB is the event occurring when either 
7 is rolled or a 1 appears on the first die, or both happen. Write down all 
the outcomes described by this situation and you will find 11 outcomes: the 
six ways of rolling 7, which includes the outcome (1,6), plus the other five 
outcomes with 1 in the first position. According to our rules for computing 
probabilities P(A U B) = 11/36. How about P(A n B)? Well, An B is the 
event occurring when both A and B happen, namely, when the first die 
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rolls 1 and we also get 7; this can happen in one way, when (1, 6) appears. 
Therefore peA n B) = 1/36. Notice the validity of the following formula: 

peA U B) = peA) + PCB) - peA n B). 

The reason why this formula holds is pretty easy to grasp. In order to 
calculate the left-hand side we have to add up the probabilities of all the 
outcomes in the union set. The union set consists of outcomes in A or B 
or both. On the right-hand side, peA) adds up for us all the probabilities 
of outcomes in A, and PCB) adds up probabilities of all outcomes in B. 
But peA) + PCB) adds the probability of any outcome in both A and B 
exactly twice, once because it is in A and once because it is in B. So to get 
these outcomes in both A and B counted exactly once, we must subtract 
the term peA n B). The formula above is completely general; it holds for 
all probability spaces and all pairs of events A and B. If we have events A 
and B such that there are no outcomes in both A and B, that is, A n B 
is the empty set, then since the empty set has probability 0 the formula 
simplifies to 

peA U B) = peA) + PCB) (if A n B is empty). 

This formula is nice and simple. It says that if the two events have no 
common outcomes (in this case we say the events are disjoint), then the 
probabilities just add up to get the probability of the union. You can think 
of the events A and B as two non-overlapping pieces of land and the prob-: 
abilities as their areas-the union of the two pieces is just the accumulated 
land with area just the sum of the two areas. If the pieces of land overlap, 
then the total property has less area than the sum of the individual areas 
and you have to use the first formula. 

Let's go back to the probability space associated with rolling the pair of 
dice once and now let's suppose the event A is defined by "rolling a (to­
tal of) 6." The event A consists of the outcomes (1,5), (2,4), (3,3), (4,2), 
and (5,1), so peA) = 5/36. We have already determined that B, the event 
"rolling 1 with the first die," has probability 1/6. But now suppose you are 
given some new information. Suppose you are told that indeed it is the case 
that 1 was rolled with the first die. The question now is, given this addi­
tional information, what is the value of peA)? It is natural to expect new 
information to alter your ideas of the uncertainties in the experiment, and 
therefore cause you to reevaluate the probabilities. In the above example, if 
it is known that 1 was rolled with the first die, the only possible outcomes 
are (1,1), (1, 2), (1,3), (1,4), (1, 5), (1,6); we can ignore the other outcomes 
because they cannot occur based on the given information. We thus have 
a new sample space, and it is natural to suppose that in this new sample 
space each outcome is equally likely, since we started with an equally likely 
distribution. So given that 1 was rolled with the first die, the event A now 
consists of the unique outcome (1, 5) and it seems as though its probability 



3.2 Does the king have a sister? 23 

should be 1/6. The additional information updated the probability of A 
from 5/36 to 1/6. 

In general, if we have a probability space and then new information 
arrives, it makes sense for us to update the probability space using the in­
formation, and therefore the computation of probabilities is updated based 
on this new information. When this sort of thing occurs, the updated prob­
abilities are called conditional probabilities given the new information. Let 
us now define P(A/ B), the conditional probability of any event A given an 
event B, to be 

P(A/ B) = P(A n B) 
P(B) . 

This definition has an intuitive appeal. If B is known to occur, then any 
outcomes in the original sample space not in B cannot occur, so it makes 
sense to restrict the outcomes in A we are looking at only to those outcomes 
also in Bj that is, P( A/ B) should be related to P( A n B). In fact, we have 
defined it to be a value proportional to it. Since P( B / B) should equal 1 on 
intuitive grounds, we see that the proportionality factor P(B) on the right­
hand side of the formula gives you the right answer to get a probability. In 
the above example, AnB consists of the unique (1, 5) with probability 1/36, 
and P(B) = 6/36, so the formula gives us P(A/B) = (1/36)/(6/36) = 1/6 
as obtained above. The right side of the conditional probability formula 
always defines a probability distribution as long as P(B) =f OJ we won't 
define conditional probabilities when the conditioning event has probabil­
ity O. Notice that by multiplying both sides of the conditional probability 
formula by P(B) we obtain another useful version of the formula: 

P(B) . P(A/ B) = P(A n B). 

The updated conditional probability may have the same value as the 
original probability: if A is "rolling a 7" and B is " the first die comes 
up 1," then it is a simple exercise to obtain P(A/ B) = P(A) = 1/6. In 
cases such as this where the conditional probability is the same as the 
original probability, we say that A is independent of B: intuitively, the 
added information provided by B did not give any new information about 
A in the sense that the conditional probability of A is no different from the 
original probability. This idea of independence is one of the major topics 
in probability theory. We start talking about it in earnest in Chapter 5. 

3.2 Does the king have a sister? 

Consider the following problem to test our skills with conditional probabil­
ity (it appears as an exercise in [28]): 

The king comes from a family of two children. What is the 
probability that the other child is his sister? 
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The sample space for this problem can be considered to be the set S of 
four pairs (B, B), (B, G), (G, B), (G, G), where B stands for "boy" and G 
stands for "girl" and the first and second positions in the pair denote first 
and second born children, respectively. To be able to do the problem some 
assumptions must be made. Once again, we shall assume each of the four 
outcomes is equally likely. Let U be the event "one child is a girl" and V 
be the event "one child is the king." What we want to calculate here is 
P(U/V). Using the formula, we have 

P(U/V) = P(U n V) = P(one child is B and one is G) = 2/4 = 2/3. 
P(V) P(V) 3/4 

This problem is tricky-a lot of people think the answer should be 1/2 as in 
the car and goat problem. If the question had been "what is the probability 
that a person's sibling is a sister," then the answer would be 1/2. But in the 
given problem you are sneakily given the information in the wording of the 
problem that one child, the king, is male, and that information eliminates 
the outcome (G, G) in the sample space as a possibility. The remaining 
three outcomes of S become the conditional, or updated, sample space of 
which two outcomes have a B and a G. This problem illustrates once again 
how careful you have to be when you are interpreting the information a 
problem is conveying. If there are ambiguities in the wording, different 
interpretations may lead you to radically different sample spaces and then 
to different answers. 

3.3 The prisoner's dilemma 

A good exercise to get you thinking carefully about conditional probability 
is a problem called the prisoner's dilemma (there is a completely different 
and famous problem related to game theory that goes under the same name; 
see, e.g. [4]). One version of this problem goes as follows: Consider three 
prisoners, A, B, and C. Two of the prisoners are to be released, and the 
prisoners know this, but not the identities of the two. Prisoner A asks the 
guard to tell him the identity of one prisoner other than himself who is to 
be released. The guard refuses and explains himself by saying to prisoner 
A, "your probability of being released is now 2/3. If I tell you that B, say, 
is to be released, then you would be one of only two prisoners whose fate 
is unknown and your probability of release would consequently decrease to 
1/2. Since I don't want to hurt your chances for release I am not going to 
tell you." Is the guard correct in his reasoning? 

The answer to this problem is not so obvious; it takes some analyt­
ical digging to find out why the guard's statement sounds a little too 
glib. The guard is thinking of the sample space of all possibilities of two 
prisoners released. This can be represented by the set of three outcomes 
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{A, B}, {A, C}, {B, C}, where curly braces are used to indicate unordered 
pairs, and the outcome represented by a pair is that those two prisoners 
are released. So far, the guard has constructed a fine sample space. To get 
a probability space we use a uniform distribution, which means the parole 
board chose the prisoners to be released at random. (An assumption like 
this is necessary for many of these problems. Otherwise there is no obvious 
probability distribution and the problem can't be done until you get some 
distribution.) Each of the above outcomes is therefore assigned probability 
1/3, and the guard's first statement about the probability of A's release 
being initially 2/3 is correct. The trouble begins when the guard seems to 
be saying 

P(A is released/guard says B is released) = 1/2. 

The first thing to notice is that the conditional probability given above 
cannot be computed in terms of the given sample space the guard defined: 
we simply do not have the event "guard says B is released" to condition 
by. This suggests the need for a more complex sample space incorporating 
the guard's statement. Consider the sample space given by the following 
four outcomes 

0 1 = {A, B, guard says B is released}, 
O2 = {A, C, guard says C is released}, 
0 3 = {B, C, guard says B is released}, 
0 4 = {B, C, guard says C is released}. 

These give all the possibilities matching the release of two prisoners with 
a compatible statement by the guard. The event 0 1 is equivalent to the 
event that A and B are released (the guard has no choice of statement), 
so has probability 1/3, and similarly P(02) = 1/3. Now matters get really 
interesting. Since the union of 0 3 and 0 4 is the event {B, C}, this union has 
probability 1/3. But without some further information there is no way to 
determine the individual probabilities of 0 3 and 0 4 . Usually, one assumes 
each of these events is equally likely with probability 1/6; this corresponds 
to the guard tossing a coin in case both B and C are released to determine 
which of the two he should identify to A in his statement. However, he 
could certainly use some other procedure, for instance, always identifying 
B. 

First we will take each event with probability 1/6. In this case 

P(A is released/guard says B is released) 

P(Od 1/3 = 2/3 
P(guard says B is released) 1/3 + 1/6 ' 

proving the conditional probability of release of A the same as the origi­
nal unconditional probability. (The term 1/3 + 1/6 = 1/2 in the formula 
appears because the event "guard says B is released" is the union of the 
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events 0 1 and 03, which are disjoint. To get the probability of the union, 
add up the individual probabilities in accordance with the second formula 
of Section 3.1.) The same argument works in case the event is "guard says 
C is released," and again we get 2/3. So we have solved the problem: the 
guard has not changed the probability of A's release by giving his state­
ment, that is, the event "A is released" is independent of the event "guard 
says B is released." 

But now consider the case where the guard always identifies B in his 
statement when both B and C are to be released. Then 0 3 has probability 
1/3 and 0 4 has probability o. In this case, the term 1/3 + 1/6 in the 
formula above becomes 1/3 + 1/3 = 2/3, so the conditional probability is 
(1/3)/(2/3) = 1/2 and now the conditional probability is 1/2, as the guard 
had said. So the guard can change the value of the conditional probability 
by altering the way in which he determines his statement when he has a 
choice (When B and C are both released). He could choose to identify B 
with any probability from 0 to 1/3, and the conditional probability will 
then be some number between 1/2 and 1. Does this really mean the guard 
has control over A's fate, as he believes, by the way he determines his 
statement? This goes against our intuition. If this were true, then if the 
guard simply whispered his statement to himself in private rather than 
telling A, wouldn't the same argument given above show that in this way 
too the guard can alter A's fate? The decision on which prisoners to release 
was, after all, made by a parole board and had nothing to do with the 
guard's statement. What this seems to be suggesting to us is that we should 
start out by assuming the independence of the event "A is released" from 
the guard's statement. If this is done, then the conditional probability in 
the formula above is 2/3 and the only way this can happen is if 0 3 and 0 4 

each are given probability 1/6, as was done for the first solution. So the 
first solution is the one that meshes with the real world as we perceive it. 
The other solutions, while mathematically correct, don't correspond to the 
model we need here. Observe that if we are interested in the unconditional 
probability P(A is released) rather than a conditional probability, then the 
answer is just P(01)+P(02) = 2/3 regardless of the way the guard chooses 
to make his statement. 

We have just seen that the solution giving independence of the event 
"A is released" from the guard's statement is the reasonable one for the 
prisoner's dilemma problem. Let's see how another problem leads to the 
same mathematical model as the prisoner's dilemma problem, except that 
now any possible solution turns out to give a reasonable real-world inter­
pretation. We are going to consider a version of the car and goat problem 
different from the one discussed in Chapter 1. There, you recall, we as­
sumed your choice of door was random and the car was behind door 1. The 
original statement of the car and goat problem in the newspaper was a little 
fuzzy; you could interpret the wording in several ways and get several dif­
ferent problems. The most common version of the problem was described in 
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Chapter 1. Another version, analyzed by Gillman [13], assumes you always 
choose door 1 initially, but the car and goats are distributed at random 
(namely, uniformly) behind the doors. The host opens either door 2 or 3. 
You then switch doors. The problem is: find the conditional probability 
that the car is behind door 2, given that the host opens door 3. This will 
give the conditional probability of winning if you switch. Gillman showed 
that the answer depends on the conditional probability of the host opening 
door 3, given that the car is behind door 1. If the events "winning the 
car" and "opening door 3" are identified with the events "A is released" 
and "guard says B is released," respectively, in the prisoner's dilemma, 
we find the problems essentially equivalent. The conditional probability of 
winning the car given that the host opens door 3 varies between 1/2 and 
1, just as the conditional probability of A's release given that the guard 
says B is released varies depending upon the probability of the guard mak­
ing his statement. A major difference between the problems, however, is in 
the mathematical model the real-life situation suggests. In the prisoner's 
dilemma, as we have mentioned, we feel at the outset that A's release 
should be independent of any statement the guard makes, and we then 
should build our sample space to reflect that fact. In the case of this new 
version of the car and goat problem, the nature of the events considered 
now suggests it is reasonable to assume dependence, so we get a sensible 
model by assuming anyone of the possible solutions discarded previously. 
That means the answer can reasonably be any number between 1/2 and 1. 

3.4 All about urns 

Suppose we have an urn containing ten balls, six red and four black. The 
balls are of the same size and have been mixed up well. You now choose a 
ball at random from the urn and mark down its color. You do not replace 
the ball and, after making sure the balls are again well mixed, you choose 
a second ball from the urn and note its color. Define the events 

Al = {first ball is red}, A2 = {second ball is red}. 

We are interested in the probabilities of the events Ab Al n A2, and A2. 
The probability of Al is easy to find. The mixing of the balls is a code 

expression common in such problems to mean "assume a uniform distribu­
tion." So the sample space can be represented by a set with ten outcomes, 
each one standing for a ball of a certain color with probability .1 of being 
selected. The event Al contains six outcomes, so its probability is .6. Now 
consider the event Al n A2. Use the conditional probability formula in the 
form 

P(A I n A2) = P(A I ) . P(A2/A I ) = 6/10·5/9 = 1/3. 

The conditional probability in the formula equals 5/9 because the compo­
sition of the urn just before the second selection consists of five red balls 
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and four black ones, and again we use the uniform distribution because 
the balls are once again well mixed. Finally, let's consider A2 . This event 
does not depend upon what happens in the first selection. But to calculate 
this probability we must consider all possibilities of what happened at the 
first selection because they all contribute a little probability "weight" to 
the event we're interested in. The important fact is 

which just says that if we got a red ball on the second selection we either 
had a red ball on the first selection or not a red ball (i.e., a black ball) on 
the first selection. Since the events in parentheses above are disjoint (you 
can't simultaneously get both a red and black ball on the first selection), 
the formula in Section 3.1 for probabilities of disjoint unions gives 

P(A2) = P(A1 n A2) + P(A~ n A2). 

The first term of the sum was just calculated above-we got 1/3. We cal­
culate the second term in exactly the same way, using the formula 

P(A~ n A2) = P(AD . P(A2/AD = 4/10·6/9 = 4/15. 

[There are four black balls before the first selection, so the probability of 
the first selection yielding a black ball is 4/10; then there are nine balls in 
the urn, six of them red, and the (conditional) probability of the second 
selection giving a red ball is 6/9.] So P(A2 ) = 1/3 + 4/15 = .6. 

One of the interesting aspects of the urn problem is that we calculate 
the probability of an intersection of two events in terms of a given condi­
tional probability. That is in contrast to the problems given in the previous 
sections where we calculated a conditional probability in terms of initially 
given probabilities of intersections. In the urn problem the naturally occur­
ring probability is a conditional probability: the probability of the second 
selection depends on what happened on the first selection. 

A second interesting fact is that Al and A2 have the same probability, .6. 
This is not just a coincidence of the numbers chosen here. If we take a red 
balls and b black balls, and only assume there are at least two balls in the 
urn (so two selections are possible), an easy exercise in algebra shows Al 
and A2 still have the same probability which, in this general case, is a/(a+ 
b). At first, this phenomenon may seem curious because the second selection 
takes place later in time than the first selection and this masks an important 
symmetry. Instead of thinking of choosing the balls in sequence, imagine 
that we simply choose once, reaching in simultaneously with both hands 
and selecting a ball with each. We can represent the outcome as an ordered 
pair like (R, B) where the first coordinate is the color of the ball in the left 
hand and the second coordinate the color of the ball in the right hand. The 
ball in the left hand could also be identified with a first ball chosen, and the 
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ball in the right hand with a second ball. Now the choice of the ordered pairs 
leads to a uniform probability space in the same way as the descriptions 
of selections in Chapter 2. A symmetry is now apparent in this model: 
any ordered pair with R as the first coordinate corresponds to an ordered 
pair with R in the second coordinate by interchanging the first and second 
coordinates. The number of outcomes in the events Al and A2 are therefore 
the same, and so we should not now find it surprising that they have the 
same probability. This way of thinking about the problem also shows that 
we should expect the same phenomenon at the nth selection if there are 
enough balls in the urn to make n selections, that is, the probability of 
selecting a red ball at selection n is still a / (a + b). This example also shows 
you how looking at a problem in a slightly different way may give insights 
not so easily obtained from another perspective. 

The above model of selecting balls without replacement can be altered 
in various ways. We could, for example, choose a ball from the urn and if 
it is red replace the ball and place one additional red ball in the urn. If the 
ball chosen was black, replace the ball and add one additional black ball 
to the urn. In this model, the total number of balls in the urn is increasing 
rather than decreasing. This is a particular case of the so-called P6lya urn 
scheme which provides a crude model of a contagious disease. Each selec­
tion of a ball represents sampling an individual in a certain population. 
The red ball means the person is infected with the disease; the black ball 
means that she is free of it. Each discovered infection indicates an increase 
in the probability of finding another infected individual, and each discov­
ered healthy person indicates an increase in probability for finding another 
healthy person. Using refined versions of this model, the long-term course 
of the disease can be studied. 

3.5 Exercises for Chapter 3 

1. Let S be the usual probability space for a pair of dice rolled once, 
using the uniform distribution. Suppose A is the event "first die is 
odd," and B the event "second die is even." In words, describe each 
of the following events and calculate their probabilities. (a) An B, 
(b) (AnB)u(ACnBC), (c) AC, (d) (AUB)c. 

2. Roll a pair of dice once. What is the probability of getting II? What 
is the probability of getting 11, given that the sum of the faces is an 
odd number? What is the probability of getting 11, given that the 
sum of the faces is an odd number greater than 3? 

3. Toss a coin four times. Find the probability of getting at least two 
heads. Find the probability of getting at least two heads, given that 
there was at least one head. Find the probability of getting heads on 
all four tosses, given at least two heads. 
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4. An urn contains five red balls and five black ones. A ball is chosen 
at random and then it, as well as another ball of the same color, is 
returned to the urn. A second ball is then chosen at random. Find 
the probabilities that (a) the first ball is red and the second is red, 
(b) the first ball is red and the second black, (c) the second ball is 
red, and (d) the second ball is black. 

5. Let A, B, and C be any events such that A and An B have posi­
tive probability. Use the conditional probability formula to prove the 
relation 

P(A)P(B/A)p(C/An B) = p(An B n C). 



4 
The Formula of Thomas Bayes and 
Other Matters 

He proves by algebra that Shakespeare's ghost is Hamlet's grand­
father. 

James Joyce, Ulysses 

4.1 On blood tests and Bayes's formula 

There is a blood test for the HIV virus causing AIDS. This test is quite good 
in the sense that if an individual has the virus the probability of detection 
is high. How is such a probability estimated? As we have mentioned before, 
the Law of Large Numbers soon to be discussed justifies our intuitive notion 
that a probability can be estimated by considering relative frequencies. So 
in this case we can give the test to a large population where we know the 
disease, and therefore the virus, is present. If the test is positive for, say, 
95 percent of this population, we can say that .95 is a rough estimate for 
what is called the sensitivity of the test, defined as 

P( test is positive/disease is present). 

Unfortunately, all medical tests give occasional false results. There are two 
villains here: 

P(test is negative/disease is present) 
P( test is positive/disease is absent) 

(false negative) 
(false positive). 
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If it is assumed that the test identifies the virus when it is present 95 percent 
of the time, then it follows from the rules of probability that the probability 
of a false negative is 5 percent, 1- (the sensitivity). But how about a false 
positive? To get a handle on that, we need to do more estimating. Now 
we would need another population, a group of people who we believe to be 
free of the virus. The probability of a false positive is estimated by consid­
ering the relative frequency of those members of this population who test 
positive. (We are simplifying the estimation procedure here. Some of those 
we thought to be virus-free could later come down with the disease. The 
actual design of the experiment is more sophisticated than my description 
and takes account of this possibility.) If the test is reasonable, the proba­
bility of a false positive will be low, and ideally it would be nice to have a 
test where the probabilities of both false negatives and false positives are 
as small as possible. 

Several years ago, it was suggested that all couples applying for a mar­
riage license should be required to take the blood test for AIDS. It was 
argued that such a requirement could be very helpful in slowing the spread 
of the disease. Many experts, however, argued against this proposal as a 
waste of money and resources better used elsewhere. The blood test require­
ment for the AIDS virus was never implemented. Should it have been? 

An English theologian and mathematician, Thomas Bayes (1702-1761), 
helps us analyze this problem. Let A and B be any events in a probability 
space. Then one version of a relation appearing in a posthumous article of 
Bayes is the following: 

(Bayes's Formula) 

P(B/A) . P(A) 
P(A/B) = P(B/A)P(A) + P(B/Ac)P(Ac)· 

Bayes's formula can be checked very easily using the definitions and rules 
in Chapter 3. The left-hand side of the formula is just 

But 

and 

p(AnB) 
P(B) 

P(A n B) = P(B/A)P(A) 

P(B) = P(B n A) + P(B n AC) = P(B/A)· P(A) + P(B/AC)P(AC). 

Algebraic substitution gives you Bayes's formula. Now you may ask, "What 
is the big deal about this formula? Isn't it merely a slightly different form 
of something we already know?" Well, the algebra is indeed simple, but the 
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formula contains a very important idea. On the left side, notice that the 
conditioning event, the one we are given, is B. On the right side, however, 
the conditioning events are A and A c. So the formula tells us that if we are 
given probabilities conditioned on the events A and AC, we will be able to 
calculate a probability conditioned on B. 

Let us see how this works on the type of problem we have considered 
above. Suppose for a hypothetical disease the probabilities of a false posi­
tive and a false negative have both been estimated to be about 5 percent. 
Moreover, assume estimates show the disease appears in about 0.3 percent 
of the population. The question is to calculate the probability that the 
person has the disease given the test is positive. Define the events 

A = {tested person has disease}, B = {test result is positive}. 

Use Bayes's formula: the left side of the formula is precisely the quantity 
we want to calculate. For P( B / A) we use the estimate of the sensitivity, 
.95 = 1 - .05, and for P(A), the estimate .003 of the frequency of the 
disease in the population. Now P(B/AC) is the probability of a positive 
test result for the individual given that he does not have the disease; for 
this we use the estimate for the probability of a false positive, .05. Putting 
these numbers into Bayes's formula gives 

(.95)(.003) 
P(A/B) = (.95)(.003) + (.05)(.997) ~ .05 

where the two wiggly lines mean "approximately equal to." You may find 
this result surprising. Interpreting probabilities as relative frequencies, we 
see that only about 5 percent of the time does a positive test result in­
dicate a person who has the disease. Ninety-five percent of the time the 
positive test result incorrectly labels healthy people as diseased. A careful 
look at the algebra shows the following: the smaller P(A), the frequency 
of the disease, the less reliable a positive test is in correctly identifying 
diseased individuals, and the larger P(A) is, the more reliable the positive 
test becomes. So the positive test is going to be unreliable for relatively 
rare diseases even though the probabilities of false positives and of false 
negatives are both small. 

Let us apply the above analysis to the test for the HIV virus. The blood 
test for HIV has acceptably small probabilities of both false positives and 
false negatives; data indicate that we may assume both of these probabil­
ities are smaller than .1. Moreover, AIDS is a rare disease in the general 
population, with an estimated frequency of about 0.006 (using a 1988 esti­
mate). Since individuals applying for a marriage license would not consti­
tute a high-risk group, we can expect the frequency of AIDS in such indi­
viduals to be roughly the same low value as in the general population. The 
argument above, therefore, indicates that we can expect a positive blood 
test obtained from a marriage license applicant to be wrong most of the 
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time. The small number of true AIDS cases the test might uncover in this 
low-risk population would not justify the enormous expense in resources 
nor the psychological turmoil of the victims of an incorrect identification. 
According to our conclusions above, it would make much more sense to 
apply our resources to high-risk groups of individuals since a positive test 
then becomes a more reliable indicator. To see this concretely, go back to 
the hypothetical disease discussed above. Assume the probabilities of false 
positives and false negatives are the same, but now suppose peA) is .1 
rather than .003, namely, the disease occurs in about 10 percent of the 
population rather than in 0.3 percent. Bayes's formula now gives the value 

(.95)(.1) ~ .68 
(.95)(.1) + (.05)(.9) 

as the probability of a diseased individual given a positive test. Now a 
positive test errs only about 32 percent of the time rather than 95 percent. 

From the above discussion, we conclude that the decision not to require 
across-the-board testing for individuals applying for a marriage license was 
a wise one. This is a good example of how mathematics, in particular the 
ideas of probability, can uncover flaws in what at first may appear to be a 
reasonable course of action. 

4.2 An urn problem 

An important interpretation of Bayes's formula is that under certain cir­
cumstances a probability peA) (on the right-hand side of the formula) can 
be updated to a conditional probability P(A/B), given evidence B (on the 
left-hand side). To get more insight into this point of view, let's consider 
an interesting problem similar to one discussed by Laplace on page 18 of 
[23J. An urn contains two balls, each of which can be white or black. We 
will select balls repeatedly from the urn with replacement according to the 
following procedure: mix well, select a ball, note its color, replace ball in 
urn, mix well, select a ball, and so on. Suppose the first two selections yield 
white balls. Find the probability of a white ball at the third selection. 

To answer this question, we will postulate a prior distribution for the 
color of the balls in the urn, that is, a distribution assumed before the 
first two drawings are observed to give white balls. Let us suppose this 
prior distribution is random, with each ball white or black with probability 
1/2. This means the composition of the urn will have both balls white with 
probability 1/4, both balls black with probability 1/4, and balls of differing 
colors with probability 1/2. Define events as follows: 

D the balls have different colors. 

W the balls are both white. 
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B the balls are both black. 

W2 first two selections yield white balls. 

C the ball is white at the third selection. 

We can answer the question easily using the rules of conditional probability. 
Since P(C/B) and P(W2/B) are both 0, we have 

p(CnW2) 

and 

P(W2) 

P(D)P(C n W2/D) + P(W)P(C n W2/W) 

(1/2)(1/8) + (1/4)(1) = 5/16 

P(D)P(W2/ D) + P(W)P(W2/W) 

(1/2)(1/4) + (1/4)(1) = 3/8, 

so P(C/W2) = (5/16)/(3/8) = 5/6. Let's solve this problem a slightly 
different (and longer) way to get additional insight. We will calculate the 
updated conditional distribution of the balls in the urn given the observa­
tions of the first two selections. To calculate these updated probabilities, 
use Bayes's formula, which can be written as 

P(W2/ D)P(D) 
P(D/W2) = P(W2/D)P(D) + P(W2/W)P(W) + P(W2/B)P(B)' 

Since there are three possible a priori compositions of the urn, notice 
that Bayes's formula now has three terms in the bottom of the fraction 
rather than two. All the terms on the right-hand side of the formula can 
be calculated from the conditions of the problem. As we have seen above, 
P(D) = 1/2,P(W) = PCB) = 1/4, and P(W2/D) = 1/4,P(W2/W) = 
1, P(W2/ B) = 0. Substitute these values into Bayes's formula to get 

P(D/W2) = (1/8) = ~. 
(3/8) 3 

Since P(B/W2) = 0, we must have P(W/W2) = 2/3. We now have up­
dated probabilities of the composition of the urn, based on the evidence 
of the two draws. Now we need only compute the probability of drawing a 
single ball (the third selection) using this updated distribution (which we 
denote by P*): 

P*(C) P*(D)P*(C/D) + P*(W)P*(C/W) 

(1/3)(1/2) + (2/3)(1) = 5/6, 

the same answer as before. In this second method, we explicitly use the 
first two observations to give us a new conditional distribution; the first 
method gets the answer efficiently by using all the information at once on 
the prior distribution. 
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Laplace's problem differs from the one just given only in the choice of the 
prior distribution. Instead of assuming each ball has an initial probability 
of being white or black with probability 1/2, Laplace supposes each of the 
events D, W, and B have the same initial probability 1/3. By substituting 
these numbers into the above formulas, you can see that Laplace's answer 
to the problem is 9/10 rather than 5/6. 

4.3 Laplace's law of succession 

How much would you be willing to bet that the sun will rise tomorrow, 
given that it has risen each day for the past 5,000 years? Laplace, in [23], 
uses an urn model based on the drawing scheme of the preceding section 
to offer an answer to this question. Laplace's reasoning goes like this: the 
urn contains a large number of black and white balls; each trial (drawing) 
represents a day. The selection of a white ball from the urn corresponds 
to the sun rising. Just as we calculated the probability of choosing a third 
white ball from the urn, given that two white balls have already been 
chosen, it will be possible to calculate the probability of the next ball being 
white (sun rising) in an urn, given that the preceding 1,826,213 selections 
have resulted in white balls (the sun has risen about 5,000 years). Such a 
calculation, though, depends upon our assumption of a prior distribution 
for the composition of the urn (in the preceding section we assumed each 
ball could be black or white with equal probability). Since we are ignorant 
about such a distribution, Laplace assumes that all possible compositions of 
the urn are roughly equally likely. He does this by supposing a large number 
N + 1 of urns with urn i containing i white and N - i black balls. Select 
an urn at random, and select n balls within this urn using the procedure of 
the previous section (selection with replacement). Given that these n balls 
turn out to be white, Laplace estimates the probability of the next ball 
being white at approximately (N + l)/(N + 2) for large N (we omit the 
details). This is called Laplace's law of succession. From this he concludes 
that a bet of 1,826,214 to 1 of the sun rising again tomorrow is reasonable. 

From a modern point of view, there is a lot wrong with Laplace's model. 
One major problem is the justification of identifying an occurrence of an 
astronomical event with drawing a ball from an urn. Even if this were le­
gitimate, another problem concerns the assumption that all compositions 
of the urn are equally likely simply because we are totally ignorant about 
the distribution of the compositions. The equivalence of ignorance with 
the notion of equally likely options was fairly common in the early days of 
probability; it has been referred to in the literature of the subject as the 
principle of indifference. This idea is suspect on an intuitive level (how can 
you say anything at all if you have no information), and leads to problems. 
For example, consider the three events A = no rain tomorrow, B = rain to­
morrow stopping before noon, and C = rain tomorrow not stopping before 
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noon. If we treat these events as equally likely because of ignorance about 
rain, time periods, etc., we must assign the common value 1/3 as the prob­
abilities of A, B, and C. On the other hand, we can just as readily consider 
the events A of no rain tomorrow and D = rain tomorrow sometime during 
the day. Now, ignorance translated into equal probabilities gives 1/2 as the 
probabilities of A and D. Similarly, it is easy to consider A C as the union of 
a set of N - 1 disjoint events about which we are totally ignorant, thereby 
giving A the probability 1/ N. So we can get any probability for A that we 
please, just by being ignorant of enough things! Most modern probabilists 
consider it wrongheaded to equate ignorance with an equally likely distri­
bution. Any distribution assumption used in applications should be based 
on knowledge, not ignorance. From time to time, however, the principle 
of indifference still crops up when people are desperate for a probability 
distribution but have no hard information leading to an appropriate one 
(see, for example, Section 4.5). 

It is not clear whether Laplace was serious in his attempt to figure out 
the odds on the rising of the sun. Perhaps the figure of 1,826,214 to 1 was 
meant to be a little facetious in light of the eighteenth century's view of 
God as ultimate clockmaker, guardian of the regularity of natural laws. 
Indeed, right after Laplace gives the 1,826,214 to 1 odds, he says, "But this 
number is incomparably greater for him who, recognizing in the totality of 
phenomena the principal regulator of days and seasons, sees that nothing 
at the present moment can arrest the course of it" (i.e., the rising of the 
sun). So the pious person would be willing to risk much more on this bet. 
Laplace here is really talking about subjective probability, the topic we now 
turn to. 

4.4 Subjective probability 

The events we have been considering, you recall, model the outcomes of a 
repeatable experiment. Rolling dice, tossing coins, choosing someone from a 
population who may be infected with a virus- these are all experiments of 
the repeatable type. For events of this type, like "rolling a 7," the notion of 
relative frequency makes sense. For example, what is the relative frequency, 
or proportion, of getting a 7 in many repetitions of rolling a pair of dice? 
The Law of Large Numbers shows that under our usual assumptions the 
relative frequency in this case tends to stabilize close to 1/6, the probability 
of rolling a 7. So if the dice are rolled a million times and the total number 
of times 7 appears is divided by a million, we should get a number pretty 
close to 1/6, and the larger the number of repetitions taken the better this 
approximation should be. Now many probabilists just like to think about 
this repeatable type of event where relative frequencies get close to the 
probability. Most classical and modern probability research is about events 
of this type, and most standard treatments, like this one, stick principally 
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to these repeatable events. Then you can just accept the various standard 
rules or axioms of the theory, some of which we have given in preceding 
chapters. From these rules, the Law of Large Numbers follows and then so 
does the connection between probability and relative frequency. 

Although the classical theory of probability requires events that can be 
repeated, there are certainly events for which the notion of probability 
seems reasonable and yet these events cannot consist of outcomes from a 
repeatable experiment. In Chapter 1 the example of a jury trial was given 
with the event "the defendant is guilty." Such an event does not fit into a 
framework of repetition, but still one may want to attach a probability to 
such an event measuring the degree of belief one holds that the proposition 
is true. Perhaps you, a juror, feel 90 percent sure that the defendant is 
guilty. Such a probability would be a personal, or subjective, probability, 
different for each juror perhaps, and subject to revisions by further evi­
dence. This interpretation of probability could still be subject to many of 
the rules of probability we have accepted for repeatable events; for exam­
ple, the sum of the probabilities of the events "the defendant is innocent" 
and "the defendant is guilty" is 1. But now the Law of Large Numbers is 
meaningless; what takes its place is the idea that personal probabilities get 
close to one another with increasing evidence. 

The concept of probability not as an immutable number belonging to 
an event but rather as a varying value depending on individual assessment 
makes many mathematicians feel uncomfortable with subjective probabil­
ity. People who believe that the repeatable events are the only kind of 
events probability theory should consider are often called "frequentists" 
because they place all their faith in relative frequencies. On the other hand, 
there are those, the "subjectivists," who look at probability only from the 
subjective viewpoint, even for repeatable events. The subjectivists find in 
Bayes's formula the expression of the basic idea behind their beliefs; for 
that reason they and their results are often called Bayesian. Take a look at 
Bayes's formula again, and notice how on the right side P{A) appears and 
on the left the conditional probability of A given B. The Bayesian views 
P{A) on the right as an original or prior subjective probability, and the 
conditional probability on the left as the updated, or posterior, version of 
this subjective probability using the additional information supplied by B. 
The main criticisms of the Bayesian approach concern the need for assum­
ing the prior probability distribution and the method of determining it. On 
the other hand, those who want to stick with repeatable events and relative 
frequencies can also be criticized for unnecessarily restricting the notion of 
probability. The debate between the frequency people and the Bayesians 
gets especially fiery in their approach to statistics, about which we'll speak 
more in Chapter 15. 
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4.5 Questions of paternity 

Here is a problem in subjective probability: a man accused in a paternity 
case is found to have a genetic marker appearing in 1 percent of the adult 
male population. This genetic marker is found in the child and could only 
be transmitted to the child through his father, with the child 100 percent 
certain of acquiring the marker if the father has it. The question is to 
determine the probability that the man is the father, given that the child 
has the marker. Define the events 

A = {the man is the father}, B = {the child has the marker}. 

Let us try to use Bayes's formula to calculate P(A/ B). Since the father al­
ways transmits his marker, P(B/A) = 1. Morever, P(B/AC) = .01, because 
if the accused man is not the father, we can suppose the appearance of the 
marker in the child is equivalent to the appearance of the marker in the 
adult male population. Now comes the controversial part. To use Bayes's 
formula, we must have a prior estimate or guess for P(A). Take this guess 
equal to .5, and put all the numbers in the formula to get 

(1)(.5) ~ .99. 
(1)(.5) + (.01)(.5) 

This result is interpreted to mean that if one initially assumes the man's 
probability is .5 of being the father, then the updated probability that he 
is the father given that the child has the marker is about .99. Suppose, on 
the other hand, we had assumed a prior value of .001 rather than .5 for 
P(A), and substitute into the formula again using this new value. Then 

(1)(.001) 
(1)(.001) + (.01)(.999) ~ .09, 

and the posterior probability of the man's guilt sinks from .99 to .09. The 
crucial importance of the prior probability is clear from this example. 

An interesting legal case involving these issues was reported in [31). The 
case was similar to the hypothetical problem described above. Although 
the statistical methods used were not apparent from the article, it seems 
likely that Bayes's formula was used with a prior probability of .5 for P(A) 
assumed in a probability analysis for the prosecution. The defendant had 
then been convicted based at least partly on the very large posterior prob­
ability that he was the father. This conviction was, however, overturned 
on appeal because of this probability analysis, which, in effect, assumed 
that the man committed the crime with a high degree of probability (.5) 
to prove that he committed it with an even higher degree of probability. 
This is an example of how the use of probability or statistical methods in 
a courtroom proceeding can backfire when used inappropriately. The prior 
assumption of .5 for P(A) was only chosen because of the investigator's 
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ignorance of the true value. The idea was: either the guy is guilty or not, 
and since I don't know I'll assign each possibility the probability .5. So here 
again is the principle of indifference at work, that bad habit of equating 
ignorance with equal probabilities. As we saw earlier, there's no justifica­
tion for this practice; an assignment of a probability distribution should be 
based on positive knowledge of the model, not total ignorance. There is a 
fundamental difficulty with using Bayes's method in legal cases since any 
prior distribution assigning a positive probability of guilt can always be 
attacked as violating a person's right to be considered completely innocent 
until proven guilty. Incidentally, an interesting recent book about the uses 
of probability and statistical methods in the law is [10]. 

4.6 Exercises for Chapter 4 

1. Suppose each of two balls in an urn can be either red, black, or green 
with probability 1/3. You choose a ball at random from the urn, 
note that it is green, replace the ball, and then choose once again at 
random. What is the probability that the second ball chosen is red? 
Answer the question for each of the other colors. 

2. Roll a pair of fair dice once. Let A be the event "at least one die shows 
6" and B the event" the sum of the faces gives an odd number." (a) 
Find P(A/B) (b) Using Bayes's formula and part (a), find P(B/A). 

3. Suppose I have faith in my local weather reporter who says that 
the chance of rain tomorrow is 80 percent. Moreover, my friend, the 
seasoned sailor, tells me that whenever it will rain the next day, the 
type of cloud and appearance of the sky visible this evening only 
appears about 10 percent of the time. Whenever it will be clear in a 
24 hour period, he adds, the present cloud and sky pattern occurs 60 
percent of the time the evening before. Assuming I trust my friend's 
judgment, what would be my belief in the chance of rain tomorrow, 
given the appearance of the sky this evening? 

4. A patient suffers from a condition which is fatal 50 percent of the time. 
One of the possible treatments for this condition involves surgery. 
Research has shown that 40 percent of survivors had surgery, and 
10 percent of non-survivors had surgery. Find the probability of the 
patient surviving the condition if he has surgery. 

5. (Return of the car and the goats.) You are playing the car-goat game 
as described in Chapter 1 with only one change: when the master of 
ceremonies asks whether you wish to switch your choice of door you 
toss a fair coin. If the coin falls heads you switch; if it falls tails you 
don't switch. Now suppose you win the car. What is the probability 
that you switched doors? 



5 
The Idea of Independence, with 
Applications 

To him, therefore, the succession to the Norland estate was not 
so really important as to his sisters; for their fortune, indepen­
dent of what might arise to them from their father's inheriting 
that property, could be but small. 

Jane Austen, Sense and Sensibility 

5.1 Independence of events 

In the real world, we frequently encounter pairs of events such that the 
occurrence of one, we feel, has no bearing or influence on the occurrence 
of the other. For example, suppose I toss a coin once and note what comes 
up. Suppose then I repeat the procedure, giving the coin another toss and 
again note what comes up. Consider the events 

HI = {head on toss I}, H2= {head on toss 2}. 

Under most circumstances most people would have the strong intuitive 
feeling that the occurrence of HI gives you no information about whether 
or not H2 will occur. The same can be said about the second roll of a 
pair of dice, say, where rolling a 7 (or any other value) does not appear 
to affect what will happen when we roll again. In these cases, we describe 
our feelings by saying that the second outcome is independent of the first 
outcome. We can include this notion of independence in our mathematical 
model in the following way: since the conditional probability of H2 given 
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P(H IH ) = P(H2 n HI) 
2 I P(HI ) , 

the intuitive notion of independence suggests that if the occurrence of HI 
has no effect on the occurrence of H 2 , this conditional probability should 
be the same as the unconditional probability. In symbols, 

(5.1) 

Put formula 5.1 into the left-hand side of the conditional probability for­
mula above and multiply both sides of the resulting equation by P(Hd to 
obtain the famous product rule for independent events 

Events that do not satisfy the product rule, or equivalently, formula 
5.1, are called dependent. This notion of independence introduced into our 
mathematical model turns out to be very fruitful. Most of the classical 
theory of probability was done under assumptions of independence; it is 
only relatively recently in the subject that various forms of dependence 
conditions have been studied extensively. 

Let's note an interesting symmetry arising from the mathematics. We 
have said that H2 is independent of HI because HI happened first and 
intuition demands that a first event mayor may not affect the occurrence 
of a second event, not the other way around. Nothing, however, prevents us 
from considering P(Hd H2), the conditional probability of a head on toss 
1 given that a head on toss 2 occurred. Evaluate this using the conditional 
probability formula while at the same time assuming H2 is independent of 
HI to get 

P(H IH ) = P(HI n H2) = P(H1 ) . P(H2) = P(H ) 
I 2 P(H2) P(H2) I , 

which is to say that our assumption of H2 independent of HI implies that 
HI is independent of H2, so the idea of independence is symmetric: as soon 
as a first event is known to be independent of a second, the second is auto­
matically independent of the first. Of course, independence or dependence 
in our model simply means that a conditional probability is equal to an 
unconditional one or is not, and is not required to make intuitive sense 
in the real-life application of the model: what does it mean, you may ask, 
for a first toss to be influenced or not by a second toss? As mathemati­
cians, we really don't have to worry about this question. As philosophers 
or physicists, we may find this interesting to speculate upon. The mathe­
matics does not distinguish between the forward and backward directions 
of time. Because of this symmetry, we can simply say of two events that 
they are independent, without having to specify which of the two events is 
the conditioning one. 
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Now suppose the coin is tossed a third time with H3 the event "head 
on third toss." For any pair chosen from the three events HI, H2 , H3 , their 
independence implies the product rule for their probabilities. But the notion 
of independence for the three events requires something more: we want 
to express the idea that the probability of H3 is unaffected not just by 
the knowledge of the occurrence of HI and H2 separately but also by the 
occurrence of HI nH2 . To see where this idea leads, consider the following 
formula 

Checking this formula is exercise 5 of Chapter 3, but we verify it now. The 
truth of formula 5.2 can be seen by observing first, 

by the conditional probability formula, and then expressing P{H2/ Ht) also 
by the conditional probability formula, and finally substituting into the 
right-hand side of formula 5.2 to obtain 

which indeed gives the left-hand side of the relation. So we have checked 
the truth of formula 5.2. 

If we assume the three events in formula 5.2 satisfy the intuitive notion 
of independence whereby the probability of any outcome of a toss of the 
coin is unaffected by the knowledge of any of the other outcomes, then we 
can assert 

and 

Put these expressions into the right-hand side of formula 5.2 to get the 
product rule for three events 

After this introductory exploration into the idea of independence, we 
are ready for a precise definition for our mathematical model. Consider a 
sequence, possibly infinite, of events AI, A2 , A3 ,' . '. We say that the events 
of the sequence are mutually independent (or just independent) if for any 
finite subset of these events the product rule holds, that is, if the probability 
of the intersection equals the product of the probabilities. So, for example, 
if A3 , A8 , and A41 are all defined, then it is necessary that 
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The above scheme could model, for example, successive tosses of a coin or 
successive rolls of a pair of dice, where the event Ai could be any event 
defined just in terms of the ith toss or roll, for instance, a head on toss 
i or snake eyes on roll i. The repetitive acts needed to generate the inde­
pendent sequence of events are often called independent trials. The above 
mathematical definition is a formal way of stating that we are modelling a 
situation where no information is obtained about the outcome of any trial 
based on knowledge of the outcomes of any of the other trials. 

We should, of course, realize that an actual case of repeated tosses of a 
coin mayor may not be reasonably modeled by our abstract independent 
sequence. If, for example, I am able to control my tossing technique so that 
I can get what I want, the outcome of trial 2 may depend on what was 
obtained on trial 1. There has also been a philosophical argument claiming 
an actual sequence of coin tosses has a "memory," and if a lot of heads, say, 
occurs, the sequence tries to even things up by getting a tail more often. 
Such willful sequences would, of course, be dependent. There is no empirical 
justification for such a theory. In fact, experience seems to show just the 
opposite, since many gamblers have believed in sequences with memory and 
betted accordingly but still lost. On the other hand, the conclusions arrived 
at by the independence assumption are amply borne out by experience. 

5.2 Waiting for the first head to show 

Let us now consider a sequence of independent trials of tossing a coin. 
Moreover, suppose there is a number p > 0 such that at any trial the 
probability of a head is equal to p, and therefore the probability of a tail at 
any trial is equal to q = 1 - p. (If p = .5 we have the familiar case of a fair 
coin, where head and tail each have the same probability .5 of appearing.) 
For each positive integer i, consider the event 

Ai = {head occurs for the first time at trial i}. 

How do we calculate the probability of Ai? If a head occurs for the first 
time at trial i, then the i - 1 trials that preceded trial i each resulted in a 
tail. If i > 1, then Ai is the same as 

where T and H stand for a tail and head occurring, repectively, at the des­
ignated trials. By the product rule for intersections of independent events, 
the above intersection has probability qi-lp . If i = 1, this relation is still 
true since qOp = P = P(A1). Fine-we have just used the product rule to 
find the probability of an interesting type of event, where we are concerned 
with something happening for the first time. This type of event is impor­
tant because it often allows us to decompose more complicated events into 
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disjoint unions of such events. As an example, consider the event 

H = {head occurs on at least one trial} 

in the sequence, which we take to be infinite. H can be written as the 
infinite union of the events Ai: 

H=Al UA2 U···, (5.3) 

because a head occurs at least once if and only if at least one of the events Ai 
occurs. But since the events Ai are also disjoint (you can't get a head for the 
first time at two different trials simultaneously), and since the probability 
of a union of disjoint events is the sum of their probabilities even when the 
union has an infinite number of terms as it does here, using the evaluation 
of P(Ai) calculated above we now get 

(5.4) 

The sum on the right-hand side is called an infinite series, and if you 
remember your high school algebra you recall that it is a very nice kind 
of infinite series called a geometric series. What makes it nice is that if 
-1 < q < 1 we can actually add up all the terms of the infinite series in 
formula 5.4 to get a number that we call the sum of the series. Well, what 
does it mean to add up an infinite number of terms, anyway? What we do 
is pick any finite positive integer n and consider the finite sum of the first n 
terms of formula 5.4 which we call Sn. This gives us no trouble because we 
are just dealing with the finite process of adding up a finite number of terms. 
We do this for each n and as n gets larger and larger (mathematicians say 
n tends to infinity) the sums Sn will (if -1 < q < 1) get closer and closer 
to a definite number, called the limit or limiting value of Sn. This value is 
defined to be the sum of the infinite series. This phenomenon of numbers 
getting closer and closer to some value as something else is changing (here 
it is the subscript n which is getting larger) is of fundamental importance 
in mathematics. Mathematicians use the term convergence-for example, 
the sequence Sn, the partial sums of the series, is said to converge to the 
sum of the infinite series, and then the series is called summable. 

Of course, not all infinite series have the nice property of having a sum 
in this sense. The series 

1+1+1+··· 

is not summable since the partial sums get large without bound, and so 
cannot settle down to get close to a limit. The geometric series of formula 
5.4 is summable and according to our probability rules gives us the value 
of P(H). How do we find the sum of a geometric series? Each geometric 
series starts with a first term (p above), and then each term is obtained 
from the preceding one by multiplying by a fixed quantity (q above). If the 
geometric series satisfies -1 < q < 1 [this holds true in formula 5.4], the 
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sum is easy to get; it is always the first term divided by 1-q (the derivation 
of this is in any elementary algebra textbook). For formula 5.4 we get 

~=!!.=1. 
1-q p 

Here the fact that p = 1-q > 0 is important; if p = 0, we would be dividing 
by 0 in the preceding relation, and this, as everyone should realize, is one 
of the supreme no-no's of mathematics. 

What we have just proved is the following: suppose you keep tossing 
a coin in· independent trials without stopping, and suppose the coin has 
a fixed probability p > 0 of getting a head at each trial. Then you will 
certainly (that is, with probability 1) obtain a head at least once in your 
sequence. (If p = 0, the series of formula 5.4 sums to 0 and we can never get 
a head, with certainty.) Another way to say this is that the complementary 
event "tail at all trials" has probability O. Of course, this is a theoretical 
result; it is impossible in practice to toss a coin an infinite number of times. 
But such results can still give valuable practical information. Even though I 
can't toss a coin an infinite number of times, I can toss it a large number of 
times, say N. It follows that the probability that at least one head shows 
in N trials will be very close to 1 if N is large enough, and that as N 
gets larger, the probability gets even closer to 1. So this result about an 
event impossible in practice involving an infinite number of trials has useful 
things to say about events that can indeed happen. 

5.3 On the likelihood of alien life 

The tossing of a coin is an example of what the probabilist calls a sequence 
of Bernoulli trials, an experiment of independent trials with two possible 
outcomes at each trial, which we can call "success" and "failure" with 
respective probabilities p and q = 1 - p (named after James Bernoulli of 
the distinguished Bernoulli family which produced several generations of 
outstanding mathematicians). If getting a head is identified with success 
and getting a tail with failure, then tossing a coin fits the model of Bernoulli 
trials. So do many other situations. For example, a machine that stamps 
out washers may produce washers in two possible states, good ones or 
defective ones. Then success may correspond to either of these states to 
fit the Bernoulli model. Similarly, a person exposed to a disease mayor 
may not come down with the disease, rolling a pair of dice mayor may not 
give a 7, a birth may yield either a male or a female; all of these instances 
illustrate the Bernoulli scheme. Now go back to Section 5.2 and note that 
the argument there proves: the probability of at least one success in an 
infinite sequence of Bernoulli trials with success probability p > 0 is 1 
(just change the words "head" and "tail" to "success" and "failure" in the 
discussion) . 
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Let us now ask: what is the probability of at least one success in a fixed 
number N of trials. In the preceding section, we saw that the probability 
of at least one success in an infinite number of trials is 1 (if p > 0) by 
adding up an infinite series. The present problem will be easier-we will 
only be required to add up the first N terms of the series of formula 5.4 
to get P(SN)' The event "at least one success in N trials" is given by the 
finite union 

rather than the infinite union given by formula 5.3, where now we interpret 
Ai to be "first success at trial i" rather than "first head at trial i." Thus 
the answer to the question is given by 

N-l p_pqN N 
p+pq+".+pq = =l-q, 

l-q 

the finite analog to formula 5.4. Here you have to know the formula from 
elementary algebra for summing a finite geometric series. 

It is instructive to get this result by another, slicker method which does 
not require you to sum a series. Let us find the probability of no successes 
in N trials. This is the probability that each trial results in failure; the 
product rule gives this value to be qN. The complement to the event of 
no successes in the N trials is that there is at least one success, and the 
rule on complementary events yields the result 1 - qN, as before. As N 
gets large, getting at least one success has a probability approaching unity, 
which simply means that the sum of the finite series above is very close to 
the sum of the infinite series of formula 5.4 if you add up a large number 
N of terms. This was also observed at the end of the last section. 

According to many scientists, it is extremely unlikely that Earth is unique 
in the universe in supporting intelligent life. An argument for that view­
point follows from what we have just done. There are certainly many stars in 
the universe (not an infinite number, however) with planets nearby where 
life would be conceivable. Consider each system, like our own solar sys­
tem, to generate a Bernoulli trial: success if intelligent life exists, failure 
otherwise. Assume these Bernoulli trials are independent with the same 
probability p of success. The probability of intelligent life in a system, p, 
may be very small but it is positive. Now take a large number N of these 
solar systems, not including our own. What we have just calculated can be 
interpreted in the present case to assert that the probability of at least one 
of the N solar systems supporting intelligent life is 1 - qN, which is very 
close to 1 when N is large. Of course, this argument depends on your will­
ingness to assume the applicability of the Bernoulli model of independent 
events to the set of solar systems. 



48 5. The Idea of Independence, with Applications 

5.4 The monkey at the typewriter 

The story of the monkey at the typewriter is perhaps one of the most fa­
mous tales (or perhaps I should say "tails") of probability. It goes like this: 
a monkey is seated at a typewriter and randomly hits keys in an infinite 
sequence of independent trials. He produces, by this process, a neverending 
string of randomly selected characters from the keyboard. The story con­
cludes with the assertion that the monkey will eventually type out the com­
plete works of Shakespeare with certainty, that is, with probability equal 
to 1. In this section, I want to convince you of the truth and reasonableness 
of this proposition if you understand it in the right way. The statement is 
really an assertion about a probability model, not about a real monkey and 
typewriter. A real monkey will not keep pecking away indefinitely-he is 
a reasonable creature who will soon tire, toss the typewriter on the floor, 
and go off looking for a banana. 

Perhaps the statement of the problem should be modernized by placing 
the monkey in front of a word processor; in any case, we won't worry about 
who puts more paper into the printer. Let's suppose there are M keys on the 
keyboard and the monkey can hit anyone of these with equal probability 
M-1 at each trial. We must then decide on a certain (long) sequence of 
characters, which we shall refer to as the works of Shakespeare. In other 
words, the works of Shakespeare for us is a string of characters which, when 
read through, gives us all the plays and sonnets in some particular order. 
Now the number of characters in the works of Shakespeare is a finite number 
T, say. Consider the monkey typing away for T trials. For the monkey to 
type out the works of Shakespeare, he must type at each trial the unique 
character on the keyboard belonging in that position. But the probability 
of typing the "correct" character at any trial is M-l . By independence, the 
probability of typing the "correct" character at each of the T trials is M-T 

(all the correct characters typed in correspond to an intersection of events 
whose probability is the product of the individual probabilities). The most 
important thing to notice at this point is that M-T , while very, very small, 
is nevertheless a positive number; call it a. 

Now let us watch the monkey pecking away at the keyboard, and I will 
choose a trial to call the first trial and observe what the monkey produces 
in the first T trials. At the Tth trial I will be able to say whether or not 
the works of Shakespeare have been produced (you will, of course, know 
the first T trials must result in a failure to produce Shakespeare's works 
as soon as the monkey types his first incorrect character). The works have 
been produced only if each character typed matches the correct character 
for that position; if a single character is wrong, the works of Shakespeare 
have failed to be produced in spite of the fact that the monkey may have 
written out Hamlet, say, perfectly. Let's say that we have a success in the 
first T trials if the works of Shakespeare have been produced and a failure 
if they have not been. Then the probability of success in the first T trials 
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is a > 0, and the probability of failure is 1 - a. 
The monkey, of course, keeps on typing, so I can start observing again 

what the monkey produces from trial T + 1 to trial 2Tj this is the second 
segment of T trials that comes right after the first segment from trial 1 
to trial T. This second segment of T trials consists of independent trials 
with the same probability M-1 of hitting the correct key at each trial, so 
clearly the probability of success on this segment is also a (that is, the 
works of Shakespeare are produced on the segment from trial T + 1 to 2T 
with probability a). 

Continue in this vein, next considering the segment from trial 2T + 1 to 
3Tj it again has probability of success a. So the monkey is involved in an 
infinite sequence of trials and we are breaking them up into non-overlapping 
segments where each segment has T trials and where we observe for each 
segment whether or not success has occurred. It is easy to see that the 
general ith segment stretches from trial (i -l)T + 1 to trial iT. Define the 
events 

Si = {success occurs on the ith segment}. 

What we claim is that the events Si are independent. In fact, the ith 
segment involves trials that don't overlap with any trials from the jth seg­
ment for i -=1= j. Since the individual trials form an independent sequence, 
it is intuitively reasonable that these disjoint segments of trials should be 
independent: whatever happens on one segment gives you no information 
about what happens on another. (A mathematical proof of this intuitive 
fact would require a quantitative argument showing the truth of the prod­
uct rules at the basis of the definition of independence.) Once the inde­
pendence of the Si is accepted, we are over the hump and the problem 
starts to resemble things we did just a little while ago. Each segment can 
be considered as a single Bernoulli trial where success on segment i is the 
event Si, and success has positive probability a, so the result on waiting 
times we found in Section 5.2 can be applied to get an immediate proof of 
the certainty of the monkey's ultimate triumph. To spell out matters in a 
little more detail, the probability of the first success occurring on segment 
i is (1 - a)i-l . a because the first i-I segments resulted in failure, and 
the Si are independent. Let S be the event that success will occur on at 
least one segment, that is, the works of Shakespeare are produced on some 
segment. S is the disjoint union of the events defined by the first success 
on segment i [this is similar to formula 5.3] and P(S) is 

a + (1- a)a + (1 - a)2a + ... 
[this is similar to formula 5.4]. Again, it is easily seen that this geometric 
series sums to 1 (remember a > 0), which is what we have been trying to 
show, namely, the certainty of the monkey ultimately typing the works of 
Shakespeare. 

The solution can be arrived at slightly differently. If a failure occurred 
on each of N segments, a situation similar to the one in Section 5.3 would 
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prevail. N failures has probability (1 - a)N. For N growing larger, this 
probability shrinks to zero, so the probability of the event that there is at 
least one success is very large in N trials; that is to say, as the number of 
segments increases, the probability that at least one represents a success 
(the works of Shakespeare) converges to 1. This is equivalent to saying that 
P(S) = 1. 

If you find it hard to believe that the monkey will eventually type out 
the works of Shakespeare with certainty, let me dismay you some more: a 
theorem can be proved asserting that the monkey will type out the works 
of Shakespeare not only once but actually infinitely often with certainty. 
You may feel better, however, when you realize how long it is going to take, 
on the average, for Shakespeare's works to be written out just once. Most 
likely longer than the sun will survive as a living star, so the monkey and 
equipment will have to be moved elsewhere. 

5.5 Rare events do occur 

The story of the monkey typing Shakespeare's works may be amusing, but 
it teaches an important lesson: rare events do indeed occur. A rare event 
is one with small probability. The same argument used for showing the 
certainty of the monkey's success at writing all of Shakespeare also shows 
that any rare event will eventually occur with certainty if the experiment 
producing it is repeated independently forever. How long do we have to 
wait? As we shall see in Chapter 7, if success has probability p, then the 
average waiting time until the first success in a sequence of Bernoulli trials 
is about p-l trials. This gives us a way to estimate the waiting time for 
the monkey to succeed, and as we have noted, this is not an event to be 
expected during the lifetime of the solar system. But there are rare events 
that are not so extreme and probability models more applicable to real life. 

For example, suppose a craps shooter rolls 7 ten times in succession. This 
would be an amazing run of luck; we would most likely think in terms of 
something wrong with the randomness of the game, perhaps some cheating. 
After all, a run of ten successive 7's has a probability roughly equal to 
l = 1.6· 10-8 , an extremely small number (to write 10-8 in standard 
notation, write 1.0 and move the decimal point eight places to the left). 
The theory, however, tells us that, in a perfectly legitimate random model, 
runs such as this should occasionally crop up. The average waiting time, in 
fact, will be about 625 million trials (the reciprocal of l times a factor of 
10 due to the number of trials in a run). From this point of view, the ten 
successive 7's may seem a little less startling if viewed as part of the action 
of all the busy craps tables in the world. If we write down the results of 
all the rolls at all of those tables for a year preceding the occurrence of the 
ten 7's, we may interpret the run of 7's as part of a much longer sequence 
in which we have waited a reasonable time to observe the phenomenon. 
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In general, if a rare event is observed to occur, it may indicate a break­
down of the model or it may simply be the effect of random fluctuation. 
Further study is necessary to decide between these possibilities. Here is an 
example in the field of public health. The frequency of breast cancer in 
the female population gives an estimate of the distribution of the number 
of cases of the disease occurring in communities of various sizes. Suppose 
a cluster of cases is observed in a certain community, that is, the number 
of cases of the disease in the community is larger than one would expect 
from the estimated distribution. The cluster would constitute a rare event 
in terms of this estimated distribution. Is this cluster due to some environ­
mental or other factors in the community or is it only a random fluctuation? 
Questions like this arise all the time and are often quite difficult to answer. 
An investigation must be conducted to determine whether any factors can 
be found making this community more dangerous than the average ones 
from which the distribution data were obtained. If this can be done, then 
the standard model and its distribution did not apply to this community, 
and that was the reason for the unusual observations. On the other hand, 
it may turn out that the standard model is indeed applicable and all we 
observed was a rare event: a cluster of cases in a community no more dan­
gerous than the typical one. 

5.6 Rare versus extraordinary events 

Suppose a fair coin is tossed 100 times and a random assortment of heads 
and tails occurs which does not impress us as particularly interesting. Let 
us call this sequence 1. Now suppose we once again toss the coin 100 times 
and get a head on each of the 100 trials. Call this sequence 2. We are 
likely to be astonished at sequence 2. Yet there seems to be a bit of a 
paradox here, because both sequence 1, which we found uninteresting, and 
sequence 2, which we found startling, both have the same probability, 2-100 , 

of occurring. How can our surprise be explained? 
Having small probability does not in itself make an event noteworthy if 

in fact it does occur. When you toss a coin 100 times, you must get some 
sequence, and whichever one you do get will be a rare event with probability 
2-100 . Sequence 2 has something else about it, however, distinguishing it 
from sequence 1. When we toss a fair coin in independent trials, we expect 
to get heads roughly half the time and tails roughly half the time. Sequence 
2 deviates from this expected result in so extreme a way that we find it 
hard to reconcile such a sequence with the outcomes resulting from tosses 
of a fair coin. In fact, as we shall see in Chapter 15 when we talk about 
statistical inference, if we observe sequence 2 we would strongly suspect 
the coin giving these outcomes was not really fair as proclaimed. Now 
suppose sequence 1 resulted in 55 heads and 45 tails in a random way 
without apparent pattern and is not very interesting. Suppose sequence 2 
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has the same number of heads and tails as sequence 1 except that the first 
60 tosses gave heads and the last 40 gave tails-that would cause us to 
gasp a little. So even though sequence 2 has a reasonable number of heads 
and tails this time, the pattern in which they occur does not have the 
randomness associated with tossing a coin, and that would make sequence 
2 extraordinary. 

So we see that rare events, by themselves, are no cause for surprise. It 
depends on the entire context in which they are considered. The context 
causing surprise may be artificial, as the following example shows. Suppose 
we go back to sequence 1 as an ordinary looking sequence of 100 tosses 
of a fair coin. There is nothing startling in the occurrence of sequence 1, 
but what if, before we tossed, we had been told that if sequence 1 should 
occur we would be paid $2100 , whereas if anything else should occur we 
must pay $5. Now suppose sequence 1 does occur; we would be in a state of 
joyous shock. Sequence 1 has become surprising because we have focused 
on it and compared it to a much more likely competitor, the set of all 
other possibilities. So even though sequence 1 is no more unlikely than any 
typical sequence of outcomes of 100 tosses of a coin, its occurrence has 
become special and extraordinary purely through artificial means. 

5.7 Exercises for Chapter 5 

1. Chloe has two coins. Coin A is fair, with probability of a head =1/2, 
but coin B is biased, with probability of a head =1/3. Chloe tosses 
coin A and then in an independent trial tosses coin B, noting which 
side comes up in each toss. Describe the sample space and give the 
probability of each outcome. Find the probability of the events "at 
least one head" and "at least one tail." 

2. A machine turns out troll dolls in Bernoulli trials where, on the aver­
age, lout of 1000 trolls produced is defective. Assuming the machine 
runs continuously forever, find (a) the probability that the first defec­
tive troll occurs after the 100th trial, (b) the probability that the first 
troll is defective and all future trolls produced are good, (c) the prob­
ability that a run of a million trials produces at least one defective 
troll. 

3. Consider the following statement: "If you keep playing the Lotto game 
under the same conditions you must eventually win because you have 
a positive probability of winning at each play. So it makes sense to 
keep playing." Discuss the validity of the statement. 

4. (Return of the car and goats yet again.) You play the car-goat game 
two times in independent sessions. The first time you don't switch 
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and the second time you do switch. What is the probability that you 
will win two goats? Two cars? 

5. When Ringo drives to work he passes three traffic lights in succession. 
He has noticed that about 1/4 of the time each light has been green 
as he approaches the corner where the light hangs, about 1/4 of the 
time the first has been green and the other two red, about 1/4 of the 
time the second has been green and the other two red, and about 
1/4 of the time the third has been green and the other two red. (a) 
Describe the probability space obtained by considering the possible 
colors of each of the three lights as Ringo approaches. (b) Let F, S, 
and T be the events "the first light is red," "the second light is red," 
and "the third light is red." Find the probabilities of F, S, and T and 
of the events F n S, F n T, S n T, and F n S n T. Conclude from 
this that the events F, S, and T are not independent even though any 
pair of these three events are independent. 



6 
A Little Bit About Games 

In gambling, one thing you should never do is take something 
for granted. 

John Scarne, Bcarne '8 Guide to Casino Gambling 

6.1 The problem of points 

In this chapter, we discuss several games; more along this line will follow 
in the next chapter. The first problem, solved by both Pascal and Fermat, 
goes back to the earliest days of probability as a formal theory. Suppose two 
people are playing a game with the winner receiving prize money at the end. 
If the game is forced to end before either player wins, how should the prize 
money be divided between the players? Pascal introduced the principle that 
the prize money should be divided in proportion to each player's conditional 
probability of winning if the game were to be continued, given the score 
when the game is forced to end. Suppose, for example, that the plays of the 
game constitute a sequence of Bernoulli trials where A wins a point with 
probability p (success) and B wins a point with probability 1-p (failure), 
and n points are needed to win. We will not derive the general formula 
but will give the solution for the case where A has n - 1 points and B has 
n - 2 points. Then A needs one point to win and B needs two points. A 
can win in two ways if the game were to be continued at this moment: (1) 
A can win the next point, and (2) B can win the next point and A can win 
the succeeding point. This gives the value p + p(1- p) for the conditional 
probability of A winning. If p = 1 - p = .5 and the purse is $100, then, 



56 6. A Little Bit About Games 

according to Pascal's principle, A should receive $75 and B $25. 

6.2 Craps 

Craps is played with a pair of dice. The player (sometimes called the 
"shooter") rolls once. If the dice show 7 or 11, she wins. If the dice show 
2, 3, or 12, she loses. If the dice show any other value, this number is 
known as the gambler's "point." She must now keep rolling the dice until 
either she gets 7 before her point appears, in which case she loses, or else 
gets her point before 7 appears, in which case she wins. In addition to the 
shooter, most real-life craps games have a host of other people betting on 
the shooter's game. 

We are going to calculate the probability of the event "the gambler wins 
at craps." This is an interesting game to analyze because the sample space is 
rather complicated. A typical element of the sample space can be considered 
an n-tuple (Xl, X2,' .. ,xn) of n rolls of the dice, where the entry Xi denotes 
the number appearing on roll i, and the game ends at roll n. Using this 
notation,the simplest elements of the sample space can be written: (7), (11), 
(2), (3), (12). Suppose the first roll is 4; this becomes the gambler's point. 
The sample space contains elements of the form (4, X2,"', Xn) where the 
term Xn is either 7 or 4 and the terms X2 through Xn-l must be different 
from both 7 and 4. The totality of such elements can be described as the 
event "the first roll is 4, and the game ends at roll n." Let us calculate the 
probability of the event "the first roll is 4, and the gambler wins at roll 
n." For this to happen, there must have been a sample point of the type 
(4, X2, ... , Xn-l, 4), where the final 4 is in the nth position, and the n - 2 
terms between the two 4's may not be either 7 or 4. A roll of 4 on two dice 
can occur in three ways out of 36 possible rolls, so the probability of the 
initial 4 as well as the terminal 4 is 3/36. The probability of each of the 
n - 2 terms between the 4's is 27/36, since nine of the 36 rolls are excluded 
(six ways for 7, three ways for 4). By independence of the rolls, the product 
rule gives us 

( 3)2 (27)n-2 P(the first roll is 4, and the gambler wins at roll n) = 36 . 36 ' 

valid for n 2:: 2. 
Now suppose we want to find the probability of the event "the first roll 

is 4, and the gambler wins at some time." This event is the disjoint union 
of the events that the gambler wins at time n for the times n = 2,3,···. 
We are already experts at this sort of thing [if you don't agree with this, 
go back and look at formulas 5.3 and 5.4 of Chapter 5], so we know 

P(the first roll is 4, and the gambler wins at some time) (6.1) 
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by summing the geometric series. The above reasoning shows the pattern 
for solving the original problem: calculate the probability for winning for 
each of the possible points in a manner similar to what was just done. Add 
these values together with the probability of winning by making an initial 
7 or 11 and you have the overall probability of winning. We now take each 
of the points in turn and find the analog of formula 6.1. There are three 
ways of rolling 10 just as there are for 4, so the numbers on the right-hand 
side of formula 6.1 are the same and the sum is again 1/36. There are four 
ways of rolling either 5 or 9, so each of these points gives the general term 
in the analog of formula 6.1 to be 

and the sum of this series is 2/45. Finally, there are five ways of rolling 
each of the points 6 and 8, so the general term of the series analogous to 
the right-hand side of formula 6.1 has general term 

and the sum is 25/396. The probability of winning by getting either 7 or 11 
on the first roll is 8/36 (six ways for 7, two ways for 11). The probability 
of winning at craps is therefore 

~ + 2 . (~) + 2 . (~) + 2 . (~) = .492927· ... 
36 36 45 396 

6.3 Roulette 

Roulette is perhaps the most glamorous and romantic of casino games; we 
have all seen the spinning wheels and intent players in the movies. Here is 
a rough description of the American version of the game. There is a wheel 
divided into 38 slotted sectors of equal size. Thirty-six of these are marked 
by the numbers 1 through 36, with 18 numbers colored red and the other 
18 black. The remaining two sectors are green in color and marked 0 and 
00. The croupier spins the wheel and then spins the ball in a groove on 
the wheel. Eventually the ball slows down and falls off the groove into one 
of the 38 slotted sectors. Various bets can be made about the number on 
which the ball lands, for example, red or black, odd or even, any particular 
number, or groups of numbers such as "low" numbers (1 to 18) or "high" 
numbers (19 to 36). The mathematics of roulette is very simple. Here are 
a few calculations. 
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P(red) = P(black) = P(odd) = P(even) = 18/38::::; .474, 
P(any number) = 1/38::::; .026. 

6.4 What are the odds? 

Gamblers don't usually talk in terms of probabilities of events. They prefer 
to talk in the language of odds, the ratio of the number of unfavorable ways 
to the number of favorable ways. In craps, the number 7 can be rolled in 
six out of 36 ways, so there are 30 unfavorable ways that 7 cannot come up. 
The odds are therefore 5 to 1 against 7 appearing in one roll of a pair of 
dice. The odds against snake eyes are 35 to 1. In roulette, the odds against 
any particular number appearing are 37 to 1. If the odds against an event 
are i to 1, it means that a fair payoff if you win the bet would be $i for 
every $1 you bet. 

Payoffs in a casino are not in accordance with fair odds, of course; they 
are always somewhat less. The odds against a shooter winning at craps 
are about 1.028 to 1 (the shooter wins about 493 times out of 1000 when 
we interpret the probability of winning given in Section 6.2 as a relative 
frequency). But the payoff is only at even money; that is, the house gives 
you only $1 for every $1 you bet. In roulette, if you bet $1 on a particular 
number and win, the house only gives you $35 rather than the $37 they 
should pay you according to the true odds. In other words, they are paying 
you as though only 36 numbers were on the wheel. We can say that in 
roulette 35 to 1 are the payoff odds in contrast to the true odds. 

We will speak more about games in the next chapter after the important 
ideas of random variable and expectation are developed. Fair odds would 
give you the payoff in what we call a fair game. All casino games are 
inherently unfair, biased against the gambler. This gives the casino its edge, 
the way it makes money in the long run because of the laws of probability. 
For example, the two green sectors in roulette give the house its edge. 
Sometimes gamblers have sought to eliminate the casino's edge by trying 
to obtain additional information about the game and therefore increase 
their conditional probability of winning-see Section 7.6. 

6.5 Exercises for Chapter 6 

1. Suppose you play a single game of craps each day of your four-day 
vacation. Find the approximate probability that you will win at least 
one of the four games. 

2. Suppose the plays of a game are a sequence of Bernoulli trials where 
my opponent and I have probabilities 1/3 and 2/3, respectively, of 
scoring a point, and the first one to score 21 points wins. There is a 
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$100 purse for the winner. If the game must end prematurely when I 
have 18 points and my opponent has 20 points, use Pascal's principle 
to calculate how the purse should be divided. 

3. What are the odds against rolling snake eyes in one roll of the dice? 
What are the odds against tossing at least one head in three tosses 
of a fair coin? 

4. There are four red balls and one black ball in an urn. You choose a 
ball at random, replace it, choose a second ball at random, and so on 
until you get for the first time a ball whose color is the same as the 
color of the first ball selected. Find the probability that the game will 
end when you select a black ball. Find the probability that the game 
will end when you select a black ball, and that it will take more than 
three selections from the urn to accomplish this. 

5. Anna is playing roulette and wins with the ball on the red 7. What is 
the probability that only red numbers appear before the red 7 wins 
again? 

6. Your friend the gambler has three cards. Each card has a mark on 
each side. One card has a red mark on each side, one card has a black 
mark on each side, and one card has a red mark on one side and a 
black mark on the other. One of the cards and one of its sides is chosen 
at random so that the mark on only that one side is visible. This mark 
is seen to be red. You know the other side of the chosen card can be 
black or red, and the gambler says each of these possibilities is equally 
likely. He wants to bet even money that the other side is red. Is this 
a reasonable bet for you to make? 



7 
Random Variables, Expectations, 
and More About Games 

When haughty expectations prostrate lie, 
And grandeur crouches like a guilty thing 

William Wordsworth, from Sonnet 21 

7.1 Random variables 

Suppose we toss a coin three times in independent trials, with probability 
p of getting a head at each trial. On the average, how many heads can we 
expect to get? Right now this question does not have a precise meaning for 
us; what do we mean by "average" or "expect"? Most likely we do have a 
rough idea of the meaning of the question. Three tosses of a coin will result 
in anywhere from 0 to 3 heads, so the answer must be some number in that 
interval. The first step in making the question precise is the definition of the 
term random variable. A random variable is a correspondence that assigns 
to each outcome in a sample space a unique number. (Mathematicians more 
generally refer to such objects as functions.) For example, in the above set­
up of three tosses of a coin, let X = the total number of heads obtained. 
The table below shows the assignment of a value for X to each of the eight 
possible outcomes. 

(H, H, H) ----+ 3 

(H, T, H) ----+ 2 

(T, H, H) ----+ 2 

(H, H, T) ----+ 2 

(H, T, T) ----+ 1 

(T, H, T) ----+ 1 
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(T, T, H) --+ 1 (T, T, T) --+ 0 

The number to the right of any arrow is the number of heads appearing in 
the triple to the left of it; it is the value of X assigned to the given triple. 

A random variable has a distribution. This is the list of each possible value 
of X with the probability of attaining that value. The distribution can be 
computed from the above table easily using the given set-up of independent 
tosses with probability p of heads. For instance, each triple with exactly 
two heads has probability p2(1 - p), and there are three such triples, so 
the probability of X = 2 is 3p2(1 - p), and so on for each possibility. The 
distribution of X can be written 

P(X = 0) = (1- p)3, 
P(X = 2) = 3p2(1- p), 

P(X = 1) = 3p(1- p)2, 
P(X = 3) =p3. 

Here is another example of a random variable. Let's say I am the shooter 
at a casino game of craps where the house is betting even money that I 
lose; this means that if I bet $n I pay this to the house if I lose and if I 
win the house pays me $n (see Chapter 6). To make things simple, suppose 
the amount of the bet is $1. Let X = my winnings after one game. X has 
possible values 1 and -1 (a loss is expressed as a negative win). Let us 
take the probability of winning at craps to be .493. The distribution of X 
is then P(X = 1) = .493, P(X = -1) = .507. 

The above two examples exhibit discrete random variables, that is, ran­
dom variables whose associated probability space is discrete. Such random 
variables have either a finite number of possible values or an infinite num­
ber that can be counted off using the positive integers. An example of a 
discrete random variable with an infinite number of values is given by let­
ting X = first time success occurs in a sequence of Bernoulli trials. The 
event X = i means that the first i-I trials resulted in failure and the ith 
trial gave success. The probability of this event, which is precisely the value 
of P(X = i), has already been calculated in Section 5.2 (where success is 
equivalent to obtaining a head) and has the value qi-lp (here, as usual, p is 
the probability of success and q = 1 - p is the probability of failure-from 
now on when we discuss Bernoulli trials, p and q will always denote these 
quantities). The distribution of X is called a geometric distribution because 
the probabilities qi-lp are terms of a geometric series. 

Any statement about the values of X can be traced back to describe an 
event in the sample space. In the first example above, X > 0 corresponds 
to the event "all triples containing at least one H." This event has the 
same probability as X > 0; it can be calculated from the probability space 
directly or from the distribution of X: P(X > 0) = 1 - P(X = 0). It 
should also be evident that if you have a random variable and you add 
all the probabilities up for all possible values, you must get 1. This must 
be the case since each outcome in the sample space has some value of the 
random variable corresponding to it. Adding up the probabilities of all the 
values is the same as adding up the probabilities of all the outcomes. 
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7.2 The binomial random variable 

The first random variable we considered involved tossing a coin three times 
and defining the variable to be the total number of heads obtained. A gen­
eral version of this variable defines X to be the total number of successes 
in n Bernoulli trials. Each trial gives one of two possibilities, and a typical 
outcome is an n-tuple (x!, X2,· •. , xn), where each Xi is either S or F, for 
success or failure, respectively. How many such outcomes are there? By 
the counting principle, you must multiply 2 by itself n times to obtain 2n 

outcomes. Let's try to calculate P(X = i), the probability of exactly i suc­
cesses in the n trials. Any outcome with exactly i successes and therefore 
n - i failures must have probability piqn-i by the product rule of inde­
pendence. So if we know how many outcomes there are with i successes, 
the desired probability can be calculated by multiplication. The number of 
such outcomes is just the number of different ways we can write down an 
n-tuple with S appearing exactly i times and F appearing n - i times. The 
calculation is similar to ones done in Chapter 2. Let's suppose we have n 
symbols we want to enter in some order in the n-tuple. There are n ways 
of selecting the first entry of the n-tuple, n - 1 ways of selecting the sec­
ond entry, and so on, so the totality of ways of entering the symbols when 
they are all considered distinct is the product of all the integers between 
1 and n inclusive, a value mathematicians designate by n! (pronounced "n 
factorial") . But the symbols in this case are not all distinct; none of the 
S's can be distinguished from one another, nor can the F's. So n! is too big 
and we have to divide through by a factor giving the number of ways we 
can order the S's and F's among themselves. The S's can be permuted in 
i! ways (think of the S's as i distinct symbols; they can be written in the 
i spaces in i! ways but all of these ways correspond to a single distinguish­
able pattern in our counting) and the F's in (n - i)! ways. This yields the 
formula 

n! 
total number of n-tuples with is's and n - iF's = .'( _ .)' 

z. n z. 

The right-hand side of this formula is sometimes expressed as en,i, read 
"n choose i." We recognize it as the number of ways of choosing a set 
of i objects from a group of n. That this formula should appear in our 
calculation is natural since each distinguishable pattern of S's and F's 
obtained is determined by choosing from the n spaces of the n-tuple exactly 
i of them to write in the letter S. The distribution of X is therefore given 
by 

. n! i n-i 
P(X=z)= .'( _.),.pq . z. n z. 

This is called the binomial distribution and depends upon two parameters 
(that is, variables whose values define the distribution), the number n of 
trials and the probability p of success. If n = 3, the formula reduces to the 
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distribution of the total number of heads obtained in three trials calculated 
directly in Section 7.1. 

7.3 The game of chuck-a-luck and de Mere's 
problem of dice 

The game of chuck-a-luck is played by rolling three dice. The gambler bets 
on one of the numbers 1 through 6. This number may appear zero, one, 
two, or three times; if it appears i times, the gambler receives $i. The dice 
are assumed to act independently, so we think of each die determining a 
Bernoulli trial with success corresponding to the gambler's number turning 
up. The probability of success is 1/6, and if we define the random variable 
X = amount paid by i appearances of the winning number, then X has a 
binomial distribution with n = 3, p = 1/6. The distribution of X is given 
by 

(l)i (5)3-i 
P(X = i) = C3 ,i 6 6 . 

We turn nOw to a problem that spurred the development of the theory. 
The Chevalier de Mere deserves a place in the history of probability perhaps 
not so much for solving any problem as much as for asking good questions. 
He was the one who called Pascal's attention in 1654 to the problem of 
the points discussed in Chapter 6. He also asked Pascal's advice about 
a problem of dice. It seems in those days there was a popular game in 
which the house would bet even money that a gambler throws at least one 
6 in four rolls of a single die. Each roll is a Bernoulli trial with success 
equivalent to rolling a 6, and the probability of success is 1/6. From the 
binomial distribution 

P(no 6's in four throws) = (~) 4, 

and so 

P(at least One 6 in four throws) = 1 _ (~) 4 = .517· .. , 

giving the house an edge. An old gambler'S rule seemed to indicate that 
since the game of at least One 6 in four throws was favorable to the house 
the probability of at least One double 6 showing On 24 rolls of a pair of dice 
should still be favorable to the house. The idea was that the four throws of 
one die had to translate into 6 . 4 = 24 throws of two dice because two dice 
can come up in six times as many ways as One die. Yet de Mere did not 
believe the game with the pair of dice was favorable to the house. Some 
feel that his suspicions were aroused by gambling losses, others that he 
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came to his conclusions through reasoning. There are arguments against 
both explanations. On one hand, he would have had to gamble a lot to 
get enough data to distinguish between extremely close probabilities. On 
the other hand, not much was known about probability calculations in 
1654. So there is a little bit of a mystery here as to how de Mere noticed 
something puzzling in the first place, but he did, and he asked Pascal, who 
solved the problem. For us now, the problem is easy. Let a single roll of 
the dice constitute a Bernoulli trial with success corresponding to a double 
6 appearing. The probability of success is 1/36, and from the binomial 
distribution 

( 35)24 
P(no double 6's in 24 trials) = 36 

The right-hand side can be easily found by taking 24 . log(35/36), where 
"log" is the base 10 logarithm (use a calculator), and then taking the an­
tilogarithm of this result (raising 10 to this power). We get, to three decimal 
places, .509, which means that the probability of at least one double 6 is 
approximately .491, confirming de Mere's suspicion that the game with two 
dice is not favorable to the house. 

7.4 The expectation of a random variable 

Now we are ready to introduce the all-important idea of the expectation 
or expected value of a random variable. For the moment, we restrict the 
discussion to discrete random variables. The basic idea is that, since a 
random variable has in general very many values, it would be most pleasant 
if there were some number giving the average of these values in some sense. 
The ordinary arithmetic average of a bunch of numbers is obtained by 
adding them all up and then dividing by how many numbers you have. This 
average for a random variable is not such a good idea because for a random 
variable it is the distribution that is important (that is, the probability 
information about the values), not the raw values themselves. For example, 
consider a random variable X with the two possible values 100 and 0 with 
probabilities .99 and .01 respectively. The arithmetic average is 50, but the 
probabilities indicate a probable value of 100. By changing the distribution 
so that 100 and 0 have probabilities .01 and .99, respectively, the probable 
value is now O. What we want is a way to get an average probable value. We 
do this by taking a weighted average, using the probabilities as weights. This 
means that values with large probabilities count more and values with small 
probabilities count less in the average. To be precise, suppose a discrete 
random variable X has a distribution given by a list P(X = ai) = Pi, 
namely, for each possible value ai of X its probability is Pi. The expectation 
of X, written EX, is defined by 

EX = al . PI + a2 . P2 + ... , 



66 7. Random Variables, Expectations, and More About Games 

the series having a finite or infinite number of terms depending on whether 
X has a finite or infinite number of possible values (in the infinite case we 
may run into problems because the series may not be summable. In this 
case, the expectation may not exist, but for the moment we won't worry 
about this). In words, to calculate the expectation of a discrete random 
variable, mUltiply each possible value by the probability of that value, and 
then add up all the terms you get. The expectation of X is sometimes 
called its mean. This use of the term mean must be distinguished from 
statistical usage when considering the arithmetic average of observations. 
The arithmetic average of observations, or data, is the sample mean (see 
the end of Chapter 12 and Chapter 15); what we are discussing now is often 
distinguished from the sample mean by calling it the population mean. 

Armed with this definition of expectation, let's return to the question at 
the beginning of this chapter and answer it by calculating the expectation 
of the random variable X of the first example of Section 7.1. Using the 
distribution of X, the definition of expectation gives us 

and if the coin is fair, EX = (3)(.5) = 1.5. So for a fair coin we expect 1.5, 
half of the 3 tosses, to be heads. Note that the expected value of a random 
variable need not be a possible value. You cannot get 1.5 heads; it is merely 
a number defined in a certain way. Similarly, if X is given as in the second 
example of winnings at craps, clearly 

EX = 1· (.493) + (-1) . (.507) = -.014. 

For this random variable, the expected value is negative and we expect to 
lose about 1.5 cents in each game. 

For another example, take a look at the variable X with the geometric 
distribution. The quantity X measures the time until the first success in 
a sequence of Bernoulli trials. From the distribution given in the previous 
section 

EX = 1· P + 2 . qp + 3q2p + ... + i . qi-lp + .. . . (7.1) 

This is an infinite series but is not a simple geometric series, and it is 
not even clear that the series is summable. But not to worry. The right­
hand side of formula 7.1 does indeed define a summable series, and the 
sum can be evaluated quite easily by a method depending upon calculus. 
There is, however, a cute little trick by which we can evaluate the sum 
with hardly any work (if we are willing to forgo the rigorous justification 
of the argument, that is). Define X* to be the time of the first success that 
appears after the first trial. Notice 

X={ 1, 
I+X*, 

if first trial is success, 
if first trial is failure. 
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Now, it seems reasonable to suppose that the expectation of X should be 
the sum of the expectations under each of these possibilities multiplied by 
the probability of the possibility; that is, 

EX = 1 . p + (1 + EX*) . q. 

But X* is exactly the same kind of random variable X is and has the same 
distribution. It therefore has the same expectation. So we get 

EX = p + q + qEX = 1 + qEX, 

and solving for EX gives us EX = (1- q)-l = p-l, an elegant result with 
intuitive appeal. The expected number of trials before the first success 
occurs is just the reciprocal of the probability of success. If this probability 
is, say, 1/1000, the frequency interpretation of probability says that roughly 
there is 1 success in 1000, or that we can expect a first success after trial 
1000. In general, if the probability of success is small, then you have to 
wait a long time on the average, but if this probability is large, then your 
average wait is short. If p = .5, you expect two trials until the first success. 

In the above discussion, we noted that since the two random variables X 
and X* have the same distribution, then their expectations (assuming they 
exist) must be equal. This important relation is true in general: random 
variables with the same distribution must have the same expectation when 
the expectation exists. This follows from the definition of expectation, a 
quantity that depends only on the distribution function. 

If X is a random variable with a uniform distribution, then the expec­
tation of X is just the ordinary arithmetic average. For example, suppose 
you roll a fair die, each face having probability 1/6 of appearing. Let X = 
number appearing on the roll. Then 

1 1 1 1 1 1 
EX = 1 . - + 2 . - + 3 . - + 4· - + 5 . - + 6· - = 3.5 

6 6 6 666 ' 

the ordinary average. 
The expectation gives a measurement of the center of a distribution of 

a random variable X. There are other ways of measuring a central value. 
The median is another such measurement, which is sometimes defined as 
the smallest value m such that P(X S; m) ~ .5. To take a simple example, 
suppose X is the total number of heads in four Bernoulli trials with a fair 
coin. The possible values of X are ordered: 0, 1, 2, 3, 4, with corresponding 
probabilities 1/16, 4/16, 6/16, 4/16, 1/16, as is easily calculated. Starting 
from the left of the ordered values at 0 and adding the probabilities of the 
values, the first time .5 is exceeded is at X = 2, so 2 satisfies P(X S; 2) ~ .5 
and is the smallest such value and is the median. A computation shows the 
expectation of X in this case is also equal to 2. But in general the median 
is not equal to the expectation; just take the case of three tosses of the 
coin rather than four. The possible total number of heads is 0, 1, 2, 3 with 
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probabilities 1/8, 3/8, 3/8, 1/8, and the median is 1 but the expectation 
is 1.5. Note that the definition of median requires it to be a possible value, 
whereas there is no such restriction on the expectation. 

Why are there different notions of central value, and which one should 
we use? The answer is that there are different ones for different purposes 
and the one to be used depends upon the purpose. The importance of 
the expectation as a measurement is justified by its appearance in the 
Law of Large Numbers, as we shall see in the next chapter. It is also an 
intuitively appealing measure of the average of the possible values of a 
random variable. On the other hand, the median is useful when you are 
interested in a notion of central value that guarantees a position in the 
middle of the distribution: it is roughly as likely for other values to be 
smaller than the median as larger; that is, about half the probability lies 
to the left of the median and about half to the right. If we are dealing with 
observations, we can define the sample median, which would be the middle 
observation or the average of the two middle observations when the data is 
arranged in increasing order. The median, or sample median, often turns 
out to be a more natural indicator of the center of a distribution than the 
expectation, for example, in statistical studies where the distributions of 
variables are largely unknown. Moreover, the median is an indicator much 
less sensitive than the mean to "outlier" or extreme values, observations 
that are very different from most of the others. Suppose, for instance, there 
are ten values, each with the same probability .1. If nine of these values 
are between 0 and 1 but the tenth is larger than one, then the median is 
the same regardless of the value of the tenth value. The mean, however, 
depends very strongly on all values (take the tenth value equal to 106 , say). 
It is good to have several indicators for the idea of a central value-results 
can be compared using each of them, and the theory becomes richer. 

7.5 Fair and unfair games 

We want now to consider random variables that represent an individual's 
winnings in a game of chance. Let X = your winnings, where a negative 
value of X is the sum of any losses and possible fees required to play the 
game. Although the language of gambling used here may seem frivolous, 
the model to be described has wide application; after all, the purchase of 
any kind of insurance is a "game" where we "win" when we (or our heirs) 
collect, and our "losses" are our premium payments. A game is called fair 
if EX = O. There are two types of unfair games, favorable when EX > 0 
and unfavorable when EX < o. 

As we have observed, casinos prosper because the games played there are 
always unfavorable to the gambler. The game of craps described above has 
an expectation of -.014 and is unfavorable. Betting $1 on the red numbers 
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in American roulette gives 

EX = 1· (.474) + (-1)· (.526) = -.052, 

so your expected loss here is about 5 cents. From the point of view of 
expectation, the craps game is better for the gambler than roulette. Now 
let's consider the Lotto game discussed in Chapter 2. Suppose the purse is 
$10,000,000. This can be expressed more succinctly in so-called scientific 
notation as $107 , that is, 1 followed by 7 zeros. Recall that for $1 you can 
buy two game panels, each of which has probability 1/25,827,165 ~ 3.8· 
10-8 of winning the purse. It follows that you lose your $1 with probability 
25,827,163/25,827,165 ~ 9.9· 10-1 and win the purse with probability 7.6 
.10-8 (we assume, for simplicity, that there are no ties; that is, you are the 
unique winner who doesn't have to share the purse). Therefore, the random 
variable X representing your winnings at Lotto has expectation 

EX ~ (-1)· (9.9.10-1 ) + 107 . (7.6.10-8 ) = -.99 + .76 = -.23 , 

so your expected loss in this game is 23 cents on the dollar. Finally, let's 
turn to chuck-a-luck. If X is the number of times the number bet on turns 
up, and the gambler bets $1, and if Y is the gambler's winnings, by putting 
in the probabilities given in Section 7.3 we have 

EY = (-l)·P(X = O)+l·P(X = 1)+2·P(X = 2)+3·P(X = 3) ~ -.079. 

In terms of odds, a payoff at the true odds corresponds to a fair game. To 
take an example, the true odds against any particular number in roulette is 
37 to 1. This means the payoff is $37 for every $1 you bet. The expectation 
of your winnings is therefore 

1 37 
37·-+(-1)·-=0. 

38 38 

Of course, the casino does not give a payoff at the true odds. The payoff 
odds for a number in roulette is $35 for every $1 you bet. So the expected 
winnings is obtained by putting in 35 for 37 in the above equation. This 
comes out to an expected loss for the gambler of about 5 cents. 

The Petersburg game is a theoretical game that goes like this: you toss a 
fair coin until you get a head. If this occurs at trial i, you receive $2i. Let 
X be the payoff of the game. Then 

is the expected payoff from the game. Each term of this infinite series gives 
1, so the series is not summable-the partial sum of the first n terms is 
n, and there is no convergence of the partial sums to a nice number. That 
means there is no expectation in the precise sense although we might say 
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that the expectation is infinite as a shorthand way to describe the steady 
growth of the partial sums beyond all bounds. The question that intrigued 
early workers in the theory was this: what would be a fair entrance fee to 
play the Petersburg game? No matter how much money you propose to pay, 
the game cannot be made fair since your expected winnings will be infinite. 
On the other hand, would you be willing to pay $210 = $1,024 to play? If 
so, tails would have to come up for the first nine consecutive tosses before 
you could just break even, and the probability of this is approximately 
.00195. 

The Petersburg game is sometimes called the Petersburg paradox because 
it seemed so strange to these early probabilists that on one hand the game 
is technically favorable for the gambler no matter how large an entrance fee 
is paid, and yet few people would be crazy enough to bet even the relatively 
tame amount of $1,024. The paradox is cleared up when it is realized that 
the rules of the Petersburg game implicitly assume the house must have an 
infinite amount of capital to be able to take on the gambler. This, of course, 
is impossible; the house only has a finite amount of capital it can lose before 
it goes broke. A realistic version of the Petersburg game would therefore 
have to end at a finite time (when the house reaches its maximum capacity 
to pay), and this would lead to the sum of a finite number of terms, namely, 
a finite number, for the expectation of the payoff. To get a fair game, the 
amount of this expected payoff is the entrance fee paid by the gambler. To 
get a game favorable to the house, any amount larger than this expected 
payoff would work. 

How do the ideas about fair games apply to the problem of determining 
insurance premiums? Here is a simplified argument showing how a pre­
mium payment can be roughly determined using the notion of a fair game. 
Suppose a man 36 years old wants to buy $50,000 of term life insurance for 
a 20-year term. Over the years, much data have been collected on mortality 
for all age groups; these data have given rise to mortality tables used by 
insurance companies to estimate the probability Pi that an individual of 
age i will survive for 20 more years. The expected payoff by the insurance 
company on the insuree's life is D = $50,000· (1 - P36). Now, what is the 
expected income to the insurance company? Even if the insuree dies, he 
will have paid some premiums until his death. To simplify matters, we will 
neglect that income, and just consider the income to the company when the 
man lives the full term and pays all his premiums. If the yearly premium is 
a fixed amount L/20, the company collects a total amount L. The expected 
income to the company is therefore L· P36 - D. If L = D/P36, the game 
is fair, but since the company is in business to make money (like a casino) 
its game must be unfavorable to the insuree, and L will be chosen to make 
the expected income positive and give the insurance company its edge. We 
have here ignored, for example, other complications, like lapsed policies or 
the income the insurance company makes by investing its premiums. 

An interesting question concerns the controversy sometimes arising about 
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the way the probabilities Pi are determined from the data. Women in gen­
eral live longer than men and so have different mortality statistics. If pre­
mium computations for a female are based on mortality tables from a female 
population, Pi should be larger than if the computations are based on tables 
from a general population including men, and so D and the annual premium 
should be smaller. This reflects the fact that the insurance company is tak­
ing less of a risk if it insures a woman rather than a man. Arguments like 
this have been used by different social groups as a plea for lower premiums; 
for example, non-smokers might ask to pay less for health insurance than 
smokers. On the other hand, similar reasoning could lead to high premiums 
or outright refusal to offer insurance to people in high risk groups, like can­
cer or AIDS patients. These are complicated non-mathematical questions 
depending on society's view of the role of insurance. 

7.6 Gambling systems 

Gamblers have learned the hard way over the centuries that there does not 
appear to be any way to beat the odds by implementing various systems. 
The games we have described depend entirely upon chance, and a negative 
expectation means you must lose in the long run (as we shall see in Chapter 
8) if you play the game repeatedly under the same conditions. You may 
believe, however, that deciding when to play by stopping or skipping at 
certain times, or changing the amounts of the bets depending on your 
luck, can change the edge from the house to you. A theorem of probability 
essentially says you cannot change an unfavorable game into a favorable 
game by any strategy that just depends on the present and the past history 
of the game and that does not require the gambler to be infinitely rich. 

Let's see that if we do allow the gambler to be infinitely rich there is a 
strategy that allows him to win with probability 1 even if he is playing an 
unfavorable game. The strategy involves the gambler changing his stakes 
after each play, that is, the amount of his bets. The method, which seems 
to have been popular with gamblers over the years, involves doubling the 
stakes after every loss. Here is how it could work. Suppose the game involves 
repeated plays where at each play the gambler can bet as much as he wishes, 
say $i. On that play, he will win or lose $i with probabilities 1/4 and 3/4, 
respectively. Assume he starts betting with i = 1. The strategy is this: keep 
playing for $1 as long as you are winning. If you lose, you bet $2 on the 
next play, and keep doubling your bets after each losing play. When you 
win, you can go back to playing at $1 again if you choose. If you quit after 
any play you have won, you will walk away a winner. To see this, we just 
have to notice that if the gambler starts by losing $1 and has n consecutive 
losses, his total losses are 
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If he wins on the next play, he gets $2n +1, so he has cancelled out all losses 
and is ahead by $1. This game is unfavorable to the gambler in the sense 
that at each play the expected winnings are negative, yet the gambler has 
a foolproof method for winning: since with probability 1 the losing streak 
cannot go on forever, just stop playing after any winning play. 

The problem with this strategy is that it requires the gambler (and his 
adversary) to have infinite capital because it is not known in advance how 
long his losing streak may last. In practice, the gambler only has finite 
capital and can go broke; the problem then becomes the classical one of 
the gambler's ruin (see Chapter 10). In addition, the house has a limit on 
bets, which means that even if the gambler has the money there will be a 
certain bound beyond which he will not be allowed to bet. 

There have been more sophisticated attempts to turn the tides of fortune. 
Some more complicated casino games, like Blackjack, require the gambler 
to make choices. This is in contrast to the simple games we have already 
described in which only chance operates. When you have several choices, 
you should, of course, choose the one giving you the greatest probability of 
winning. Blackjack is played with several decks of cards. The rules require 
a dealer to deal cards to players who try to reach a total as close to 21 as 
possible without exceeding it (each card has a number value assigned to 
it). The dealer, representing the house, is also a participant in the game. 
A player may have the choice of being dealt another card or cards from 
the decks during play. Since the probability of winning depends on the 
distribution of cards remaining in the undealt portion of the decks, so-called 
"card counters" have tried to remember which cards have appeared in order 
to have a better idea of the cards remaining; this added knowledge can help 
them decide between choices and increase their conditional probability of 
winning. A number of systems have appeared that claim to show how a 
gambler can get an edge over the house by card counting (for example, see 
[33]). No one, however, seems to have made a fortune by these schemes. 
One problem is that you have to be experienced enough to execute a system 
flawlessly even if there is something to it. The house, moreover, is ready to 
eject anyone who looks like a counter, and made the job of counting harder 
by increasing the number of decks used in a game. 

Another assault on the casinos came from a group of physicists, math­
ematicians, and computer experts described by Bass [1]. They tried to 
conquer roulette and offered the following argument. Roulette depends on 
a ball careening over a spinning wheel and is a pure game of chance. On the 
other hand, according to classical physics, if we know enough about a phys­
ical system (large enough, like the roulette system, so that the Heisenberg 
uncertainty principle need not be taken into account), it should be possible 
to predict its state in the future. So, in principle, the ball's final resting 
place on the roulette wheel should be predictable if the basic physical pa­
rameters of the ball and roulette wheel and all the various forces at work 
are known at a certain time at the beginning of the play, and if we have 
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equations at our disposal that can utilize this information. These are big 
ifs. Moreover, the data would have to be gathered quickly and secretly by 
watching a particular wheel in action in plays before the bet is made. The 
group of scientists built computers to fit into a shoe and devised ingenious 
devices to register the data surreptitiously. They claimed their method 
worked, but they were plagued by failures of their gadgetry and never did 
fulfill their dreams. Their few successes might just have been chance fluctu­
ation. A problem with their idea is suggested by the possibility that where 
the ball lands may be extremely sensitive to initial conditions and round-off 
error. So although you may have perfect equations of prediction, it may be 
impossible to supply them with data accurate enough to make solid pre­
dictions. The relatively new discipline called the theory of chaos may have 
something to say about this: one of its main ideas is the sensitive depen­
dence of behavior on initial conditions that some physical systems exhibit. 
If roulette has chaotic behavior, it is inherently unpredictable and it seems 
we must fall back on the theory of probability. 

7.7 Administering a blood test 

This problem is given as an exercise in [8]. Suppose a large number N of 
people have to be given a blood test for a certain disease. The test can be 
administered in two ways: 

a. Each person is given the test separately. 

b. The blood samples of i people are pooled, mixed, and then tested. If 
the test is negative, the single test suffices as a negative test for the i 
people; if the test is positive, all i people must be tested separately. 
We do this for groups of i until all N people have been tested. 

We assume the test is positive with probability p for each person and 
that outcomes of the test for individual people are independent (so we 
have Bernoulli trials with success corresponding to testing positive). Which 
method of administering the test should we choose, and if we choose (b), 
how shall we determine the value of i? 

The idea behind using the pooled sample test (b) is that testing is ex­
pensive, time consuming, and requires equipment that may be scarce, so if 
(b) results in fewer tests on the average, considerable savings and increased 
efficiency can be achieved. The Second World War was the stimulus for re­
search into this kind of problem because of the need to perform such tests 
on large numbers of military personnel. We therefore use the principle that 
the preferable plan is the one with the smaller expected number of tests. 

We will now compute the expected number of tests for each plan. Plan 
(a) poses no problem; there will be exactly N tests, and probability is 
not required to figure this out- we have a deterministic situation. Let's 
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look at plan (b), and let X be the total number of blood tests performed 
for a single group of i people in plan (b). Then X = 1 when all i people 
test negative. Each negative test occurs with probability q = 1 - p, so by 
independence all i people test negatively with probability qi. If the pooled 
test is positive, then X = i + 1 since i further individual tests are now 
necessary. The probability of a positive pooled test is 1 - qi, so 

What we want now is the expected number of total tests for the N people. 
First, suppose N is an exact multiple of i so that all N people can be broken 
up into r = N Ii groups, where each group has the same expectation as in 
formula 2. Let T be the total number of tests for the N people using plan 
(b), and let X k be the number of tests required for the kth group, for 
k = 1,2"", r. Clearly, 

(7.3) 

and it seems very reasonable to suppose that from formula 7.3 we might 
expect 

ET = EXl + EX2 + ... + EXr . (7.4) 

Formula 7.4 says that the expectation of the sum of the random variables 
[given in formula 7.3] is the sum ofthe expectations of the random variables. 
This relation turns out to be true, as we will see in the next chapter, for the 
sum of any random variables. Since each expectation in the sum of formula 
7.4 has value equal to the right-hand side of formula 7.2, formula 7.4 yields 

N. . 1 
ET= -:-(i-iq'+I) =N(I-q'+i-), 

z 
(7.5) 

giving the desired expectation. 
Let's concentrate on the term F = (l_qi+i- l ) in formula 7.5. According 

to our standard of preference, plan (b) is preferable to plan (a) when ET 
is less than N, and the best version of plan (b) is the one that makes ET 
as small as possible. ET is proportional to F, so the question becomes: 
for a given q, find the value of i making F a minimum. In practice q, the 
probability of a negative test for a person, would be rather large--Iet's fix 
ideas by supposing q = .99. Now we can see what happens to F as i takes 
on different values. For i = 1 and 2, F = 1.01 and .5199, respectively. For i 
extremely large the second and third terms of F are small, close to zero, so 
F is close to 1. From these observations, it appears that as i increases, F 
decreases below 1 and then starts to increase to 1. It therefore seems likely 
that there is a value of i making F as small as possible, and this feeling 
can be justified by a more rigorous analysis. By playing around with a 
calculator, it is not very hard to close in on this optimal value of i, which 
equals 11. This gives an approximate value for ET of .2N, that is, with the 
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numbers chosen here, only about 20 percent of the tests given in plan (a) 
would be performed on the average, a savings of 80 percent. Of course, in 
any particular situation plan (a) might turn out to require fewer tests than 
plan (b). 

There is one remaining matter to dispose of. To make this computation, 
you recall, we assumed N is a multiple of i so that formula 7.3 could be 
written down exactly. If N is not a multiple of i, the last group has fewer 
than i people, and so the sum on the right-hand side of formula 7.3 must be 
replaced with another sum, where the last term has a different distribution 
from all the others. But since N is supposed to be large, the right-hand 
side of formula 7.5 can still be used as a reasonable approximation to the 
true value of ET even when N is not a multiple of i. 

7.8 Exercises for Chapter 7 

1. Roll a pair of fair dice repeatedly for 100 independent trials, and 
let X= the number of times 7 occurs. Express P(X = 5). Express 
P(X < 98). 

2. Let X be your winnings in the game of chuck-a-luck. Find the expec­
tation of X given that the number you bet on appears at least once. 
(Hint: Use the usual formula for the expectation, but use a conditional 
probability distribution rather than the unconditional distribution.) 

3. Here is a finite version of the Petersburg game. As with the classical 
game, you toss a fair coin until you get a head for the first time, and 
receive $2i if this occurs at trial i. In this game, however, you are 
only allowed a maximum of N trials. If tails occurs at each of the N 
trials, you win nothing. What entrance fee should you be required to 
pay in order to make the game fair? 

4. Roll a pair of dice until 7 occurs for the first time. What is the 
expected number of trials until 7 appears? Suppose you playa game 
by rolling the dice three times. You win if there is at least one 7 and 
lose otherwise. If you lose, you pay your opponent $3. What should 
your opponent pay you to ensure that the game is fair? 

5. A standard deck of cards contains 4 suits (hearts, diamonds, clubs, 
and spades) of 13 cards each, numbered cards from 1 to 10, and the 
jack, queen, and king. The hearts and diamonds are red cards, and 
the clubs and spades are black. There is thus a total of 52 cards in 
the deck. You choose two cards at random from the deck. Find the 
expected number of black cards chosen. Find the expected number of 
hearts chosen. 
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6. An urn contains six red balls and four black balls. Three balls are 
chosen with replacement (each ball chosen is put back into the urn 
before the next random choice). Find the expected number of red balls 
selected. Do the same problem, but choose balls without replacement. 



8 
Baseball Cards, The Law of Large 
Numbers, and Bad News for 
Gamblers 

Bosola. Didst thou never study the mathematics? 
Old Lady. What's that, sir? 
Bosola. Why to know the trick how to make a many lines meet 
in one centre. 

John Webster, The Duchess of Malfi 

8.1 The coupon collector's problem 

The Bubbleburst bubble gum company includes a picture card of a famous 
baseball player in each pack of bubble gum it sells. A complete set of cards 
consists of ten players. The distribution of the cards is uniform; that is, 
a pack of gum is just as likely to contain a picture of anyone of the ten 
players. How many packs of bubble gum does someone have to buy, on the 
average, to get a complete set? 

This problem, or a variant, frequently goes under the name of the coupon 
collector's problem. The solution requires learning something about sums, 
and expectations of sums, of random variables, and about the idea of inde­
pendence of random variables. Later in this chapter, our discussion of the 
Law of Large Numbers also needs these ideas. 

Very often it is necessary to consider sums of random variables. We have 
already had to consider such sums, for example, in formula 7.3 of Chapter 
7. Here's another, very important, example. Suppose I play the following 
game with you. A fair coin is tossed repeatedly. If it comes up heads, you 
give me $1; if tails, I give you $1. Let Xi be my winnings on toss i, so 
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Xi is 1 or -1 depending on whether a head or tail comes up on toss i. 
Then Sn = Xl + X2 + ... + Xn represents my accumulated winnings at 
the end of n tosses. Is there some neat way to express ESn in terms of the 
expectations of the individual variables Xi? 

First, we will restrict ourselves to adding up only two discrete random 
variables, X and Y, which we assume have arbitrary distributions and 
are defined on the same probability space. Moreover, let us assume each 
variable has a finite expectation; that is, if an infinite series is needed to 
define the expectation, the series is summable. Suppose we are interested 
in E(X + Y). To give such expressions meaning it is not enough to know 
the probability distributions of X and of Y separately; we must know what 
is called the joint probability distribution of X and Y, the probability 
weighting of both variables acting together. This joint distribution is the 
list of the probabilities of the events {X = a and Y = b} where a and b 
range over all possible pairings of X and Y. If we have this joint distribution 
we can define E(X + Y) as 

E(X + Y) = (al + bl)P(X = al and Y = bl ) 

+(a2 + b2)P(X = a2 and Y = b2) + ... 
(8.1) 

where the addition is over all the possible pairings of X with Y. Now 
something very nice happens with formula 8.1. No matter what the random 
variables X and Yare, it can be shown that the result of the addition on 
the right-hand side always gives EX + EY, so that we have the important 
relation E(X + Y) = EX + EY, the expectation of the sum equals the 
sum of the expectations. Aside from its elegant simplicity and theoretical 
usefulness, this result is very convenient because EX and EY only depend 
on the individual distributions of X and Y, not their joint distribution, so 
the calculation of E(X + Y) becomes easier. 

The same ideas hold if we have any finite number, say n, of random 
variables, each with a finite expectation. The joint distribution and expec­
tation of the sum are defined in a way analogous to the definition for two 
variables. Again, a computation shows the relation 

which we have already mentioned in section 7.7. 
Formulas 8.1 and 8.2 have a more general form. First, notice that for any 

random variable X we may take any constant c and define a new random 
variable eX as follows: if X has a value x with probability p, then eX has a 
value ex with probability p; that is, eX is obtained from X by multiplying 
all values of X by c and using those with the same probability. It is now 
very easy to check the rule EeX = cEX. So any constant and the E symbol 
can interchange places. Using formula 8.1 and this rule about constants, it 
follows that if a and b are any constants, we get 

E( aX + bY) = aEX + bEY, 
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called the linearity property of the expectation. If both a and b are put equal 
to 1, we get formula 8.1. There is a similar linearity relation generalizing 
formula 8.2. From the linearity property comes an important observation, 
that for any random variable X with finite expectation, the random variable 
E(X - EX) = O. This follows from the linearity property by defining Y 
equal to the constant EX with probability 1, a = 1 and b = -1. 

As an example of the use of formula 8.2, consider the game described 
above in which a fair coin is repeatedly tossed and we wish to calculate ESn , 

the expectation of the sum of the variables Xi representing the winnings 
at the ith toss. We have EXi = 1· (1/2) + (-1) ·1/2 = 0, and the bet on 
the ith toss is a fair game. Sn, the accumulated winnings after n games, 
also has expectation 0 by formula 8.2. So the game described by looking at 
the accumulated winnings after n tosses is also fair for all values of n. 

8.2 Indicator variables and the expectation of a 
binomial variable 

An interesting application of formula 8.2 can give us the expectation of a 
binomial random variable. Suppose there are n Bernoulli trials with suc­
cess probability p. We now define a sequence of random variables, called 
indicator variables; the idea behind this sequence is very important and 
indicator variables will be used frequently from now on. For each i between 
1 and n, we define the random variable Xi to be 1 if success occurs and 0 
if failure occurs on the ith trial. The value of Xi, then, only depends upon 
what happens on trial i, and it indicates whether or not the trial resulted 
in success by its value of lor O. Moreover, the sum 

of all the indicators is the total number of successes occurring in the n trials, 
and so Sn has the binomial distribution. Each Xi has the same distribution, 
and 

EXi = 1 . P + 0 . q = p. (8.3) 

From formulas 8.2 and 8.3 we get 

ESn = EX1 + EX2 + ... + EXn = p + P + ... + p = np, (8.4) 

and we have obtained the expectation of a binomial random variable with 
parameters n and p. So if you have a fair coin and toss it 1000 times, the 
expected number of heads is (1000)(1/2) = 500. 

The above elegant derivation of the expectation of a binomial random 
variable depends upon first expressing the total number of successes in n 
trials as a sum of indicator variables, and then using formula 8.2 to calculate 
the expectation of this sum. To appreciate the simplicity of this approach, 
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we can try to calculate the expectation of a binomial variable by directly 
using the definition of expectation: we take each possible value and multiply 
by the probability of that value, and then add up over all the possibilities. 
The binomial distribution was derived in Section 7.2; from this we see that 
we must add up the terms 

. n! i (n-i) 
z· .'( _ .)' . p q z. n 2. 

from i equal 1 to n. This can be done and, of course, the same answer np 
falls out, but this method is more computational and less transparent than 
the slicker indicator approach. 

8.3 Independent random variables 

We already know what is meant by the independence of events. Roughly 
speaking, if you have a bunch of events that are independent, any informa­
tion about what happens with some of the events gives you no information 
about what can happen with any of the others. The prototypical example 
to keep in mind illustrating independent events is the case of n Bernoulli 
trials, where the events {success on trial i} for i equal 1 to n form an inde­
pendent collection. What, then, are independent random variables? Well, 
it makes intuitive sense to say random variables are independent if they 
are defined in terms of independent events. For example, in the Bernoulli 
trial set-up let Xi be the indicators defined for i equal 1 to n as described 
in the preceding section. These random variables are independent because 
if we know the values of X 3 , X 7 , and Xs, say, this is equivalent to knowing 
whether success or failure occurred at trials 3, 7, and 8. Since the trials are 
independent, this gives us no information about whether success or failure 
occurs at any of the other trials, and this is equivalent to saying you have 
no information about Xi when i is different from 3, 7, or 8. In general, 
random variables are independent when the events that define them are 
independent. More precisely, if X and Y are independent, then 

P(X = a and Y = b) = P(X = a) . P(Y = b) (8.5) 

is true for all possible choices of a and b. This simply says that the events 
{X = a} and {Y = b} are independent for all possible choices of a and b. A 
set of random variables is independent if all finite subsets satisfy a product 
rule analogous to formula 8.5. 

8.4 The coupon collector's problem solved 

Finally, we are ready to solve the coupon collector's problem given at the 
beginning of this chapter. Think of a boy who is collecting the cards and 
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wants a complete set. He buys his first pack of gum and gets his first 
card. Starting at his second purchase, consider each purchase a Bernoulli 
trial where there is success if he gets a different picture from the first and 
failure otherwise. Then PI, the probability of success, is equal to 9/10. Let 
Xl be the waiting time (that is, the number of his purchases) between his 
first purchase and the purchase that gives him a different picture. After 
he obtains his second new picture, we can start over and think of each 
purchase from that point as a Bernoulli trial in which success is defined by 
getting a picture different from the first two and failure otherwise. Then 
P2, the probability of success, is 8/10. Let X 2 be the waiting time between 
the time (i.e., purchase) he got the second picture and the time he gets a 
picture different from the first two. We can continue in this way. In general, 
the purchases between the time the ith distinct picture was obtained and 
the (i + 1 )st distinct picture is obtained can be considered random variables 
with success probability Pi = (10 - i)/lO. We set Xi as the waiting time 
until he first gets an (i + 1 )st picture different from the i distinct pictures 
already obtained. Here i can vary between 1 and 9. The total number T of 
purchases before he gets the complete set is 

T = 1 + Xl + X 2 + ... + X g • 

The "I" in the formula is due to the first purchase which always yields a 
picture not already owned. From formula 8.2 

ET = El + EXI + EX2 + ... + EXg • 

Let's figure out the right-hand side of this formula. First, El = 1 (a con­
stant can be considered a random variable taking on the constant value with 
probability 1). Recall Section 7.4 where we discussed the random variable 
X that measures the time of the first success in a sequence of Bernoulli tri­
als. The expectation of this variable is the reciprocal p- l of the probability 
P of success at each trial. Each of the variables in the formula above is one 
of these Bernoulli waiting time variables, so we get EXi = 10/(10 - i), the 
reciprocal of the success probability associated with Xi. Therefore, 

ET = 1 + - + - + ... + 10 = 10 1 + - + ... + - :::::: 29.25 10 10 (1 1) 
9 8 2 10 ' 

and the expected number of packages of gum purchased before a complete 
set is obtained is about 29. It is easy to see that the above argument 
generalizes to the situation where a complete set consists of n pictures. 
Therefore, T, the total number of trials until a complete set is obtained, 
now has the expectation 
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The coupon collector's problem involves the same interesting idea that 
we met in discussing the monkey at the typewriter (Section 5.4). This idea 
COncerns doing something until we get a certain result, and then starting 
afresh. In the present case, we do not know in advance the specific trial when 
we will get the result (getting a picture distinct from all pictures collected 
previously)-this trial comes at a mndom time, and then we start afresh 
unless we are finished. In the case of the monkey, we waited until T trials 
before we started afresh to try to reproduce Shakespeare's works, unless 
we were finished. (Instead, we could have waited until the monkey made 
his first mistake, and then started afresh-this would have given a random 
time for starting afresh. The mathematics, however, was easier to explain 
using the fixed time T.) When we start afresh we have an entirely new 
situation independent of the past. In this way, time is broken up into non­
overlapping blocks or segments where events defined in terms of trials on 
non-overlapping segments are independent. In the present case, this means 
that after we get a picture different from all predecessors, we can think in 
terms of a different Bernoulli trial scheme until we first get another picture 
different from all predecessors, and then we can change again. The random 
variables Xi are independent: if we know that it took us 12 trials, say, to 
get our second distinct picture, that is, Xl = 12, it gives no information 
about the waiting time X 2 for the third distinct picture to appear. As 
we mentioned in Chapter 5, these intuitively reasonable assertions about 
independence have rigorous mathematical proofs. 

8.5 The Law of Large Numbers 

We are finally ready for a discussion of the fundamental theorem called the 
Law of Large Numbers, mentioned several times in the preceding chapters. 
There are really a number of such theorems of which the earliest version, a 
so-called "Weak Law," was limited to sequences of binomial 0-1 variables; 
this was given by James Bernoulli in the beginning of the eighteenth cen­
tury. The version we discuss in this section, a "Strong Law," is due to the 
twentieth-century Russian mathematician A. Kolmogorov. 

The general idea behind the Law of Large Numbers can be described 
as follows: first, think of an infinite sequence Xl, X 2 ,· .• of independent 
random variables taking only non-negative values, all having the same dis­
tribution with EX l a finite number (the Bernouill trial set-up provides a 
good example, with Xi the indicator variable taking values 1 and 0 de­
pending on whether the ith trial resulted in success or failure). Since the 
expectation of a random variable just depends upon its distribution, each 
Xi has the same expectation, EX1 . Now let Sn = Xl + X 2 + ... + Xn be 
the sum of the first n X's. Sn is also a random variable, as is the ratio 
Sn/n, the arithmetic average of the first n X's. We want to concentrate 
on the averages Sn/n as n gets large. Roughly speaking, the Law of Large 
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N umbers says that as n gets larger these averages get closer to the constant 
EXI for "almost all" of the sample sequences of Xl, X 2 , .• '. That is, "most 
of the time" the values Xl, X2,'" of the random variables Xl, X 2 ,'" that 
you get will be such that if you give an arbitrarily small positive number 
c, then for all sufficiently large n we have 

where Sn = Xl + X2 + ... + X n . (Notice that it is important in general to 
distinguish a random variable X from a value X that it may take on.) Here 
again, we have that important notion of convergence, with the averages of 
most sample sequences converging to EXI ; that is, the sequences of these 
averages get closer and closer to EXI as you go farther and farther out in 
the sequence. 

To bring this down to Earth, suppose we have the Bernoulli trial set-up 
with the indicator functions. Formula 8.3 gives EXi = p, and as we saw in 
Section 8.2 the sum Sn is the total number of successes in n trials. So in 
this case the Law of Large Numbers says that "most of the time" for large 
n the relative frequency of the total number of successes in the n trials will 
be close to the probability of success, p. In the particular case of applying 
the model to a fair coin, it means heads should turn up roughly half the 
time for large n, the approximation to 1/2 becoming better and better as 
n increases. 

Now what do I mean by "almost all" and "most of the time"? It is 
impossible to describe this precisely without some advanced mathematics, 
but the following explanation gives the basic idea (you can skip this without 
any dire consequences). Recall that we are starting off with an infinite 
sequence of independent random variables whose outcomes are of interest. 
The sample space S consists of all possible infinite-tuples (XI,X2,"') that 
can be written down, where Xl is a value of the random variable Xl, X2 a 
value of the random variable X 2 , etc. It can be proved that a probability 
measure P can be defined on this non-discrete sample space using the 
independence of the random variables and their distribution functions (you 
might want to glance back at Section 1.4). There are so many sets in S that 
not all of them can have a probability weight while still maintaining the 
necessary rules for a useful model. It turns out, however, that if the class 
of sets is restricted somewhat, P satisfies all the rules on this class and we 
get a useful model with most of the events of interest to us in this class. 

The convergence expressed by the Law of Large Numbers can be written 
in mathematical notation by 

P (lim Xl + X2 + ... + Xn = EXI) = 1. 
n-+oo n 

(8.6) 

The expression "lim" stands for limit and expresses what the sequence Sn/n 
gets close to. Formula 8.6 can be expressed in words as: the probability that 
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the averages converge to EX1 is equal to 1. From this it follows that the 
set of averages not converging to EX1 is an event of probability O. 

The Law of Large Numbers justifies our intuition that the probability 
of a repeatable event A can be estimated by the relative frequency of its 
occurrence for a large number of independent repetitions. The Law there­
fore allows us to breach the gap between theory and the real world. In 
the theory, we start off with the probability of an event, p, which may 
not be explicitly known to us. To get an interpretation in terms of rela­
tive frequency, we consider an indicator sequence for the event. To do this, 
consider independent trials on each of which the event mayor may not oc­
cur, and let the random variable Xi = 1 or 0 depending upon whether the 
event does or does not occur on the ith trial. So now we have a sequence 
of Bernoulli trials with probability of success (the event occurs) equal to 
p. Then the ratio Sn/n is the relative frequency of the occurrence of the 
event in n trials, and the Law of Large Numbers says that this ratio should 
be close to EX1 = p for large n for most sequences of values. So the prob­
ability, a theoretical number, can be expected to be close to the relative 
frequency of the occurrences of the event as long as there are enough tri­
als, or as statisticians like to put it, enough observations. This connection 
is extremely important for both philosophers and mathematicians. It is a 
cornerstone of the subject of statistics in which the analysis of data is used 
to make estimates about unknown parameters. We'll talk about statistics 
in more detail in Chapter 15. 

Here's a concrete example of estimation. Suppose we want to estimate 
the probability p that a particular component in a certain model of car 
will fail within one year after purchase. Pick n new cars of this same model 
randomly (we'll get back to this idea-it roughly means any failure in one 
car should be independent of failures in another) and define the indicator 
variables Xi = 1 or 0 depending upon whether or not the component of car 
i fails within a year. The discussion above shows that we can get a handle 
on the unknown probability p by taking data, that is, waiting a year and 
recording how many cars had components failing within that time. The 
fraction (i.e., relative frequency) of such failures is a reasonable estimate of 
the unknown probability p because most such fractions converge to p by the 
Law of Large Numbers. More has to be said, of course, to tie these general 
ideas down. For example, it is important to have an idea of how large n 
must be before we can expect our estimate of p to be within some desired 
degree of accuracy. There are ways to decide on such n; these are more 
technical questions we leave unanswered (see Section 15.6, however, for a 
discussion of a version of this problem with regard to polls and confidence 
intervals). The main issue right now is to understand what the Law of Large 
Numbers says, and to get a feeling for its simplicity, beauty, and the ways 
it can be applied. 

In the statement of the Law of Large Numbers, we required that the 
summand terms Xi be non-negative. This is an unnecessary restriction only 
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imposed to make the initial presentation simple to state. For a more general 
statement, recall that if x is any number, Ixl is known as the absolute value 
of x; it is equal to x if x 2': 0 and otherwise it is equal to -x. The value x 
is therefore always the non-negative number obtained by striking out the 
minus sign that may precede the number, for instance, 1- 51 is 5. Our more 
general statement of The Law of Large Numbers allows the summands Xi 
to have negative values as well as positive ones as long as EIX1 1 is a finite 
number. The restrictions of independence and of the identical distribution 
of the summands must still hold, and the statement of the theorem is the 
same. To get an intuitive feel about why EIX1 1 should be finite, just recall 
Section 7.6 where we described a foolproof strategy for the gambler. There 
were, however, just a few little problems-the gambler had to be infinitely 
rich and had to be allowed to bet arbitrarily large amounts. In the realistic 
case, however, of gamblers restricted to finite capital and limited bets, 
there was no strategy to change an unfavorable game into a favorable one. 
If we think of EI XII as the expected amount won or lost on a bet, then the 
finiteness of this number can be thought of as a restriction on how much the 
gambler can bet on each play. From this point of view, the Law of Large 
Numbers guarantees a nice stable outcome for the average accumulated 
winnings provided the gambler is not allowed to bet excessive amounts. In 
the contrary case, the Law of Large Numbers may fail, which should not 
surprise us too much since, as we saw in Chapter 7, when you don't restrict 
the amounts of the bets you can get some very strange results. 

Later on, we are going to need the fact that the expectation of the aver­
ages Sn/n for any n is EX1 . In order to see this, use the linearity property 
of the expectation (see Section 8.1) to get 

8.6 The Law of Large Numbers and gambling 

Let's see what the Law of Large Numbers says about the game of craps. 
Suppose X is the gambler'S winnings after one game for a $1 bet. In Section 
7.4 we saw that EX = -.014. Assume the gambler continues to play game 
after game, and let Xi be the gambler's winnings from game i. Each random 
variable Xi has the same distribution as X and it is reasonable to assume 
independence for the Xi. In this case Sn, the sum of the first n X's, are the 
gambler's accumulated winnings after n games. From formula 8.2 it follows 
that ESn , the gambler's expected accumulated winnings after n games, is 
$( -.014)n, the minus sign indicating an expected loss. As the number of 
games n grows larger, this expectation gets larger without bound. Using 
the Law of Large Numbers, we can say even more. 
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Let us notice that in this case 

EIX11 = 1· (.493) + (1-11)· (.507) = 1, 

and the conditions are satisfied for the Law of Large Numbers to apply. We 
get for most sequences of games 

Sn 
~ -.014, (8.7) 

n 

where the arrow expresses convergence. So the gambler's average accumu­
lated loss after many games is about 1.5 cents, the same as her expected 
loss after one game. Now, put this way it doesn't sound so bad; 1.5 cents 
is not such a lot of money. But formula 8.7 is really very depressing news 
for the gambler. To see this, take any negative number larger than -.014, 
say -.013. Consider the event 

Sn - < -.013. 
n 

(8.8) 

Since the average accumulated winnings are converging to -.014, after a 
sufficiently large number of games these averages are necessarily less than 
-.013 with very large probability, so formula 8.8 is satisfied most of the 
time. By multiplying both sides of the inequality of formula 8.8 by n, 
formula 8.8 can be written in the equivalent form 

Sn < (-.013) . n, (8.9) 

and this inequality will therefore hold for most sequences of games if the 
number n of games is large enough. So from formula 8.9 it will follow that if 
the gambler plays long enough her accumulated winnings will become more 
and more likely to become more and more negative (since n on the right 
hand side is becoming larger and larger). That is, her accumulated losses 
are more and more likely to become large without bound as the number of 
plays increases. So a small average loss translates into a huge accumulated 
loss when the number of games is large, with probability very close to 1. 
This is saying considerably more than just saying the expected accumulated 
loss is huge. 

The preceding discussion was only for a $1 bet; if the bet is $i, the 
expectation of loss at each game is (1.4) ·i cents, and formulas 8.7-8.9 must 
be altered by a factor of i. Let's say the gambler bets $10 at each play and 
plays 100 games. Then formula 8.9 altered by a factor of 10 gives the right­
hand side an absolute value of $13; after 1000 games it becomes $130, etc., 
with the probability that the gambler's accumulated losses exceed these 
values approaching 1 as the number n of plays increases. 

The bad news for the gambler is the good news for the gambler's ad­
versary, who is playing a favorable game at each play. For this adversary, 
the Law of Large Numbers is a dear friend, assuring the overall taking in 
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of money. A casino is constantly playing, so the number of plays n of any 
game is indeed going to be large enough so the Law of Large Numbers will 
be taking effect: with 10,000 plays of craps at $10 a play, the casino will 
rake in more than $1300 with a probability very close to 1 (since many 
people can bet at once, the number of plays can get big fast). 

8.7 A gambler's fallacy 

It is important not to read into the Law of Large Numbers things it does 
not say. Gamblers, in their desire to win, often misinterpret it. If they have 
a losing streak at dice, say, they often feel their next throw is more likely 
to be favorable because, they would say, the "law of averages" guarantees 
a change of luck eventually. This argument is wrong since each throw of 
the dice is independent of the previous throws; the dice do not "remember" 
what happened previously and do not "try" to even the score. At the end of 
Section 5.1, we briefly mentioned an alternative model of sequences of coin 
tossing (or dice throwing)-instead of independence the sequences have 
memory and the probabilities can change depending upon the past history. 
As we said there, no empirical evidence supports such a view; it is the model 
of independence that is supported by the data. Of course, there are many 
other processes where the past history does matter and independence is not 
an appropriate assumption, but the repetitive plays of games of chance are 
not among these. 

What is the basis of the gambler's fallacy? The Law of Large Numbers 
states that, in the long run, the averages in general get close to the expecta­
tion. So while you know in dice you cannot keep losing forever (otherwise, 
with a $1 bet the averages get close to -1 when they should get close to 
-.014), all you know is that there will be times (if you don't go broke first) 
when you will win if you keep playing. You do not know when these times 
will be, and you certainly don't know that the next play will be or is likely 
to be one of these times. 

8.8 The variance of a random variable 

As we know, the expectation of a random variable is an average of the 
possible values of the variable. It is a single number giving you an idea 
of the central tendency of the values. But the expectation gives you no 
information at all about how the values are spread out on the number line 
around the expectation. For example, if U is defined to be 1 or -1, each 
with probability 1/2, U has expectation O. If V is defined to be 106 or -106 , 

each with probability 1/2, V also has expectation o. But the values of V 
are much further away from the common expectation 0 than the values of 
U. 
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The variance a 2 (X) of a random variable X is a measurement of how 
much the values of the variable depart from the expected value. It is defined 
by the relation 

(8.10) 

Notice that the right-hand side of formula 8.10 is just the expected value of 
the square of the distance of X from its expected value. In other words, for 
every value of X, we subtract from it EX and then square it; this squaring 
assures a non-negative value for this term. We then take all of these squares 
and get the weighted average using the probabilities. Since we are seeking 
a measure of how the values of the variable deviate from the expectation, 
you may wonder why we take the squares of the distances rather than just 
the distances themselves in the average. We could, in fact, have defined a 
measure of dispersion in terms of the distance, but such a quantity would 
not have mathematical properties as tractable as the variance, and the 
theory would not be as nice. 

For the random variables U and V defined above, we have 

2 2 1 2 1 
a (U) = (1- 0) ·2 + (-1 - 0) ·2 = 1, 

and 

a 2 (V) = (106 - 0)2. ~ + (_106 - 0)2. ~ = 1012 . 
2 2 

The variance of V is much larger than the variance of U, and this reflects 
the wider dispersion of the values of V from the expectation 0 compared 
to the values of U from o. 

Formula 8.10 roughly tells us the following: a small variance indicates a 
relatively high probability of values concentrated close to the expectation, 
whereas a large variance indicates a relatively high probability of values 
deviating appreciably from the expectation. For x any value of X, the terms 
(x - EX)2 are non-negative, so the smallest a variance can be is zero, and 
this can only happen if the random variable reduces to the constant EX 
with probability 1. This situation describes the extreme case of a random 
variable concentrated close to its expectation-all the values coincide with 
the expectation itself. 

Here's an observation that will prove useful to us in a little while. If you 
take a random variable X with finite expectation, then X and X - EX 
have the same variance. This follows from the definition of the variance 
since the expectation of X - EX is O. 

The square root of the variance, called the standard deviation, is a quan­
tity much used in statistics. Taking the square root of the variance makes 
it like a distance function again because the variance is like a squared dis­
tance. Statisticians are often interested in the probability of falling within 
one or two standard deviations of the expectation. We'll come back to this 
when we discuss the family of normal distributions. 
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This is the official end of Chapter 8. For those who would like to see a 
discussion giving some insight into why the Law of Large Numbers is true, 
I have added an Appendix. Reading the Appendix may be slightly rougher 
going than what we've been having; the arguments may be a little more 
complex. You can omit it if you want without any loss of continuity with 
the rest of the book. You can also forge ahead to try the terrain, and if the 
going gets too difficult, you can always stop. 

B.B.l Appendix 

A careful statement and proof of the Law of Large Numbers requires some 
advanced mathematics. However, it is possible to give a relatively simple 
argument showing the plausibility of the Law. The basic idea is simple. Let 
Sn = Xl + X 2 + ... + X n, where the Xi are independent and identically 
distributed with a finite expectation and variance. We shall calculate the 
variance of Sn/n and show that as n becomes large this variance converges 
to O. The variance being a measure of how far the values of a random 
variable differ from its expectation, what this indicates is that for large n 
the probability of the averages Sn/n clustering closer and closer to EXl 

converges to 1. This can be written as: for any fixed positive number c, 

1~~ p (I: -EXll < c) = 1. (8.11) 

This says that the probability of the absolute value of the deviation of the 
averages from EXl becoming less than c converges to 1 no matter how small 
c is. Formula 8.11 expresses what is called convergence in probability, which 
is different from the convergence statement of the Law of Large Numbers 
as described in Section 8.5 [compare the relation above for convergence in 
probability to formula 8.6]. Now we are just requiring that the averages are 
close to EXl with large probability for any large n. It is perfectly possible 
in this case for particular averages to be close to EXl for certain large n 
and be far for other large n, varying in this way forever, as long as for any 
large n the probability of the averages that are close is very big. In Section 
8.5 we were expressing more: that as n gets large most averages (that is, 
all averages except a set of probability 0) get close to EXl and stay close 
to it as n increases. This result about most averages converging, given in 
formula 5.6 of Chapter 5, is a deeper and more powerful statement than the 
result embodied in formula 8.11. Formula 8.6 is referred to as the Strong 
Law of Large Numbers, and formula 8.11 as the Weak Law. The Strong 
Law is too hard for us to prove, but the Weak Law is within our grasp, 
and we are going to indicate the proof of it. This should at least provide 
us with a little insight as to why the truth of the Strong Law should not 
be too surprising. 

The argument will proceed in several steps. First, we will get a formula 
for the variance of a sum of independent variables. 
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8.8.2 The variance of the sum of independent random 
variables 

Can 
a 2(Xl + X 2 + ... + Xn) 

be calculated in some easy way in terms of the variances of the individual 
X terms? We are going to get a nice answer to this question in the case of 
independent random variables. Before we do the computation, though, we 
need the following observation about independent random variables X and 
Y, namely, that 

EXY=EX·EY. (8.12) 

In words, the expectation of a product is the product of the expectations. 
This is analogous to the relation E(X + Y) = EX + EY for the expectation 
of a sum, but there is a big difference: the relation for the expectation of 
a sum holds for any two random variables, but formula 8.12 only holds in 
general for independent ones. The reason this product formula is true can 
be traced back to the product rule definition for the joint distribution of 
independent X and Y. Let us convince ourselves of the truth of formula 
8.12 in the simple case of two Bernoulli trials, where X = 1 or 0 if the first 
trial results in success or failure and Y = 1 or 0 if the second trial results in 
success or failure. In this case, EX and EY are both 1/2, and if the terms 
with product 0 are omitted, we have 

EXY = 1 . P(X = 1 and Y = 1) = P(X = l)P(Y = 1) 
1 1 1 = - . - = - = EX . EY. 
2 2 4 

So let us accept this product rule and file it away for use in a moment. 
From the definition of the variance and from formula 8.2 we can write 

Now just think about what happens when you square a sum like the one 
on the right-hand side of this relation. You get the squares of each of 
the bracketed terms, namely, the terms (Xi - EXi )2, together with all 
the cross products, that is, terms like (Xi - EXi)(Xj - EXj ), for i =I­
j. After squaring, we must take the expectation of each of the terms in 
the square and add up. In general, the cross product terms contribute 
to the sum, but if the random variables Xi are independent, something 
nice happens. Then the expectation of the cross product terms is O. The 
reason is: each factor Xi - EXi has expectation 0, and the random variables 
Xi - EXi and Xj - EXj are independent (subtracting a constant from each 
of two independent variables again gives two independent variables). So by 
formula 8.12, we have 
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Therefore 

and since E(Xi - EXi)2 = a2(Xi), this relation may be written 

if the Xi are independent. This is the fact we wanted to show: if the ran­
dom variables are independent, the variance of their sum is the sum of 
the individual variances. This relation has a similarity to formula 8.2, but 
formula 8.2 holds for any random variables, whereas the variance formula 
only holds for independent ones. 

8.8.3 The variance of Sn/n 
Now let's assume Sn is the sum of the first n terms of a sequence of inde­
pendent, identically distributed random variables. We will try to compute 
the variance of the random variable 

Sn _ EXI = Xl + X 2 + ... + Xn _ EXI. 
n n 

(8.13) 

As we have already seen at the end of Section 8.5, ESn/n = EX!, so the 
expectation of the random variable in formula 8.13 is 0 and its variance 
is the same as the variance of Sn/n. The variable of formula 8.13 can be 
written 

(Xl - EXI ) + (X2 - EX2) + ... + (Xn - EXn) 
n 

This is because each term EXi is the same as EX!, and this quantity 
is subtracted n times and then divided by n. From these observations, it 
follows that the variance of the variable in formula 8.13 can be written 

E ((Xl - EXd + (X2 - E~2) + ... + (Xn - EXn)) 2 

= E~((XI - EXI ) + (X2 - EX2) + ... + (Xn - EXn))2. 
n 

From the linearity property of the expectation, the constant 1/n2 can go 
outside the E. Now notice what is left, that is, 

(8.14) 

is the sum of n random variables of the form Xi - EXi. Each of these has 
expectation 0, and by the definition of variance it follows that the variance 
of this sum, 

(8.15) 
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is exactly what is given in formula 8.14. But since the random variables 
Xi - EXi are independent, the preceding section tells us that the variance in 
formula 8.15 is just the sum of the individual variances. Now the variance, 
like the expectation, just depends upon the distribution of the random vari­
able, so identically distributed random variables have the same variance. 
Let (72 = (72(Xl) be the common variance of the X's. You recall that we 
mentioned that subtracting a constant from a random variable produces 
a random variable with the same variance, so (72 = (72(Xl - EX1), and 
formula 8.15 gives n(72 as the expectation of formula 8.14. Remembering 
the factor 1/n2 , we get the important result 

(8.16) 

Since we are assuming (72 is a finite number, the ratio in formula 8.16 
converges to O. Formula 8.16 is the crucial fact leading to formula 8.11. 
We won't give the mathematical details, which depend upon something 
called Chebyshev's inequality. But intuitively we know that the variance 
of a random variable measures its spread around its expectation, so that 
as n increases and the variance of the averages Sn/n converges to 0 [from 
formula 8.16], the averages cluster more and more about the expectation 
with probability approaching 1, giving formula 8.11 and convergence in 
probability, that is, the Weak Law of Large Numbers. 

8.9 Exercises for Chapter 8 

1. An integer 0 or 1 is picked with probability 1/3 and 2/3, respectively, 
and then a fair die is rolled. Find the expected sum of the first integer 
chosen and the number rolled on the die. 

2. You toss each of three coins. The first is fair, the second has proba­
bility 2/3 of heads, and the third has probability 3/4 of heads. Find 
the expected total number of heads for the three tosses. 

3. Find the expected number of rolls with a pair of fair dice until 7 
comes up ten times. 

4. Do exercise 5 of Chapter 7 without using the explicit form of the dis­
tributions, but only using symmetry arguments and formulas about 
expectations. (Hint: If B is the number of black cards chosen in ex­
ercise 5, and R is the number of red cards chosen, then B + R = 2, 
and Band R have the same distribution.) 

5. Describe how you can use the Law of Large Numbers to estimate 
(a) the probability of winning by playing black at roulette, (b) the 
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probability of rolling snake eyes (that is, 2) with a pair of dice, (c) the 
probabilty of winning at least $1 in chuck-a-luck, (d) the probability 
of winning if you switch in the car-goat game of Chapter 1. 

6. Suppose you have devised a game for which your expected winnings 
is $0.01. Which, if any, of the following statements are true? (a) If 
you playa sufficiently large number n of games, you will win $n with 
probability exceeding .99. (b) If you playa sufficiently large number 
n of games, you will win (.009)n dollars with probability exceeding 
.99. Explain your answers. 



9 
From Traffic to Chocolate Chip 
Cookies with the Poisson 
Distribution 

"They're falling in a Poisson distribution," says Pointsman in 
a small voice, as if it was open to challenge. 

Thomas Pynchon, Gravity's Rainbow 

9.1 A traffic problem 

Imagine that you are sitting at a pleasant cafe near a quiet country road, 
sipping cappuccino and enjoying the scenic countryside. After a while, you 
notice how little traffic there is on the road. The waiter nods sadly, he says 
only about five vehicles pass per hour during the afternoon-he wishes the 
traffic were heavier so business would improve. What is the probability that 
at least one vehicle will pass in the next 15 minutes? 

To try and answer this question, we must get to know an important 
distribution related to the binomial distribution. It comes about in the 
following way. Let's say we are counting events happening within a given 
time, for example, the number of vehicles passing a certain point on a road 
in 15 minutes, or the number of telephone calls entering a switchboard from 
nine in the morning until noon. We would like to estimate the probability 
that exactly k events occur in the given interval of time. It is often helpful 
in mathematics to draw pictures, so pick up a pen and draw a line segment 
with left endpoint labelled 0 and right endpoint t (refer to Figure 9.1). 

Each point x of the segment represents an instant at which an event did 
or did not occur (clearly we are idealizing here; an event cannot occur in 
an infinitesimal instant of time). Now let us draw a little dot at those times 
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o----~------------~------~---- t 

FIGURE 9.1. Dots representing events on a time interval 

when an event occurs. We are supposing that the events are discrete in time, 
so our picture shows an interval with a finite number of the points dotted. 
Notice that the interval of length t can be subdivided into n subintervals 
of equal length tin for any integer n. In order to get a mathematical model 
that describes quite accurately a variety of physical situations, we are going 
to make some assumptions: 

a. The probability that any very small subinterval of length h contains 
exactly one of the events is approximately proportional to the length 
of the subinterval, that is, there is a constant A > 0 with this prob­
ability = Ah+ error term, where the error term is extremely small 
compared to Ah for h very small. 

b. The probability of two or more events occurring in a subinterval of 
length h is extremely small compared to Ah for h very small. 

c. Whatever we know about events happening on any subinterval gives 
no information about what happens on any subinterval disjoint from 
the first one. 

The assumption (a) is pretty reasonable for small subintervals. As a small 
subinterval gets a little larger, it becomes more likely that there will be 
exactly one event in that subinterval. We are assuming the simplest possi­
ble form of this increase in probability-that the probability has a linear 
relationship to the size of the subinterval plus an error term. For small 
subintervals, moreover, the error term is extremely small compared to the 
linear relation; that is, the linear relationship becomes more accurate the 
smaller the subinterval. Assumption (b) is also reasonable given the kind of 
isolated events under discussion. According to (b), the probability of two 
or more events happening in a small subinterval is much smaller than the 
probability of exactly one event occurring. This is what we expect for a 
finite number of events occurring in a time interval-for tiny intervals it is 
unlikely to find even a single event, but very much more unlikely to find 
more than one event. Finally, (c) expresses the independence of events like 

{ i l events occurred in subinterval 1 }, { i2 events occurred in· 
subinterval 2 }, ... , {in events occurred in subinterval n } 

where the subintervals 1 through n are nonoverlapping, that is, disjoint. 
The independence assumption is reasonable for many physical processes. 
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In the traffic case, if some vehicles are observed to pass a point on a road 
at a certain interval of time, this tells us nothing about what we are likely 
to observe ten minutes later. 

Now take a large value of n and divide up the interval you have into n 
equal subintervals of length tin. The three assumptions above will allow us 
to use the model of Bernoulli trials in order to approximate the probability 
of k events occurring in the interval. It works like this: each subinterval 
can be identified with a trial where success means exactly one event has 
occurred inside it and failure means no event has occurred inside it. But 
how about a third possibility, that two or more events occur within the 
subinterval? It turns out that for large n we don't have to worry about 
this contingency because of assumptions (a) and (b): for small subintervals 
the probability of two or more events occurring on the subinterval are so 
small that the event can be safely ignored. The Bernoulli model requires 
independence of the subintervals, and this follows from assumption (c). So 
we can think of the k events occurring in the interval of length t as having 
been produced by n Bernoulli trials in which exactly k subintervals had a 
single event occur and n - k subintervals had no event occur. The proba­
bility of success (a single event occurs in the subinterval) is approximately 
>"h = >..tln, because the subinterval has length tin. From Section 7.2 we 
can write this as 

P(exactly k events occur in the interval of length t) (9.1) 

~ Cn,k ( ~ r (1 _ ~) n-k 

If you let n increase without bound, it turns out that the right-hand side 
of formula 9.1 converges to a finite value; that is, it gets closer and closer 
to some finite number rk as n increases. Moreover, it follows from our 
assumptions that as n increases the right-hand side of formula 9.1 should 
get to be a better and better approximation to the probability on the left­
hand side. It therefore makes sense for us to try and define 

P(exactly k events occur in the interval of length t) = rk. 

It can be shown that the numbers rk give a probability distribution, namely, 
they are non-negative (in fact, positive here) with 

ro + rl + r2 + ... = 1, 

and so we can take this distribution as the exact distribution of the number 
of events occurring in the interval of length t. This distribution is called a 
Poisson distribution after its discoverer, S.D. Poisson. The quantity >..t is 
called the parameter of the distribution. 

The expectation of a Poisson distribution (that is, the expectation of 
a random variable X that has a Poisson distribution) turns out to be its 
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parameter At. This is not at all surprising. After all, the Poisson distribu­
tion was approximated by a sequence of binomial distributions; this is the 
content offormula 9.1. If there is any justice in the world, the expectations 
of the binomial distributions on the right-hand side of formula 9.1 should 
approximate the expectation of the Poisson distribution. In Section 8.2 we 
saw that the expectation of a binomial variable with parameters nand p 
is the quantity np. In the present case, the probability of success, p, cor­
responds to the quantity At/n, so that np corresponds to n· (At/n) = At. 
This quantity does not depend upon the particular value of n chosen as n 
increases, and the expectations of the binomial approximations to the Pois­
son distribution converge to (actually equal, in this case) At. Therefore, the 
expectation of the Poisson distribution should be At. There is a rigorous 
proof showing this is indeed the case (so there is some justice in the world). 
The value A can be interpreted as the average number of occurrences of the 
event per unit of time; we call it the density of the distribution-to get the 
average number (or expectation) of events in t units of time, multiply the 
density A by t. 

It is time now to throw all caution to the wind and show you what the 
numbers rk actually look like. To do this, I first have to tell (or remind) 
you of several facts. One is that if a is any positive real number and b is 
any real number, then ab has a well-defined meaning as a real number. 
What is a real number? We don't have time to get into this in detail; in 
brief, it consists of the numbers we can identify with all points on a number 
line. The second thing I have to tell you is that there exists a very famous 
constant, written e, which, like another famous constant 7r, turns up all 
over the place in mathematics. The constant e cannot be expressed as a 
terminating decimal but is approximately equal to 2.718. With this out of 
the way, we can write our Poisson distribution as 

P(exactly k events occur in the interval of length t) (9.2) 

-At (At)k 
=rk =e kr-. 

To work out the right-hand side we have to know At and k. According to 
the remarks above, the powers of e and of At define real numbers that can 
be estimated to any desired degree of accuracy with a calculator. 

It is apparent from formula 9.2 that there are an infinite number of 
Poisson distributions. When you specify the parameter At, you specify a 
particular one of these distributions. This parameter describes the aver­
age number of events occurring in the fixed interval under discussion. The 
density, A, is the parameter for the interval of unit length. If we do not 
know the parameter At and want to estimate it, we must collect data. In 
the case of our country scenario, we will assume a Poisson model in which 
the basic event occurs whenever a vehicle passes the cafe. To perform the 
estimate, go back to the cafe about the same time each day for several 
months and sit there for about an hour counting the vehicles passing by. 
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(This doesn't sound like much fun, but we could have a machine do the 
counting by spreading a cable across the road, where the cable is attached 
to a counter that records a vehicle every time the cable is compressed.) We 
count the vehicles about the same time each day because at different times 
of the day (rush hour versus middle of the night, for instance) a Poisson 
distribution with a very different density may be in effect. With all the data 
collected, take the total number of vehicles and divide by the total number 
of hours and you have an estimate for the average number of vehicles per 
hour which can be used for the value of A, the density, since the unit of 
time is the hour. 

We are now ready to attack the problem posed at the beginning of this 
section. If we accept the waiter's value of an average of five vehicles per 
hour, then we can take A = 5 as the density. Since the unit of time we 
are adopting is the hour, 15 minutes gives t = .25 and there is an average 
of At = (5)(.25) = 1.25 for 15 minute intervals. Use formula 9.2 now to 
calculate 

P( exactly 0 events occur in the interval of length .25) 

(1.25)° = e-1.25 __ ,_ = e-1.25 ~ .2865. 
O. 

Here we have used the algebraic fact that any number to the power 0 is 
1, and that O! is defined to be 1. The complement of the event "0 events 
occur" is "at least one event occurs," and so the answer to the problem is 
1 - .2865 = .7135. 

9.2 The Poisson as an approximation to the 
binomial 

The Poisson distribution emerged from the assumptions (a), (b), and (c) of 
Section 9.1. These assumptions, as we said, are often approximately valid 
in many physical processes. But there is another way to view the Poisson 
distribution, independently of these assumptions. Mathematically, the Pois­
son distribution turns out to be a limiting form of binomial distributions; 
this is what formula 9.1 says-the binomial probabilities on the right-hand 
side get closer to a Poisson probability as n increases. For large n then, 
probabilities using the binomial set-up with p = At/n and number of trials 
=n can be approximately given by the Poisson distributon. Notice that this 
binomial set-up has very small p and very large n with np = At of moderate 
value. This suggests that whenever we have a binomial situation with p rel­
atively small and n relatively large, the Poisson distribution may be used as 
an approximation. We don't have to worry about the physical assumptions 
(a), (b), and (c) in this case; the binomial distribution assumption with 
large n and small p takes care of everything. 
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As an example, suppose the probability p that a page of a book has 
at least one misprint is estimated at about .002, and the binomial model 
is applied: a trial in this case is a page, with success identified with the 
appearance of at least one misprint, and the pages are independent. What 
is the probability that a book of 500 pages has fewer than two pages with 
misprints? This probability can be calculated exactly using the binomial 
distribution; it is given by adding up the probabilities of getting exactly 
zero and exactly one page with misprints (see Section 7.2). We obtain 

a rather tedious calculation (even by calculator) which gives us .735959. 
On the other hand, since p is relatively small and n = 500 relatively 
large, let's use the Poisson distribution to approximate the desired bino­
mial probability. The parameter (which can simply be called A now) has 
value (.002)(500) = 1. From formula 9.2 we get the sum e- 1(1+1), which is 
.735759. The agreement between the binomial probability and its Poisson 
approximation is very close. 

9.3 Applications of the Poisson distribution 

In describing the Poisson distribution, we took an interval of time, but we 
could have used volume or something else as our physical reference. The 
important thing is that there be a medium in which the discrete events 
occur. So, for example, both the distribution of chocolate chips in cookie 
dough and the distribution of stars in space might be expected to follow an 
approximate Poisson distribution. Indeed, Poisson random variables turn 
up rather frequently in life, which is not too surprising because the assump­
tions (a), (b), and (c) are not very restrictive conditions. Other Poisson or 
almost Poisson variables include the number of customers arriving at a bank 
in one hour, the number of a-particles emitted from a radioactive substance 
in a fixed time, the number of wrong telephone numbers I receive at home 
in a year, and the number of bottles of mustard sold in a supermarket in 
a day. In each of these examples, either the assumptions (a), (b), and (c) 
are physically reasonable or we have a binomial model with p small and n 
large. Note that if there is a very popular sale item at the supermarket, the 
number of items of it sold in a day may not be approximately a Poisson 
variable; in this case, the probability p of a customer purchasing the item 
may be too large for the approximation to be good. 

Some early data showing a close approximation to a Poisson distribution 
count the number of German soldiers kicked to death by cavalry horses 
during the years 1875 to 1894. A more recent example is the distribution 
of V-2 rocket hits in south London during the Second World War. In this 
latter example, the area under study was divided into 576 areas of equal 
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size, the planar equivalent of the linear subdivision used in Section 9.1. 
There were a total of 537 hits, giving a value of .9323 for the average 
number of hits per subdivision, so' using the subdivisions as the unit, we 
get the density A = .9323. Define the indicator function Xi to be 0 or 1 
depending on whether the ith subdivision is hit or not hit. The expectation 
of Xi is given by 

1· P(subdivision i is not hit) = e-·9323 = .3936, 

using a Poisson distribution with parameter A for the distribution of hits 
in a subdivision. The total number of subdivisions not hit, To, is the sum 
of all the Xi, and from formula 8.2 the expectation of To is (576)(.3936) = 
226.71. If we compare this theoretical number to the actual number of 229 
subdivisions, it turns out that they are very close. A similar calculation 
using a Poisson distribution can be performed to estimate the number of 
subdivisions hit exactly once, twice, and so on, with results remarkably 
close to the actual figures observed. 

9.4 The Poisson process 

In Section 9.1 we considered a line segment of length t, and under the 
assumptions (a), (b), and (c) we got the result that the number of events 
occurring in the interval has a Poisson distribution with parameter At, 
where A is some positive constant, the density of the distribution. Since 
t can vary, we can consider for each t a random variable X t giving the 
number of events occurring in an interval of length t. What we have here is 
a continuum of random variables, one for each specification of t. A collection 
of random variables like this is called a random or stochastic process, and 
this particular one is called a Poisson process. The Poisson process depends 
upon a single parameter A which is the parameter of the random variable 
Xl of the process. 

Stochastic processes are extremely important because very often we are 
interested in the evolution of some physical system in time. A sequence of 
random variables Xn is a discrete version of a stochastic process; in a se­
quence, only integer-valued times are of interest-what happens at roulette, 
for instance, on a first play, a second play, etc. In the traffic problem, how­
ever, we may want to keep a record of the number of vehicles passing the 
cafe up to any time t, for all t less than some given time T, for instance. A 
sample path of this Poisson process would be a curve in the (t, X(t)) plane 
over the interval 0 :::; t :::; T; this would be obtained by plotting how many 
vehicles X(t) had passed the cafe up to time t. It seems intuitively rea­
sonable that this curve is non-decreasing and increases only in unit jumps 
(corresponding to the passing of a vehicle). This turns out to be right, as 
we will see in Chapter 17, and Fig. 17.2 shows a piece of a typical sample 
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path for a Poisson process. The totality of all possible curves of this type 
would, in essence, constitute the sample space describing the evolution of 
the process, which can then be studied using advanced mathematical tech­
niques. 

9.5 Exercises for Chapter 9 

1. Grandma makes chocolate chip cookies with an average of five chips 
per cookie. (a) Use the Poisson distribution to estimate the proba­
bility of a cookie having six chips. Suppose you ate one of grandma's 
cookies each week for ten weeks (i.e., the cookies are "independent"). 
Estimate the following probabilities: (b) at least one cookie had no 
chips; (c) all cookies had at least one chip; (d) exactly one cookie had 
three or more chips. 

2. A machine stamps out toys in Bernoulli trials where the probability 
of a defective toy at each trial is .001. Use the Poisson approximation 
to find the probability of exactly two defective toys in 1000 trials. 

3. The number of calls arriving at an office between 9 and 10 AM av­
erages about 30. Use the Poisson distribution to find the probability 
that on a typical day no calls arrive between 9:45 and 10:00. 

4. Customers arrive at a bank in accordance with a Poisson distribu­
tion with parameter 40 (based on a unit of one hour). Given that 
30 customers arrived in the first hour, find the probability that 60 
customers arrive within the first hour and a half. 

5. Suppose the probability of an insect's laying r eggs is given by the 
Poisson distribution with parameter 5, and assume the probability of 
an egg surviving to develop is p. Also assume the eggs are independent 
as far as survival is concerned. (a) Write down an expression for the 
probability of a total of k survivors (your answer should be an infinite 
series). (b) If we know the insect had at most three eggs, find the 
probability of exactly one survivor. 



10 
The Desperate Case of the 
Gambler's Ruin 

Hermann picked a card and placed it on the table, covering 
it with a stack of bank notes. It was like a duel. A profound 
silence reigned over the gathering. 

Chekalinskii started dealing with trembling hands. On his 
right showed a queen, on his left an ace. 

"The ace has won!" said Hermann and turned his card face 
up. 

"Your lady has been murdered," said Chekalinskii affably. 
Hermann shuddered: indeed, instead of an ace, the queen of 

spades lay before him. He could not believe his eyes; he could 
not fathom how he could possibly have pulled the wrong card. 

Alexander Pushkin, The Queen of Spades 

10.1 Let's go for a random walk 

Suppose you are standing on the number line at O. With probability p you 
go one unit step to the right to 1 and with probability q = 1 - p you go 
one unit step to the left to -1. The procedure is then repeated: wherever 
you are after the first move, you go one step to the right with probability 
p and one step to the left with probability q. If you keep moving according 
to this rule, you execute what is called a random walk on the integers. Your 
position after move n (that is, the integer you are standing on after move 
n) is given by the random variable Sn = Xl +X2 + ... +Xn' where the Xi 
are independent, taking the values +1 and -1 with probabilities p and q, 
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respectively. 
Random walks turn out to be important in a variety of situations. From 

a gambler's point of view, the variable Sn represents the gambler's accumu­
lated winnings after n plays of a game in which he wins $1 and loses $1 with 
probabilities p and q, respectively. A chemist can use a random walk as a 
simple model of the random movements of a molecule in a one-dimensional 
medium (random walks can also be defined in higher dimensions). There 
are lots of fascinating mathematical questions about the behavior of a ran­
dom walk. We might, for example, be interested in finding the probability 
of returning to 0 at some time, or the probability of spending a given frac­
tion of time entirely on one side of 0, or the expected length of time before 
you arrive at the integer 10, say. We'll discuss some of these questions in 
Chapter 16, but in this chapter we want to consider a famous old problem 
concerning our friend the gambler. 

10.2 The gambler's ruin problem 

We want to investigate the classical problem of the gambler's ruin. This 
famous question goes like this: a gambler starts off with $i and plays against 
an adversary who has $( a - i) > O. The plays are independent and at each 
play the gambler wins $1 with probability p and loses $1 to the adversary 
with probability q = 1 - p. The play continues until one of the two players 
goes broke, so that the winning player ends up with $a, the total capital. 
The question is: what is the probability qi of the gambler's ultimate ruin, 
given that the gambler starts with $i? 

The gambler's ruin problem involves a random walk, except that initially 
we must think of the gambler as standing on the integer i instead of at O. 
The random walk then starts to evolve until either the gambler arrives at 
o before he reaches a (gambler's ruin) or else arrives at a before he reaches 
o (the adversary's ruin). So this random walk can never leave the interval 
from 0 to aj the endpoints 0 and a are sometimes referred to as absorbing 
barriers for the walk. 

The above statement of the problem seems to indicate that either the 
gambler or his adversary must win the game. But isn't there another possi­
bility, that the game keeps on going forever without any resolution? Indeed 
there is, but the solution to the problem will show that the probability of 
a neverending game is 0, an intuitively reasonable result. 

We can solve the gambler's ruin problem completely, but it does require 
perhaps a slightly longer argument using algebra than we have had up 
to now. You can always cheat and just look at the answers at the end 
[formulas 10.6 and 10.8], but I suggest giving it a try to stretch a few 
algebraic muscles. Here is how we solve the problem of the gambler's ruin. 

First, let's see what the sample space looks like. It can be thought of as 
consisting of (1) the games for which the gambler is ruined: this can be 
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represented as the set of all finite sequences of integers of arbitrary length 
(i, Yl,···, Yn, 0), where the first entry is i and the last entry is 0, and each 
entry between the first and last is bigger than 0, less than a, and is one 
unit apart from its predecessor; (2) the games that the gambler wins (his 
adversary is ruined): this can be represented by sequences of the type in 
case (1), except the last entry is a rather than 0; and (3) the neverending 
games: the set of all infinite sequences with first entry i and all following 
entries bigger than 0 and less than a. 

The probability we seek is the probability of the event in case (1) with 
last entry O. The key to finding this probability is the following relation for 
events: 

{gambler is ruined starting with $i}= {gambler wins $1 and 
gambler is ruined with $(i+1)} U {gambler loses $1 and gambler 
is ruined with $(i - I)}, 1 ~ i ~ a - 1. 

Using this relation and the conditional probability formula, we get 

and substituting pqi + qqi for qi on the left-hand side, we find the relation 

pqi + qqi = pqi+1 + qqi-l, 

which, by rearranging, yields 

Division by p gives 

(10.1) 

true for 1 ~ i ~ a - 1. Formula 10.1 is an example of a difference equation, 
a relation between successive differences of the values qi. Let us define 

qo = P(gambler is ruined with initial capital $0)=1 and 
qa = P(gambler is ruined with initial capital a)=O. 

These are called the boundary conditions for the problem; they specify the 
situation at the end points 0 and a of the interval, respectively. Here we 
are saying that if the gambler has $0 he is ruined with certainty, and if he 
has achieved his goal of reaching a and ruining his adversary, the game is 
over so his ruin probability is O. 

Using formula 10.1, we can write the following recursion equations which 
relate each difference to the preceding difference: 
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qi - qi-l 

At this point perform the following little trick-add up the left-hand sides 
and the right-hand sides of these recursion equations. On the left, we get 
what is called a collapsing sum: all terms between the first and the ith cancel 
out. On the right, we have a finite geometric series. Since equalities are 
added, when we get done both sides are equal. First, let's assume p =1= 1/2, 
so the formula for the sum of a finite geometric series can be used to give 

qi - ql = (~ + (~) 2 + ... + (~) i-I) (ql _ 1) (10.2) 

9. (9.)i 
= P P ( -1) 1 _ '1. ql . 

P 

[If p = q = 1/2, then the right-hand side of formula 10.2 makes no sense 
because we will be dividing by 0.] Putting i = a in this relation gives us 

9. _ (9:)a 
- ql = qa - ql = P 1 _ ~ (ql - 1), 

P 

(10.3) 

which is simply an equation of the form -ql = K(ql - 1) for K some 
constant. Solving for ql here gives ql = K/(K + 1); substituting what K is 
from formula 10.3 leads us to 

(10.4) 

Now go back to formula 10.2 and solve for qi to get 

9. _ (9.)i 
qi = ql + P 1 _ ~ (ql - 1). 

P 

(10.5) 

This gives qi in terms of ql, which we've already solved for in formula 10.4. 
Substituting this into formula 10.5 and using algebra to simplify finally 
rewards us with the solution in case p =1= 1/2: 

(10.6) 

Turn now to the case p = q = 1/2, and observe that the first equation of 
formula 10.2, which is still valid, reduces to 

qi - ql = (i - 1) (ql - 1). (10.7) 
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In the case i = a, this becomes 

allowing us to solve for ql and get 

a-I 
ql = --. 

a 

Substitute this relation into formula 10.7 to obtain 

when P = q = 1/2. 

i 
qi = I-­

a 
(10.8) 

The two formulas 10.6 and 10.8 give us the probability of the gambler's 
ruin for the cases p:f 1/2 and P = 1/2, respectively. The event of the gam­
bler's winning is the same as his adversary's ruin, which can be calculated 
using the formulas but interchanging P and q and substituting a - i for i. 
When P = q = 1/2, this gives 

Pi = P(gambler's winning) = 1 _ a - i, 
a 

and we immediately check Pi + qi = 1 j that is, the game is sure to end after 
at most a finite number of plays with either the gambler winning or being 
ruined. If P :f 1/2, we get 

In this case too, a bit of algebra shows Pi + qi = 1. 
Here is a scenario where the gambler's ruin model is applicable. Suppose 

you enter a casino with $100 and you choose a game such that you will 
make repeated plays with the same probability of winning $1 at each play. 
Your strategy is to keep playing until you go broke or win $10, whichever 
happens first. Once you win $10, you must quit. The gambler's ruin model 
can be used here as though the casino (the adversary) were to go broke after 
a loss of $10. Since the gambler is always playing an unfavorable game at a 
casino, formula 10.6 with P < q is the appropriate formula in this situation. 
Put in i = 100, a = 110 to get 

(10.9) 

If the gambler's game is craps, in Chapter 6 we found approximate values 
of ,493 and .507 for P and q, respectively, and so q/p is around 1.028. Sub­
stitute this into the preceding relation and use a calculator and logarithms 
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to get an approximate value of .253 for q100' The gambler starting with 
$100 will therefore be ruined about one time in four before he wins $10 at 
craps. 

Since the probabilities p and q in craps are both very close to .5, it is 
interesting to compare the result we just found with what we would get from 
formula 10.8 when the game is fair. From that formula, we find a probability 
of about .091 of ruin for a gambler starting with $100 and playing until 
ruin or until he realizes a profit of $10. This is less than one time in ten. 
This example shows that even a small shift in probabilities converting a 
fair game into an unfavorable one for the gambler can increase the chances 
of ruin significantly. 

10.3 Bold play or timid play? 

Now let us consider the interesting question: can the gambler improve his 
chances of winning by changing the stakes, that is, changing the amount 
he bets. Assume he keeps the same stakes throughout the game but he has 
a choice initially. In the case of our gambler who has $100 and wants to 
win $10, suppose he can bet at $1, $2, $5, or $10 stakes. Which should 
he choose? Changing the stakes to $2 means the unit of the mathematical 
model has been changed, so the formulas we have must be changed to reflect 
that fact. If the unit is now $2 = 1 chip, in terms of that unit the gambler's 
initial $100 must be halved to 50 chips, and the amount he has when he 
quits must be halved to 55 chips. The values p and q remain the same, and 
formula 10.9 becomes 

(.'1.)50 _ (.'1.)55 
p p 

qi = 1 _ (.'1. )55 
p 

If 1.028 is again put in for the value of q/p in craps, the answer now 
is about .165. So the gambler was able to reduce the probability of ruin 
from .253 by doubling the stakes from $1 to $2. At $5 stakes, the unit 
is $5 and this corresponds to an initial capital of 20 chips and a goal of 
quitting at 22 chips. Using a version of formula 10.9 altered appropriately, 
the probability of ruin is now seen to be about .118. Finally, at $10 stakes 
the ruin probability calculated in the same way turns out to be about .104. 
So if the gambler plays at $10 stakes rather than $1 stakes, he is able to 
reduce his chances of ruin from about one in four to about one in ten. 

The above calculations show that in the present example the gambler 
does best to play at the highest stakes available to him to achieve his limited 
goal. An algebraic analysis' offormulas 10.6 and 10.8 (which we omit) proves 
that this is a general phenomenon, namely, in the gambler'S ruin model, bold 
play (that is, betting at the highest possible stakes) is always the best strategy 
for a gambler playing an unfavorable game (p < q). Conversely, if the game 
is favorable for the gambler, he should play at the lowest possible stakes. 
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One way to try to get insight into this fascinating result is by observing 
that low stakes means the game drags out longer on average and the Law 
of Large Numbers can take its toll on the player bucking the odds. With 
larger stakes, on the other hand, the games are shorter so there is less time 
for damage to be done. This argument mayor may not seem reasonable to 
you, but if it doesn't, don't despair-just be happy we have mathematics 
available to give us rigorous proofs. 

As with all of mathematics, it is important not to misread or misinterpret 
the results. If the gambler plays an unfavorable game, we already know from 
Chapter 7 that changing the stakes cannot convert this into a favorable 
game. What the gambler can do, however, is institute a kind of damage 
control-although he can't get the odds in his favor, he can minimize his 
probability of ruin if he has limited aspirations, that is, by quitting when 
he wins a certain amount if he isn't ruined first. His strategy for damage 
control is to play boldly, at the highest stakes possible for his goal. 

10.4 Exercises for Chapter 10 

1. You are playing craps at even money, that is, if you win a game 
you receive $1 or else you lose $1. You start with $3 and decide to 
play crap games until you either go broke or accumulate $6. Find the 
probability of your ruin. If you can change the stakes, what is your 
best strategy for play? 

2. Do exercise 1 for the game of roulette, where you are betting on red 
at each play. 

3. Suppose you are playing the classical game (of Section 10.2) with 
p = q = .5, and you start with $i and will quit when you attain $2i. 
Assuming you can choose the stakes (in dollar units), show that bold 
play is no more advantageous to you than timid play. How should 
you gamble if p is changed to (a) .499, (b) .501. 

4. Ginger and Fred are playing the following game: Fred gives Ginger 
$5 with probability 1/5 and Ginger gives Fred $5 with probability 
4/5. Ginger enters the game with $5, and the game will continue 
until Ginger goes broke or her fortune reaches $15. Ginger knows the 
game is unfavorable to her, but Fred assures her that if she is ruined 
he will dance with her all night. (a) Without using the formulas, 
calculate directly Ginger's probability of ruin. (Hint: Ginger can only 
be ruined at the first play, the third play, the fifth play, etc. Calculate 
each of these ruin probabilities and get an infinite series, which you 
should be able to add up.) (b) Now use a formula from Section 10.2 
to get the probability of Ginger's ruin. Your answer should, of course, 
agree with the answer you got in (a). 
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5. Suppose a game is played similar to the classical game of Section 
10.2 except that the gambler, starting with $i, can either win a fixed 
$s ::::: 1 or lose $1 at each play. Assume the gambler quits either upon 
ruin or the first time a fortune of $a or greater is attained, a > i. 
Let Vi be the probability of the gambler's ruin in this game and qi 

the probability of the gambler's ruin in the classical game. Give a 
heuristic (intuitive) argument without any calculation showing why 
the inequality Vi :::; qi is plausible. 



11 
Breaking Sticks, Tossing Needles, 
and More: Probability on 
Continuous Sample Spaces 

All things flow. 
Heraclitus 

11.1 Choosing a number at random from an 
interval 

Up to now, we have been working with discrete sample spaces and discrete 
random variables (see Chapters 1 and 7). There are problems, however, 
for which a discrete sample space is not appropriate because there are just 
too many possible outcomes. Suppose, for instance, that I want to choose 
a number on the interval between 0 and 1 "at random." Ignoring for a 
moment exactly what I mean by the term "at random" in this context, we 
note that the number chosen can be any value on the interval, so there is 
a continuum of possible values. This continuum has so many numbers in 
it that they cannot all be counted off using the positive integers; for this 
reason the sample space of this interval is not discrete but is what is called 
a continuous sample space. 

The first important problem to deal with in the case of continuous sample 
spaces is to determine what the basic events of interest should be. In the 
discrete case, each outcome was usually assigned a positive probability. To 
determine the probability of a more complicated event, we just added up the 
probabilities of all the outcomes contained in the event. Now matters are 
more complicated. In a continuous sample space like an interval of numbers, 
it is impossible for all outcomes, that is, all numbers in the interval, to be 
given a positive probability. If you try to do this, you cannot preserve the 
rule that requires the sum of all the probabilities to be equal to 1 (the sum 
won't even be finite). This suggests that the individual outcomes can no 
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longer be the basic building blocks used in calculating the probabilities of 
events, as they were in the discrete case. We need a new idea. 

The key concept to get us going in the continuous case is to consider 
subintervals of the interval sample space to be the new building blocks for 
calculating the probabilities of events. If, for example, the sample space is 
what we call the unit interval, the interval 0 to 1, and we set X = a value 
selected from this interval, then we are no longer interested in outcomes 
of the kind {X = a} but rather in events of the kind {a < X < b}, 
where 0 :::; a < b :::; 1. It is these latter interval events that will in general 
have positive probability and from which we will be able to calculate the 
probabilities of more complicated events. The probability rules we learned 
in previous chapters still hold, so, for instance, if P(O < X < 1/4) = PI 
and P(3/4 < X < 1) = P2, then the probability that X is in either the 
interval 0 to 1/4 or 3/4 to 1 is PI + P2. 

Now that we know our basic events are intervals, we can ask what it 
means to choose a value at random from the unit interval. If we are choosing 
a number at random in the interval, then what seems to be called for is 
a notion whereby each point has the same probability of being selected 
as any other point. As we saw above, it would be impossible to give such 
a probability distribution. Since the basic events of interest are no longer 
individual points, it makes sense to search for a continuous analog of the 
discrete uniform distribution. Instead of having each outcome with the same 
probability as any other outcome, we will require of a continuous uniform 
distribution that any subinterval will have the same probability as any other 
subinterval of the same length. This means that under the assumption of 
equal likelihood the probability of a subinterval is proportional to its length. 
For the unit interval, the probability of a subinterval is its length; for the 
interval 0 to 20, the probability of an interval is its length divided by 20. 
In general, we say that a random variable X defined on an interval I has 
the uniform distribution if the probability that X lies in any subinterval 
U is equal to the length of U divided by the length of I. We can show the 
probability of any outcome {X = a} must be O. The event {X = a} is 
included in an interval 1m of arbitrarily small length m, and by the laws 
of probability, P(X = a) :::; P(Im) = m. Since m is a positive number as 
small as you like, it follows that P(X = a) = O. 

There is a nice pictorial way to represent the probabilities of intervals for 
continuous sample spaces. We are going to present this now for the very 
simple case of a uniform distribution. Suppose we take the interval I from 
o to 20 lying on the x axis in the x-y plane (see Fig. 11.1). Let us draw 
the line L joining the points (0,1/20) and (20,1/20); L lies parallel to I 
a distance 1/20 units above I. Now if we are given any subinterval J in 
I, the probability of J may be obtained by getting the area of the region 
above J and bounded by L; indeed, this area is just a rectangle with length 
the length of the subinterval J and height = 1/20, and the area, namely, 
the product of these quantities, gives the uniform probability. Let us now 
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1/20 
L 

o I 20 

FIGURE 11.1. Density for a uniform distribution (vertical units enlarged) 

define the following function 

f(x) = 1/20, 0 < x < 20; f(x) = 0 elsewhere. 

The function f (x) is called the density function of this uniform distribution. 
The density function assigns weight to the individual points of the number 
line. These weights are not themselves probabilities, but by determining 
the area above an interval they determine the probability of that interval. 
In the present case of the uniform distribution, the density f(x) restricted 
to I is the constant 1/20 over I, indicating that each point of I is given 
the same positive weight. The graph of f(x) restricted to I is the line L. 
But once we leave I the density is zero-the graph of f(x) jumps down to 
the x-axis outside I. So if we take the interval K from 30 to 40, say, f(x) 
assigns K probability 0 since the area under f(x) = 0 and above K is O. 

In general, a distribution for a continuous random variable X is a prob­
ability assignment P( J) to intervals J of the real number line giving the 
probability that X lies in the interval J. Usually, the way to specify this 
distribution is to give a density function for the distribution, that is, a 
non-negative function or curve f(x) defined in the x-y plane such that the 
probability of any interval J is obtained by finding the area of the region of 
the plane under f (x) and above J. Moreover, the total area under the den­
sity above the entire real line is always 1. An argument similar to the one 
above for the uniform density shows P(X = a) = 0 for any point a when X 
has a density function. The cumulative distribution function (or just distri­
bution function) of a random variable X is the function F(t) = P(X < t). 
If X has a density function f(x), then F(t) is the area under f(x) over the 
interval x < t. 

As you can see from this description, we are shifting the emphasis away 
from talking about sample spaces and more towards talking about random 
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variables lying in intervals of numbers. This is because in practice the 
principal interest is usually in one or more random variables. Much of 
the time in probability you are just given the density function (or, if it 
is discrete, the distribution) of a random variable without any mention of 
the underlying sample space. You should realize that in all such problems 
an appropriate sample space on which the random variable is defined can 
always be constructed. 

11.2 Bus stop 

Here is a problem using the ideas of Section 1l.l. 

Felix arrives at a bus stop at random during the hour from 6 to 
7 pm. If buses leave the stop for Felix's destination at 6, 6:30, 
and 7, what is the probability that Felix will have to wait more 
than ten minutes for a bus? 

As sample space let's take the time interval S from 0 to 60 minutes and 
define X = the instant Felix arrives at the bus stop measured in minutes 
after 6 o'clock. Moreover, the "at random" phrase in the wording tells us 
that we should use the uniform distribution for X on the interval: Felix 
is just as likely to arrive in any time intervals of the same length. Now 
let's see how to solve the problem. Felix has to wait more than ten minutes 
for a bus if he arrives between 6 and 6:20 or between 6:30 and 6:50 (note 
that Felix misses the 6 o'clock bus with probability 1 since the probability 
that he arrives at exactly 6 o'clock has probability 0). So the event "Felix 
waits more than ten minutes" can be expressed as the union of the events 
I = h U 12 , where hand lz denote the time subintervals 6 to 6:20 and 
6:30 to 6:50, respectively. From the definition of the uniform distribution, 
both hand 12 have probability 20/60=1/3, so the union I of these non­
overlapping events has probability 2/3. Therefore, Felix will have to wait 
more than ten minutes for a bus every two out of three times on the average. 

11.3 The expectation of a continuous random 
variable 

In previous chapters, we restricted ourselves to discrete sample spaces and 
random variables. For a discrete variable X, we defined (in Chapter 7) EX, 
the expectation of X. The value of EX is calculated by taking each of the 
discrete values of X, multiplying by the probability that X assumes this 
value, and then adding up over all the possibilities. For continuous random 
variables (that is, random variables taking on a continuum of values) this 
definition of EX is no longer possible in general because the individual 
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x, 

FIGURE 11.2. Area of rectangle approximates probability of X lying within its 
base 

outcomes usually have probability zero, and our basic building blocks are 
now intervals rather than individual outcomes. Is there a way to extend 
the notion of expectation to continuous random variables? 

The answer to this question is a resounding ''yes,'' and this is just the type 
of problem for which calculus was invented pretty much simultaneously by 
Isaac Newton in England and Gottfried Wilhelm Leibniz in Germany in the 
seventeenth century. What I can do here is try to give you a rough feeling 
for the ideas involved; they are very beautiful and intuitively appealing. 
The expectation of X in the discrete case is a weighted average of the 
discrete values of X. To get the expectation, we added up terms of the 
form Xi' P(X = Xi). In the continuous case, however, we know this product 
will be 0, so what we do is quite reasonable-we try to get intervals that 
have positive probability into the act. Remember that now there is a density 
function f (x) defined on the number line. Think of this number line divided 
into intervals that all have the same small length, which we can write .6.x. 
Now if f(x) is a function that isn't too weird, its variation over each tiny 
interval can't be too great, so given such an interval, say Ji , we can choose 
any point Xi inside it and consider the term f(Xi) .::lx. This term is the area 
of a little rectangle with height f(Xi) and width.::lx and is an approximation 
to the area bounded by the curve f(x) and above Ji (see Fig. 11.2). Now we 
recall that the area under a density and above an interval is the probability 
that the random variable X belonging to that density lies in that interval. 
This means that 

(11.1) 
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Using formula 11.1, we can now write a meaningful analog for the terms 

in the discrete case. We should use 

(11.2) 

which is roughly the value Xi times the probability that X lies in k What 
we should do now is divide up the number line into small non-overlapping 
intervals Ji , compute the quantities given by formula 11.2 for each such 
interval, then add up all terms of this sort for all the subintervals Ji . This 
gives us a weighted average of values of X that is the kind of thing we 
are looking for. But, of course, what we have done depends on the size of 
the intervals we have taken and on the points Xi we have chosen in each 
interval, so the number obtained at the end will vary depending upon how 
the procedure was done. But now here is a beautiful fact the theory of 
calculus gives us. Let the interval lengths be made smaller and smaller (so 
the number of intervals is increasing without bound) and consider the sum 
of the terms in formula 11.2. Each such term is getting close to zero since 
~x is getting close to zero, but the number of terms in the sum is growing 
without bound. If f(x) is a reasonably "well-behaved" density, then the 
sums of the terms in formula 11.2 approach a unique limiting value (i.e., 
they get closer and closer to something). This limiting value we define to 
be the expectation of X. The methods of calculus also give us nice methods 
to calculate these expectations. Of course, just as in the discrete case, EX 
may fail to exist. This happens if the density is not sufficiently restricted. 
If X is uniformly distributed on the interval from a to b, where a < b, then 
EX turns out to have the value (a + b)/2, a very reasonable result. So in 
the bus problem above, we can say that Felix's expected time of arrival at 
the bus stop is at 6:30. 

11.4 Normal numbers 

An interesting application of the uniform distribution on the unit interval 
concerns the so-called "normal" numbers. (Mathematicians have a habit 
of naming objects normal whenever they display properties that seem to 
be typical, desirable, or just pleasant.) To define what a normal number 
is, think of expanding each real number between 0 and 1 in the stan­
dard decimal system. Each finite decimal (like, e.g., .135) has two decimal 
expansions, one of which is non-terminating with a string of 9's (.135 = 
.134999 ... ). Except for these, each real number in the interval has a unique 
decimal expansion. If we agree always to pick the non-terminating expan­
sion in the case of the finite decimals, then each real number in the interval 
corresponds uniquely to an infinite decimal .XIX2X3 ..•. Let k be one of the 
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digits 0 through 9. For any positive integer n, we can define the random 
variables z~(x) for 0 < x < 1 by 

z~ = (number of the first n digits in the decimal expansion 
of x which are equal to k)/n 

The variables z~ simply give the relative frequency of the appearance of 
the digit k in the first n digits of the decimal expansion of the number x. 
Then x is called simply normal to the base 10, if, as n gets large without 
bound, z~ converges to 1/10, that is, it gets closer and closer to 1/10 as n 
increases, for each of the ten values of k = 0, 1" .. ,9. We are going to call 
"simply normal to the base 10" just "normal" to simplify the discussion, but 
you should be aware that in the mathematical literature the nomenclature 
"normal" without qualifiers is often used to mean that x is not only simply 
normal to the base 10, but has other related properties that are admirable 
but which we will not go into here. 

We can express normality of x in mathematical notation as 

1· Zk 1 1m n =-, 
n-+oo 10 k = 0, 1"" ,9. 

In plain words, a normal number x has the nice intuitively appealing prop­
erty that, on the average, each one of the ten digits 0 through 9 appears 
1/10 of the time in the decimal expansion of x. 

By considering finite or repeating decimals, we can see immediately lots 
of non-normal numbers (e.g., .1212·· .). The more interesting question is 
how we can find normal numbers or, more fundamentally, whether normal 
numbers even exist. I am now going to outline an argument using the Law 
of Large Numbers showing that there are loads of normal numbers in the 
interval 0 to 1. In fact, "most" of the numbers in the interval are normal. To 
do this, we consider the uniform distribution on this interval. For any x in 
the interval, let .XIX2 ••• be its decimal expansion. First, let's concentrate 
on the digit O. Define the random variable Ui to be the indicator variable 
for the digit 0 at the ith place in the decimal expansion of x; that is, Ui = 1 
if the ith digit in the expansion of x is 0 and Ui = 0 otherwise. Then we 
have 

UI + U2 + ... + Un = ZO 
n' n 

Now, it is a fascinating fact that because we are using the uniform distribu­
tion it is possible to prove that the variables Ui are independent. To get a 
feeling about why this should be so, let's think for a moment about how the 
decimal expansion of a number in the unit interval determines its location 
as a geometric point of that interval. Divide the unit interval up into ten 
equal subintervals, what we will call the subdivision of first order. The first 
digit Xl of the decimal expansion of x locates x in subinterval (Xl + 1). So 
if Xl = 0, x lies in the first subinterval from 0 to .1, if Xl = 1, x lies in the 
second subinterval from .1 to .2, etc. Now divide each of the ten subintervals 
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themselves into ten equal subintervals. We can call this second subdivision 
the subdivision of second order. Suppose we are given the first two digits 
Xl and X2 of the decimal expansion of x. These two digits locate X in the 
subinterval (X2 + 1) of second order within the subinterval (Xl + 1) of first 
order. Proceeding in this way, successively divide each subinterval of order 
i into ten equal parts to get subintervals of order i + 1. Then successive 
digits of X locate X on smaller and smaller subintervals so that when all 
digits of X are given (theoretically), x is uniquely determined as a point on 
the interval. 

Return now to the variables Ui . Let's try to calculate P(UI = 1), where 
P represents probability using the uniform distribution on the unit interval. 
This is just the probability that the first digit in the decimal expansion of 
a number is 0; that is to say, the number lies in the subinterval from 0 
to .1. The uniform distribution assigns the probability we seek to be the 
length of this subinterval, .1. How about P(U2 = I)? For the second digit 
to be 0, the number must lie in the first subinterval of second order. Each 
such subdivision has length .01, but since the event {U2 = I} imposes no 
restriction on which of the subintervals of first order the number lies in, it 
could be in any of the ten disjoint possibilities, so P(U2 = 1) = (10)(.01) = 
.1. Now calculate 

P(UI = 1 and U2 = 1), 

the probability that the first two digits are both O. This event requires that 
x lies in the first subinterval of second order within the first subinterval of 
first order, so the probability equals .01. From this we see 

P(UI = 1 and U2 = 1) = .01 = (.1)(.1) = P(UI = 1) . P(U2 = 1), 

which shows that the events {UI = I} and {U2 = I} are independent. By 
going forward with this argument, we can show that the sequence of the 
Ui variables is independent as claimed. 

Not only are the Ui independent, but they have the same distribution: 
P(Ui = 1) = .1, P(Ui = 0) = .9. But now the stage is set for the Law of 
Large Numbers. According to that theorem, we have 

P (lim UI + U2 + ... Un = EUI ) = 1; 
n-HX) n 

that is, the set of all points in the unit interval whose decimal expansions 
average out (in the limit) to EUI has probability 1, and since EUI = 
(1)(.1)+(0)(.9) = .1, this formula just says that most numbers have decimal 
expansions in which the digit 0 occurs, on the average, .1 of the time. 
Exactly the same argument can be given for each of the ten digits, and 
it follows that most numbers are normal in the sense that the normal 
numbers have probability 1 when probabilities are calculated using the 
uniform distribution. 
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What does this set of normal numbers look like? Well, it cannot be 
a subinterval because every subinterval contains lots of finite decimals 
that are not normal. Unfortunately, when we deal with continuous sam­
ple spaces, there are so many points and so many sets that can be formed 
from them that the mathematics of the situation can get quite delicate and 
the sets can get quite complicated. The basic idea is that starting with 
unions and intersections of intervals we can get a whole bunch of sets for 
which probability statements can be defined in a meaningful way-these 
sets are called measurable. The probability distribution given for intervals, 
for instance, the uniform distribution, can be extended to a probability 
function on all the measurable sets such that the usual rules for proba­
bilities that we had in the discrete case still hold or have clear analogs. 
All this takes a bit of serious mathematics, which we don't have to worry 
about here. The important thing for us is that the set of normal numbers, 
while not as simple as an interval or the union of intervals, is a measurable 
set with probability 1. If you are trying to visualize it geometrically, you 
can think of the unit interval with a lot of holes in it where numbers are 
missing. Every subinterval of the unit interval has lots of these holes-we 
say the holes are everywhere dense. Yet the missing numbers don't add up 
to very much in the sense that the totality of them only has probability 
zero. So the normal numbers constitute most of the numbers in the unit 
interval, in fact, almost all of them in a technical mathematical sense. 

We have just seen that there are loads of normal numbers in the unit 
interval. In fact, they are so numerous that the set of them has probability 
1. Yet there is something apparently strange here when you think a little 
further. In spite of the multitude of normal numbers, it is not particularly 
easy to produce examples of them. Here is one: 

.01234567890123456789 ... 

where the pattern of the ten digits is repeated infinitely. But presented 
with a number x in the unit interval, unless it is a very special kind like 
a finite or repeating decimal, nobody knows how to determine whether 
x is normal. Nobody knows, for example, whether the decimal part of 
the number 71" is normal even though 71" has been calculated to perhaps as 
many as a billion decimal places. The reason why identification of normal 
numbers is so difficult is pretty clear: when you say a number is normal, you 
are saying something about the entire decimal expansion of the number. 
In general, it seems difficult to understand the patterns in the complete 
decimal expansions of numbers. No partial decimal expansion, no matter 
how long, can ever tell us by itself whether a number is normal since the 
limit statement in the definition of normal numbers does not depend on any 
finite number of decimal places. So we have a kind of paradoxical situation 
that arises from time to time in mathematics-it is relatively easy to prove 
certain objects exist but hard to exhibit examples of the objects. We have 
proved that normal numbers are all over the place, and that if we choose 
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a number x at random from the unit interval it will almost certainly be 
normal, but unless we are given some special relations among the digits, 
there is no general way known at present to verify that any particular x is, 
in fact, normal. 

11.5 Bertrand's paradox 

In 1889, L.F. Bertrand presented the following problem: 

Suppose you have an equilateral triangle inscribed in a circle. 
Choose a chord of the circle at random. What is the probability 
that the length of the chord is greater than the side of the 
inscribed triangle? 

A 

E~----...,I'F 

FIGURE 11.3. Equilateral triangle ABC inscribed in a circle with chords AD 
and EF 

To understand this problem, you will have to recall a few facts and a little 
terminology from plane geometry (see Fig. 11.3). A chord of a circle is a 
straight line segment whose endpoints lie on the circumference of the circle. 
An equilateral triangle has all three sides of the same length and all three 
angles equal to 60 degrees. A triangle is inscribed in the circle if its three 
vertices lie on the circumference of the circle. The problem is sometimes 
called Bertrand's paradox because at least three different answers seem 
possible by apparently impeccable arguments. The key to understanding 
the paradox is to realize that choosing a chord at random is not precisely 
defined. There are several ways to interpret this random choice, and each 
of these yields a different answer to the problem. 

First solution: Draw a radius of the circle perpendicular to a side of 
the triangle. Choosing a chord at random can be interpreted as choosing 
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a point Q on this radius according to the uniform distribution and then 
drawing the chord through Q perpendicular to the radius. It is clear that 
the chord thus drawn is larger than a side of the triangle if Q lies within 
the triangle. To calculate the probability that Q lies inside the triangle, we 
only need to find the distance from the center of the circle to the side of 
the triangle. Elementary geometry shows this is r /2, where r is the radius 
of the circle. It follows that the probability we seek is (r /2) /r = 1/2. 

Second solution: Draw a tangent T to the circle at a vertex V of the 
triangle. Consider all chords of the circle that have V as an endpoint. Any 
such chord makes an angle with T between 0 and 180 degrees. Conversely, 
given such an angle a unique chord is determined. Choosing a chord at 
random can be interpreted as choosing an angle between 0 and 180 degrees 
according to the uniform distribution. The chord is greater than a side of the 
triangle whenever the chord lies partially within the triangle. Elementary 
geometry shows this happens when the angle between T and the chord lies 
between 60 and 120 degrees. The probability is therefore (120 - 60)/180 = 
1/3. 

The reader is encouraged to find another interpretation of choosing a chord 
at random giving yet a third answer. 

11.6 When do we have a triangle? 

Here is a cute little problem dealing with two independent uniform distri­
butions (see Fig. 11.4). 

Suppose you are given the unit interval. You choose a first point 
X at random and then, independently, you choose a second 
point Y at random. By "breaking" the interval at the points X 
and Y, three line segments are formed. What is the probability 
that a triangle can be formed from these three segments? 

This problem is not so easy until you look at it the right way. Notice that 
choosing the two points X and Y can be considered as choosing a single 
point (X, Y) in the unit square of the plane (the unit square has vertices 
(0,0), (1,0), (0,1) and (1,1) ). Since the points are chosen independently 
and uniformly, if 0 :S a < b :S 1 and 0 :S c < d :S 1 

P(a < X < band c < Y < d) = 
P(a < X < b) . P(c < Y < d) = (b - a)(d - c), 

which simply says that the probability of (X, Y) lying in a rectangle within 
the unit square is the area of the rectangle. In general, the probability 
that (X, Y) lies in any region of the unit square is just the area of this 
region. The next thing to do is to try and find conditions on X and Y 
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0----------------~----1 

x y 

FIGURE 11.4. Unit interval divided into three pieces by points X and Y 

implying that the three segments formed determine a triangle. First, let us 
assume case 1: 0 < X < Y < 1. Then the segments formed have lengths 
X, Y - X, and 1 - Y. The criterion for the existence of a triangle to be 
constructible from three segments is very simple: the sum of the lengths of 
any two segments must be larger than the third (this is a reflection of the 
geometric fact that the shortest distance between two points is a straight 
line). Taking the three lengths and imposing these conditions, we get 

X + (Y -X) 

(Y - X) + (1 - Y) 

(1- Y) +X 

> 1-Y, 

> X, 

> Y-X, 

which simplifies to the three pleasant inequalities X < .5, Y > .5, Y - X < 
.5. It is not hard to see (if you know just a little bit about plotting points 
in a plane) that the set of (X, Y) satisfying all three inequalities forms the 
inside of the triangle with vertices (0,.5), (.5,.5), (.5,1). This right triangle, 
with base and altitude both equal to .5, has area equal to 1/8. So the 
probability that X and Y in case 1 are such that a triangle is possible, that 
is, that (X, Y) lies in the right triangle of area 1/8, is 1/8. Now we must 
consider case 2: 0 < Y < X < 1. By symmetry, this case must yield the 
same answer, 1/8. The only other case 0 < X = Y < 1 may be ignored since 
this event is a straight line in the unit square and so has area (probability) 
zero. The answer to the problem is the sum of the probabilities of case 1 
and case 2: 1/4. 

11.7 Buffon's needle problem 

The Bertrand paradox already discussed is a problem combining geometric 
ideas with probability. The branch of probability theory dealing with such 
questions is not surprisingly called geometric probability. Perhaps the oldest 
problem in this field was the Buffon needle problem stated in 1777. It goes 
like this: a table, the floor, or part of any plane surface is ruled with parallel 
lines D units apart. A needle of length L ::; D is tossed at random onto the 
surface. The needle can either intersect one of the ruled lines or lie in the 
strip between a pair of them. Find the probability of the needle intersecting 
a line. 

To solve the problem, draw a picture of the needle lying on the surface 
(see Fig. 11.5). Let X be the distance of the midpoint of the needle to 
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D 

FIGURE 11.5. Needle of length L S; D lying across a line 

the nearest of the ruled lines, and let e be the angle between the positive 
direction of the ruled line (going off to the right) and the needle. The angle 
() can be anything from 0 to 180 degrees. It is more convenient to measure 
angles in terms of radian measurement rather than degrees-the conversion 
factor is given by 180 degrees = 7r radians. Therefore, by specifying X 
between 0 and D /2 and e between 0 and 7r radians we have specified the 
direction of the needle. Tossing the needle at random is taken to imply the 
independence of X and e, each with the uniform distribution. Draw a right 
triangle using the side of length X, and the ruled line as bases and the 
needle (extended if necessary) as the hypotenuse of length h. The needle 
intersects a ruled line if h < L/2. Elementary trigonometry shows 

X L 
-:--e=h<-2' sm 

that is, X < (L/2) sine. Consider a e-x plane with e as the horizontal axis 
and X as the vertical axis. If we plot in this plane the curve X = (L / 2) sin e, 
we get a picture that looks like Fig. 11.6. The event "the needle intersects a 
line" is equivalent to the event "X lies above the () axis and below the curve 
X = (L/2) sin e." As in the preceding problem, the uniform distribution 
and independence mean that the area below the curve relative to the area 
of the rectangle with base 7r and height D /2 is the desired probability. 
Using calculus, it is possible to show the area below the curve is equal to 
L (this simple answer is due to the use of radian measurement). The area 
of the rectangle is 7r D /2, so the probability of the needle crossing a line is 
2L/(7rD). 

Now start to toss the needle at random onto the ruled surface in inde­
pendent trials. Let Ui be indicator functions equal to 1 if the needle hits a 
line on trial i and 0 if the needle does not hit a line on trial i. The sum of 
the first n variables Ui gives the total number of the first n trials in which 
the needle intersects a line. In Chapter 8, we saw how these variables Ui 
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D/2 

FIGURE 11.6. Area under curve represents probability of needle hitting a line 

can give us a frequency interpretation of the probability by using the law 
of large numbers: with probability one, we have 

1. number of times the needle hits a line in n tosses 
1m 

n--+oo n 
1. Ul + U2 + ... + Un = 1m 

n-+oo n 

= EUI = P{needle hits line on first toss) = :~. 
This relation gives us a method for estimating 7r. Toss the needle many 

times, say n. Let m be the number of times the needle hits the line in the 
n tosses. Then from the above 

which is equivalent to 

m 2L 
-;~7rD' 

2Ln 
7r ~ Dm' 

This procedure may seem strange since we are estimating a non-random 
quantity 7r using a random device. This is, however, the basis of a very 
powerful and useful technique in modern mathematics, called the Monte 
Carlo method, whereby computations sometimes too difficult to be obtained 
by direct approaches are solved by means of computers and probabilistic 
reasoning. We'll return to this topic in Chapter 13. 

11.8 Exercises for Chapter 11 

1. Buses leave a bus stop at at 6, 6:15, 6:30, 6:45, and 7 pm. If Felix and 
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Alice each arrive randomly and independently at the bus stop during 
the hour from 6 to 7, what is the probability of their being on the 
same bus? 

2. Suppose you break a stick at random at some point on it. What is 
the probability that the larger piece is more than twice as long as the 
shorter piece? 

3. Solve the problem given in the last sentence of section 11.5. (Hint: 
Let the chord be determined by its midpoint chosen randomly inside 
the circle.) 

4. Give solutions of Bertrand's paradox if the inscribed equilateral tri­
angle is replaced with an inscribed square. 

5. Suppose w is a normal number between 0 and 1. Take any integer 
n > 0 and consider the number Wn = lOnw. Does the decimal part 
of Wn have to be normal? What can you say about Wn if w is not 
normal? 

6. Find the probability of the following events that refer to the infinite 
decimals in the interval from 0 to 1: (a) The even digits are never 
equal to O. (b) The lOOth and 200th digits are both larger than 5. (c) 
At least one of the first two digits is equal to O. 



12 
Normal Distributions, and Order 
from Diversity via the Central 
Limit Theorem 

Oh! Blessed rage for order, pale Ramon, 
The maker's rage to order words of the sea, 
Words of the fragrant portals, dimly-starred, 
And of ourselves and of our origins, 
In ghostlier demarcations, keener sounds. 

Wallace Stevens, The Idea of Order at Key West 

12.1 Making sense of some data 

As the head of a team of scientists, you are interested in compiling data 
on the heights of adult American men (by "American" we mean those who 
live within the borders of the United States). To do this, you would first 
want to choose a large sample of this population according to scientific 
principles ensuring that the sample is random. We will have more to say 
about randomness in the next several chapters, but essentially what you 
want is a sample representative of the entire population under study. So, 
for example, since you are interested in the population of adult American 
men your sample will not consist exclusively of men living in the Bronx in 
New York, nor will it consist solely of men residing on the west coast, or 
of those who earn more than $100,000 a year, or, in general, any category 
whatsoever restricting the sample from being representative of the entire 
population. One way you could go about choosing a random sample is to 
assign a unique number to each adult male in the population, and then 
select a certain portion of these numbers using a random device such that 
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each number has the same probability of being selected. For example, you 
could write the numbers on cards, toss all the cards into a (very large) hat, 
mix well, and then select numbers with replacement (that is, after each 
selection you put the selected card back into the hat, mix again and select 
another card, etc.). Replacement of the cards is necessary to ensure that 
each card always has the same probability of being selected. If you happen 
to select a card that you had already chosen previously, it corresponds to 
an adult male chosen before, so we just ignore this observation, replace 
the card, mix, and keep repeating until a previously unchosen card is se­
lected. In practice, of course, this procedure would be impossible to carry 
through-for one thing you would be hard pressed to find a hat big enough 
to hold the cards! It is also very hard to mix a lot of things so that a 
reasonable approximation to a uniform distribution model is achieved-see 
Section 13.6 for an interesting example. Statisticians have more sophisti­
cated ways of finding a random sample; we'll take another look at this in 
Chapter 14. For now let's suppose you have this sample. What you are go­
ing to do is measure these individuals as accurately as you can and record 
these measurements. You will have a bunch of very large books in which 
each person's height is written down, and when the head of the Depart­
ment of Demographics comes to your office and asks "What can you tell 
me about the height of the American adult male?" you will proudly haul 
out the books and say, "Take a look-it's all in there." 

Unfortunately, these raw data are too cumbersome to handle. There is 
too much of it for it to make any sense. You will not be able to see the forest 
for the trees; no patterns or tendencies are apparent because of the welter of 
detail. So the head of the Department of Demographics will go home with a 
big headache and no insight. On his way out, he hoarsely pleads with you, 
"Can't you summarize all that stuff in a form a little easier to grasp?" After 
some thought, you get an idea. You take a horizontal x axis and label it 
starting at an integer A. Suppose you are measuring heights to the nearest 
.1 of an inch. Then each unit on your axis can represent .1 of an inch, and 
you mark off units from A until you get to another integer B. You can label 
A and B as the minimum and maximum values of the data. So now you 
have a line segment from A to B as your height axis---each point on the 
line segment represents a possible height in the data. What you want to do 
now is define so-called class intervals, that is, break down the height axis 
into a number of intervals. Suppose your data has a minimum height of 62 
inches and a maximum height of 76 inches. We could define class intervals 
with a 2 inch length by specifying the first interval from 61.55 to 63.55, 
the second interval from 63.55 to 65.55, etc., with the last interval going 
from 75.55 to 77.55. The reason for picking the endpoints of the interval to 
two decimal places is so that each item of data, which is measured to only 
one decimal place, cannot fall on an interval endpoint, and unambiguously 
belongs to a unique interval. Now you and your staff go through the books 
of raw data and count the number of data items lying in each class interval. 
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I 
10 20 30 40 50 60 

FIGURE 12.1. A typical histogram. The numbers represent the midpoints of class 
intervals 

You then construct a bar over each interval with height proportional to the 
number of data items lying in that interval. The proportionality constant 
is a fixed number chosen to make the sum of the areas over all intervals 
equal to 1. The area of the bar over each interval is therefore equal to the 
proportion of individuals in the sample with height lying in that interval. 
Congratulations-you have just reinvented the histogram (see Fig. 12.1). 

The above description is a very rough indication of the ideas involved 
in constructing one histogram from the given data. There are many other 
histograms you could have constructed; which one you want depends on 
your goals. The 2 inch length intervals give you eight class intervals. If you 
don't need that fine a breakdown, you could have used class intervals of 
length 4 inches, say, obtaining only four class intervals. In addition, before 
deciding on your interval range, you will generally want to study your data 
carefully and make some adjustments. For example, you may have one 
person who is 90 inches tall with all the other data items at or under 76 
inches. It doesn't make much sense in extending the height axis all the way 
to 90 and getting a lot of empty class intervals. One way to handle this is 
simply to exclude the single extreme value 90 from the data on which the 
histogram is based (you lose information by excluding values, of course, so 
you should keep track of these extreme values for your final report-they 
may turn out to be important). 

The histogram is a wonderful device for summarizing the data and pre­
senting it in a form that shows important features. One look at the his­
togram and we can see which intervals contain relatively large numbers of 
data items and which contain relatively few. If the sample is large enough, 
the Law of Large Numbers says that the area of any bar over an interval, 
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FIGURE 12.2. Bell-shaped curve approximating a histogram 

namely, the proportion of the sample lying in the interval, is an approxima­
tion to the probability of a sample measurement falling into that interval. 
If the sample is representative of the entire population, the area of the 
bar should be an approximation to the probability that an American male 
chosen at random has height lying in that interval. 

One thing we frequently want to do with histograms is approximate 
them by a continuous bell-shaped curve representing a normal distribution; 
we will start discussing these distributions in the next section. A crude 
example of this is seen in Fig. 12.2, where we just have a few class intervals 
with rather large length. If the sample is large enough, the number of 
intervals is taken large and the length of the intervals is sufficiently small, 
we can find a bell-shaped curve which does a good job approximating the 
histogram. What this means is that the area under the curve over any 
class intervals is a good approximation to the area under the bars for those 
intervals. The more intervals and the smaller their length, the better the 
bell-shaped curve approximates the histogram. Therefore, the area under 
the bell-shaped curve over an interval is an approximation to the probability 
of a measured height lying in that interval. From what we have learned 
about continuous distribution functions, this bell-shaped curve can be used 
as an estimated density function for the random variable X = height of an 
adult American male. 

12.2 The normal distributions 

Now let us change the scene to the seventeenth and eighteenth centuries 
when Abraham DeMoivre and Pierre Laplace were working on various prob­
lems in probability and were led to a certain continuous distribution func-
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FIGURE 12.3. Normal distribution symmetric around I-' 

tion which we will call the standard normal distribution. This distribution 
belongs to a random variable which, for reasons of tradition, we will desig­
nate by the letter Z. The density of the standard normal distribution is a 
function whose exact mathematical form is not important for our purposes 
and would require some explanation, so we omit giving it. If this density 
is graphed in the x-y plane, a bell-shaped curve is obtained of the type 
described in the preceding section. In this case, it turns out that EZ = 0 
and (]"2(Z) = 1, and the curve is symmetric around o. 

Upon further investigation, it was discovered that there was really a 
whole class of related distributions which could be defined by writing down 
a density function !(x, p" (]") depending upon two parameters I-' and (]". 
Here p, is any real number and (]" is any positive number, and for each 
choice of a I-' and a (]" a particular distribution is determined. This class of 
related distributions was called normal, or Gaussian (after Karl Friedrich 
Gauss, who used it a lot). The class of normal distributions is called a two­
parameter family of distributions because a particular member of the class 
is determined when the two parameters I-' and (]" are fixed. 

If I-' = 0 and (]" = 1, then we get the standard normal distribution. 
In general, it was observed that if X has the distribution !(x, p" (]"), then 
EX = p, and (]"2(X) = (]"2, and the distribution is symmetric around p, (see 
Fig. 12.3). Note that we use the notation (]"2(X) for the variance of the 
random variable X and (]"2 alone for the numerical value of a variance. 
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12.3 Some pleasant properties of normal 
distributions 

Suppose we take a random variable X which is normal with mean f-L and 
variance (T2 and consider the random variable Y = aX + b, where a and b 
are constants. We will assume a > 0 here to simplify the discussion, but 
this assumption is not necessary. Multiplying X by a is a change-oj-scale 
operation--one X unit becomes a Y units. Adding b is a shift operation in 
which values of Y are obtained from values of aX by adding on the same 
amount b. It is a nice fact of life that the random variable Y resulting from 
a change of scale and shift turns out to be normal whenever X is normal. 
We can also figure out the mean and variance of Y in terms of the mean 
and variance of X. It is not hard to show from the definition of variance 
and the properties of expectation given in Chapter 8 that if X has variance 
(T2 and a is a constant, then the variance of aX and therefore of Y is a2(T2. 
Moreover, the mean of Y is EY = af-L + b. 

To get an idea of what happens to the density of a standard normal 
variable Z when you perform a shift and a change of scale on it, first 
consider the shift U = Z + b where b is constant. The density of U is 
identical in shape to the standard normal density; it has only been shifted 
so that its peak value is at b rather than at O. The variance of U is the same 
as the variance of Z (the spread of values around the mean is intuitively 
the same since we just shifted one density over to get the other). 

Now suppose we look at the change-of-scale operation V = aZ. Then 
the density of V is still centered at 0, but the variance of V is a2• If a> 1, 
the values of V are more spread out around 0 than those of Z, but if 
a < 1 the values are less spread out around O. It is apparent that the most 
general normal variable X with mean J.L and variance (T2 may be obtained 
by performing a shift and change of scale to Z, namely, put X = (T Z + f-L. 

Figure 12.4 shows three densities. The first is centered at O. The second is 
a shift of the first to a new center f-Ll keeping the variance, hence the shape, 
the same. The third involves both a change of center, that is, a shift, as 
well as a change of variance. In this case, the variance of the third density 
(c) is smaller than the variance of (a), so that (c) is more concentrated 
around its mean. 

Conversely, if X is given to be normal we can transform it to the stan­
dard normal Z by a shift and change-of-scale transformation. If X has 
parameters f-L and (T, the random variable 

(X - f-L)/(T = (l/(T)X - f-L/(T 

is obtained from a shift and change of scale applied to X, and has mean 
o and variance 1, so must be standard normal. This is an extremely useful 
fact since it allows us to rephrase any question about an arbitrary normal 
distribution in terms of an equivalent question about the standard normal 
distribution. 
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(a) (b) (c) 

FIGURE 12.4. (a) Normal density centered at o. (b) Shift of (a) to new center 
/-£1. (c) Shift of (a) to new center /-£2 with decrease in variance 

To pin matters down, let's say we want to calculate a probability state­
ment about the normal variable X with parameters f.L and a2 ; for example, 
suppose we want to get P( a < X < b). Then 

pea < X < b) = P (a: f.L < Z < b: f.L) , 

using a little algebra and the relation Z = (X - f.L)/a. The right-hand side 
is a probability involving a standard normal variable. For this reason, it is 
sufficient to have tables compiled for the standard normal distribution. This 
often takes the form of listing at intervals of .01 the numbers a = .01, .02, ... 
up to about 3 or 4, and with each of these the area under the density over 
the interval from 0 to a, say, or from -00 to a. From this information and 
by making use of symmetry, you can calculate the approximate probability 
of the standard normal variable Z lying in any interval. In particular, such 
a table shows that about 68 percent of the area lies within' one standard 
deviation of 0 and about 95 percent lies within two standard deviations; 
that is, the standard normal variable Z satisfies 

P(-l < Z < 1) >::::: .68, P(-2 < Z < 2) >::::: .95. 

From this, it is not hard to check that for any normal variable about 68 
percent of the area lies within one standard deviation of the expectation 
and about 95 percent lies within two standard deviations. 

Since this section was about pleasant properties of the normal distribu­
tion, we should not end it without mentioning one of the most pleasant 
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of all. As we saw, if you start with a random variable X having a normal 
distribution, then the variable you get by performing a shift and change of 
scale on X will still have a normal distribution. This preservation of nor­
mality also appears if you add up two independent random variables X and 
Y, each of which has a normal distribution. The sum X + Y has a normal 
distribution with mean and variance the sum of the means and variances 
of X and Y. 

12.4 The Central Limit Theorem 

The earliest form of the Central Limit Theorem was proved by DeMoivre 
and Laplace and concerned Bernoulli trials with probability p of success. 
As usual, let Xi be the indicator functions for success and failure and 
Sn = Xl + ... + Xn be the total number of successes in the first n trials. 
First, let's calculate the expectation and variance of Sn. To do this, we can 
use the methods of Chapter 8 by first finding the expectation and variance 
of Xl' EXI = p, and 

Since the expectation of Sn is the sum of the expectations of the X's and 
the variance of Sn is the sum of the variances of the X's, we have shown: 

The total number of successes Sn in n Bernoulli trials with 
success probability p has expectation np and variance np( 1-p). 

The idea now is to standardize Sn by forming the random variable 

Qn = Sn -np 
y'np(l- p) 

(12.1) 

The random variables Qn each have mean 0 and variance 1 (whenever we 
have any random variable with finite mean and variance, if we subtract the 
mean of the variable and divide by the standard deviation we always get a 
standardized variable with mean 0 and variance 1). DeMoivre and Laplace 
proved that the distributions of the variables Qn converge to (that is, get 
closer and closer to) the standard normal distribution. We can write this 
in the following way: for any interval from a to b 

lim P(a<Qn<b)= 
n-too 

(12.2) 

area under the standard normal density over the interval from a to b. 

What is all this saying exactly in plain English? It says that if you take the 
indicator functions Xi for Bernoulli trials and add enough of them up, and 
then standardize the sum to have mean 0 and variance 1, then the random 
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variable you get will be almost standard normal. So the standard normal 
distribution appears somewhat mysteriously as a limiting form of a binomi­
ally distributed random variable that we standardized. This is an amazing 
and beautiful result. On a theoretical level it seems to open up something 
new and very exciting. How about sums of independent random variables 
not necessarily connected to a Bernoulli trial set-up-do these sums, when 
properly standardized, approximate a standard normal or perhaps some 
other distribution? It took about 150 years before an astounding answer to 
that question was fully proved in a wide generalization of the DeMoivre­
Laplace theorem. Here is how it goes: assume Sn = Xl + X 2 + ... + Xn 
is the sum of independent, identically distributed random variables with 
common expectation J.L and common variance 0'2. So the expectation of Sn 
is nJ.L, and the variance of Sn is nO'2 . This time, let us form the analog to 
formula 12.1 in the general case: instead of np we have nJ.L and instead of 
y'np(l - p we have O'yn, to get 

Q _ Sn-nJ.L 
n - O'yn . (12.3) 

The Central Limit Theorem asserts that the relation of formula 12.2 still 
is true. 

Why is this such a startling result? Because we can start out with inde­
pendent random variables X having any distribution whatsoever, as long 
as there is a finite mean and variance. The theorem says that if we add 
up enough of these and standardize, we are going to get an approximately 
standard normal variable. So in spite of the initial arbitrariness of the X's, 
order emerges after awhile, with the standard normal distribution playing 
a curiously special role as a limiting distribution. The DeMoivre-Laplace 
theorem relating to Bernoulli trials is a very special case of the general 
version of the Central Limit Theorem just given. 

It is worthwhile to look at what the Central Limit Theorem says about 
the sums Sn of the independent, identically distributed random variables 
Xi with finite mean and variance. Since Qn has a distribution close to a 
standard normal variable Z for large n, then, according to the discussion 
in the preceding section, we might expect the change of scale and shift 
operation 

Sn = O'vnQn + nJ.L 

to have an approximately normal distribution with mean nJ.L and variance 
nO'2 • But it will be hard to say anything meaningful about these non­
standardized sums because the variance is getting large without bound, 
and if J.L =I- 0 the means are moving to plus or minus infinity. If, however, 
the distributions of the X's are not always fixed but change as n increases 
in such a way that the variance of Sn converges to a finite value, then we 
may get something useful about the normality of Sn for large n. We will 
see this happen in the discussion of Brownian motion in Chapter 17. 



136 12. Normal Distributions and the Central Limit Theorem 

The Law of Large Numbers and the Central Limit Theorem are undoubt­
edly the two most important theoretical results of the theory of probabil­
ity. The Central Limit Theorem is called a weak limit theorem; that's the 
probabilist's way of saying that it is a statement about the convergence of 
distributions to a distribution. A strong limit theorem is about the con­
vergence of averages-for example, Sn/n- for particular sample paths or 
realizations in actual plays of a game of chance. In our discussion of the 
Law of Large Numbers, it was the Strong Law that was of interest to us 
in talking about gambling. But in trying to give a plausibility argument 
for the Strong Law, we just gave an argument for the Weak Law in the 
Appendix to Chapter 8. The weak version of the Law of Large Numbers 
can be expressed in the following way: the distributions of the variables 

X-nJ.L 
Wn=--~ 

n 
(12.4) 

converge to the distribution of the random variable which is identically 0 
(we say such a variable is degenerate at 0 because the variable only takes 
on one value with probability 1). Let's compare this to the Central Limit 
Theorem. This asserts the convergence of the distributions of 

X-nJ.L 
Qn = ..;n a n 

(12.5) 

to the standard normal distribution. Notice that the numerators (the top 
part) of the fractions in formulas 12.4 and 12.5 are identical. In formula 
12.5, we see that as n increases the numerator is increasing in such a way 
that the factor ..;n essentially standardizes the variables (the a can be 
ignored here) so that the normal distribution is. a limiting distribution. On 
the other hand, if we divide by n rather than ..;n as in formula 12.4, we are 
dividing by a factor so large that the quotient random variables look more 
and more like the random variable degenerate at O. It will follow from the 
Central Limit Theorem that dividing by the factor nr rather than..;n = n! 
in formula 12.5 gives variables looking more and more like the random 
variable degenerate at 0 whenever r > 1/2 and gives variables looking 
more and more like the random variable degenerate at either plus or minus 
infinity whenever r < 1/2 (in other words, the variables are getting large 
without bound in absolute value). Therefore, 1/2 turns out to be the right 
or critical exponent for n, so that when we divide we get variables looking 
more and more like a non-degenerate distribution, namely, the standard 
normal. 

12.5 How many heads did you get? 

To illustrate the practical application of the ideas in this chapter, consider 
the following problem. 
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The prisoner of Chapter 3 is bored, so he tosses a fair coin 1000 
times. What is the probability of at least 495, but at most 510, 
heads showing up? 

The binomial distribution tells us how to get the probability of getting 
exactly i successes in 1000 tosses of a fair coin (probability of success = 
.5), so the problem poses no theoretical difficulty; simply calculate this 
probability for each value of i between 495 and 510 and then add these 
probabilities up. It is the practical matter of calculation that causes the 
unpleasantness here, however. You must calculate nasty things with lots 
of factorials like C1000,i for i between 495 and 510. There are ways to 
approximate these factorials, but then you would not get the exact answer, 
only an approximation, and you would be doing a lot of work. If you are 
willing to settle for an approximate answer, here is a relatively easy way to 
get One using the Central Limit Theorem. 

Let Xi be the indicators, with values 1 or 0 depending On whether the 
ith toss yielded head (success) or tail, respectively, and use the DeMoivre­
Laplace version of the theorem. We have p = P(XI = 1) = P(XI = 0) = 
1 - p = .5, so from Section 12.4 we know that the random variable 

81000 = Xl + X2 + ... + X1000 

has expectation 1000 . (1/2) = 500 and variance 1000· (1/2) . (1/2) = 250. 
Therefore 

Q _ 81000 - 500 
1000 - v'25O 

should be approximately standard normal since 1000 is a reasonably large 
value. The problem requires that 495 ~ 81000 ~ 510, and this implies 

495 - 500 510 - 500 
v'25O ~ QlOoo ~ v'25O . 

Use a calculator to find that this relation is approximately the same as 
-.32 ~ Q1000 ~ .63, and then the Central Limit Theorem gives 

P( -.32 ~ Q1000 ~ .63) :::::J P( -.32 ~ Z ~ .63), 

where Z is the standard normal variable. At this point, we turn to a table 
of the standard normal distribution to find P( -.32 ~ Z ~ .63) :::::J .3612. 
Therefore, the probability that QlOoo lies between -.32 and .63, or equiv­
alently, that 81000 lies between 495 and 510, is approximately .3612. 

12.6 Why so many quantities may be 
approximately normal 

Many quantities of interest in the real world that we measure have approx­
imately normal distributions. Among these, we find the heights, weights, 



138 12. Normal Distributions and the Central Limit Theorem 

and blood pressures of a population of people; test scores; the length of life 
of certain electrical or mechanical components; etc. Why does the normal 
distribution turn up so frequently as an empirical fact of life? 

The Central Limit Theorem is sometimes used to give a theoretical ex­
planation for the frequency with which normal or approximately normal 
distributions describe natural phenomena. It is said that the height of an 
adult, for example, is due to a multitude of causes: genetic makeup, diet, en­
vironmental factors, etc. These factors often combine in an approximately 
additive way so that the result is, by the Central Limit Theorem, close 
to normally distributed. It is true that all these factors contributing to 
an individual's height do not in general have the same distribution nor 
are they always independent, so the version of the Central Limit Theorem 
discussed here may not apply. There are, however, generalizations of the 
Central Limit Theorem valid when there are departures from the identi­
cally distributed assumption, and even from the independence assumption. 
Such results could offer a reasonable explanation of why many phenomena 
are approximately normally distributed. 

There are a few other points we should mention in ending this chapter. 
First, whenever we have a limit theorem telling us that some sequence 
of numbers gets close to some number, it is always important to have an 
idea of how far out in the sequence you have to go before expecting the 
sequence to be close to the limiting number within some desired degree 
of accuracy. This problem was mentioned in Section 8.5 with reference to 
the Law of Large Numbers. Similarly, the approximation to the standard 
normal distribution by the distributions of the variables Qn given by the 
Central Limit Theorem would be of little practical value unless we had an 
estimate for the error between P(a < Qn < b) and P(a < Z < b) for given 
n. Such estimates exist; the size of the error for any given n depends upon 
the common distribution of the X's. As with the Law of Large Numbers we 
omit the technical details. In the preceding section, we tacitly assumed the 
number of tosses, 1000, was large enough to give us a reasonably accurate 
estimate. 

Second, if you know you have something, like the heights of Section 12.1, 
with a normal distribution, how do you go about finding out which one of 
the infinite possible normal distributions it is? The answer is that you will 
have to estimate the determining parameters p, and (1"2 from the data. This 
is a basic problem in statistical inference which we will be speaking about 
at length in Chapter 15, but to look ahead for a moment, suppose Xi is the 
height of the ith individual of the sample. Because the sample was random, 
the sequence Xl, X 2 ,··· is an independent sequence of random variables, 
and statistical criteria show the sample mean 

X= X l +X2 +···+Xn 

n 

is a good estimator of the unknown population expectation p, and the 
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sample variance 

is a good estimator of the unknown population variance a 2 • These estima­
tors become better as n increases. 

12.7 Exercises for Chapter 12 

1. A random variable X has the normal distribution with I-" = 67 and 
a = 2. Find P(130 < 2X < 136) in terms of the standard normal 
variable Z. 

2. A fair coin is tossed in repeated independent trials. Let Sn be the 
total number of heads after n trials. Standardize Sn and use this to 
solve the following problem: consider the ratio Sn/"fii = R,. and let 
x be any fixed number. Estimate P(R,. < x) in terms of a standard 
normal variable Z if the number of trials n is sufficiently large. 

3. Consider a gambler who wins or loses $1 with probabilities p and q, 
respectively. Assume the gambler is allowed to keep playing (and does 
so) even if he goes into debt. Let Sn be the gambler's accumulated 
winnings after n games. (a) Find the expectation and variance of 
Sn. (b) Standardize Sn and use the Central Limit Theorem to say 
something about this standardization. 

4. Use part (b) of exercise 3 to show that, given any fixed number 1- c 
as close to 1 as you please (c > 0 and as small as you want), there 
exists some constant K > 0 that depends on c such that for all n 
sufficiently large we have 

P(Sn < n(p - q) + "fii . K) > 1 - 10. 

5. Use exercise 4 to show that a gambler playing an unfavorable game 
who is allowed to amass debt will, as he continues playing, sink deeper 
and deeper into debt with overwhelming probability. (Hint: a number 
of the form an + b"fii where a < 0, b > 0 will, for large enough n, be 
less than any fixed negative number.) 

6. Let Z be a standard normal random variable. Describe the distribu­
tion of the random variable U = - Z. 



13 
Random Numbers: What They Are 
and How to Use Them 

The lot causeth disputes to cease, and it decideth between the 
mighty. 

Proverbs 18:18 

13.1 What are random numbers? 

In 1955, the Rand Corporation published a book listing a million random 
digits (see [27]). A typical page contains hundreds of the digits 0 through 
9 written for easy reference in little matrices (squares) having five digits 
along each row and each column. We are interested in two main questions: 
what are random numbers and why do we need them? 

The most basic way to define random numbers is that they are numbers 
generated by a random procedure involving repeated independent trials. 
When we speak about the random digits 0 through 9 it is assumed that a 
trial of the procedure yields each of the ten digits with probability .1. Here 
is how we might generate these random digits. Suppose we take ten cards of 
the same size and write the digits 0 through 9 on the cards so that each card 
has a different digit. Then take a large hat, say, toss in the cards, and mix 
well. Now choose a card at random from the hat, that is, reach in without 
looking and choose. Write down on a piece of paper the digit appearing 
on the card you have chosen. Put the card back into the hat and mix the 
cards again. Repeat the procedure by choosing a card at random, writing 
down the digit appearing on the card, replacing, mixing, choosing again, 
and so on. The string of digits you are writing down constitutes a string of 
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random digits because it has been produced by a random device supposed 
to yield each digit with probability .1 in independent trials (the procedure 
might not really give digits with equal probability because of poor mixing 
or other reasons-see, e.g., Section 13.6). You could have produced the 
random digits by an equivalent method by using, for instance, a modified 
roulette wheel in which the wheel has been divided into ten equal parts, 
each one corresponding to one of the ten digits. The book of random digits 
published by the Rand Corporation was produced by a more sophisticated 
version of this roulette wheel, one in which electronic pulses are used instead 
of spinning disks. 

Given random digits, how do we get more complicated random numbers? 
Suppose you had generated the sequence 3217900597 by reading ten digits 
from the table. Then each digit is random, and furthermore the two-digit 
numbers 32, 17, 90, 05, 97 obtained by taking the numbers two at a time are 
random numbers because they have been produced by a random procedure 
ensuring that the one hundred two-digit numbers 00 through 99 each have 
probability .01 of appearing and, moreover, the selections of these two­
digit numbers are independent. This follows from the way we selected the 
individual digits, namely, in a uniform, independent manner. Thus, taking 
the original ten-digit sequence and choosing the numbers two at a time 
going backward to get 79, 50, 09, 71, 23 also give random two-digit numbers, 
as does any other way you might think of to get two-digit numbers using 
the generated string, as long as the method does not use the same selection 
more than once. If you need five two-digit random numbers you can use 
any of the methods to generate them. None of these methods is any better 
than any other, so you may as well take the simplest one: 32, 17, 90, 05, 
97, reading from left to right. 

Note that if you need ten random two-digit numbers, which requires 
twenty digits all together, you should select 20 random digits from the table, 
not use, for example, 32, 17, 90, 05, 97, 79, 50, 09, 71, 23 by selecting digits 
read both forward and backward from the same initial ten-digit string. 
Randomness is lost when the same digits are used more than once in this 
way. This is evident above because the first five two-digit numbers give us 
information about the whole sequence, (for instance, that 6 does not occur), 
and so following selections are neither equally likely nor independent. 

For the same reason, we would not want to use the same lines or the 
same page of the random number table over and over again every time we 
need random numbers. If we do this, the unpredictability associated with 
randomness is lost. With the Rand table you have a million digits on many 
pages. You should use this abundance to strive for unpredictability, that 
is, randomness. One way you could select digits from the Rand book is by 
starting at the first page and reading line by line (or column by column) 
until you have enough digits, then marking where you stop. The next time 
you need digits, begin reading where you left off the first time, and so on. 
In this way, you will go through the book. Another method starts by using 
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a random number table to select for you a random page and a random line 
number where you will start reading the digits you will actually use for 
your purpose. The basic idea in all this is that you want to approximate 
independent, identically distributed selections as closely as possible, and 
this goal will be compromised if you use the same limited set of digits all 
the time. 

We have seen that a random number is just a number produced by a 
random procedure. Another way to say this is that a random number is the 
value of a random variable X having some distribution. In the most basic 
case of random digits, X = 0, 1, ... ,9 has the discrete uniform distribution 
putting probability .1 at each digit. A list of such random digits is generated 
by repeated observations Xl, X 2 ,"', of independent random variables all 
with the same distribution as X. From these lists, such as those in the Rand 
book, more complicated random numbers can be constructed by various 
mathematical techniques. An example of this appears above where X = 
00,01, ... ,99 with the uniform distribution. If you wanted X = 1,2" . ,,100 
with the uniform distribution, you could identify 100 with 00, 1 with 01, 2 
with 02, etc., up to 99 with 99. In this way, a selection of two-digit random 
numbers corresponds to a selection of numbers from 1 to 100. 

But now suppose we want to do something a little harder, like picking 
random numbers between 1 and 12. Using random digits we can accomplish 
this in the following way. First, form two-digit random numbers using a list 
of random digits while crossing out all pairs not equal to one of the values 
01,02, ",,12. As an example, consider a table of random numbers obtained 
from the Rand Corporation book: 

12 66 00 95 71 
81 85 26 06 20 
03 06 86 13 17 
29 62 35 85 30 
30 52 05 05 88 

If we cross out all pairs corresponding to numbers bigger than 12, the 
pairs 12, 00, 06, 03, 05 are left after elimination, and I claim that these 
represent five random numbers taken from the uniform distribution with 
12 outcomes. To see the truth of this assertion, observe that each pair has 
probability .01 of being selected from the sample space of the 100 two-digit 
numbers 00 through 99. Therefore, by conditional probability 

( / ) .01 1 
P 12 appears given only 01,02· .. ,12 can appear = .12 = 12' 

(by crossing out all two-digit pairs not specified by the conditioning event, 
the reduced, or conditional, probability space is obtained). In the same 
way, the conditional probability of each of the pairs 01 through 12 can be 
seen to be 1/12. Moreover, the randomness of the original digits implies 
the independence of the selected pairs. The table above has given us five 
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random numbers of the type we desire. If more than five are required, choose 
as many matrices of random digits as you need so that by repetition of the 
method you have as many random numbers of the desired form required. 
We can, in a similar fashion, generate random numbers from any finite 
uniform distribution using a table of random digits. 

Random digit tables can also give us values, to any degree of approx­
imation, of a random variable X having a continuous distribution. Let's 
look at this for a uniform distribution on the unit interval 0 to 1. Let X 
be a number chosen from the unit interval in accordance with the contin:... 
uous uniform probability distribution, and recall (from Chapter 12) that 
the digits of the decimal expansion of X are independent random variables 
with the finite uniform distribution, putting .1 at each of the ten possi­
ble values. Conversely, given that the digits of the decimal expansion of 
X are chosen independently according to the finite uniform distribution, 
it can be shown that X is a random variable with the continuous uniform 
distribution on the unit interval. This means that the number X chosen 
according to a uniform distribution can be approximated by taking a fi­
nite sequence of random digits and sticking a decimal point in front. For 
example, suppose we wanted to choose five numbers in the unit interval 
chosen uniformly and independently in the unit interval. If we are willing 
to settle for ten-digit approximations of each number, we can use the little 
table given above to construct the five numbers .1266009571, .8185260620, 
.0306861317, .2962358530, and .3052050588 by choosing each of the five 
rows of the table. If we are willing to stop after four digits, we can take (as 
one possible choice) .1266, .0095, .7181, .8526, and .0620 as approximations 
by taking digits along the top row until we run out, and then proceeding 
to the second row. 

The Rand Corporation book also gives 100,000 "normal deviates," which 
are just values of a random variable X with a standard normal distribu­
tion. These were constructed from the random digits by explicit mathemat­
ical transformations. For any continuous distribution, values of a random 
variable having this distribution can always be obtained to any degree 
of approximation by performing mathematical transformations on random 
digits. The random digit tables, then, really give us all we need in the 
way of randomness to generate values from any distribution. Once we have 
the digits, the desired values depend on deterministic, not random, math­
ematical computations. These are easy to describe in theory but may be 
unpleasant to carry out in practice. 
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13.2 When are digits random? Statistical 
randomness 

We have seen how to generate strings of digits that might reasonably be 
called random. Very often we are faced with the tricky converse question: 
given a string of digits, is it random? This is a question having no precise 
answer if we are simply given digits without any information about how 
they were generated, since the definition of random digits depends upon 
the procedure producing them. On the other hand, if we are given a string 
of digits, there should be some way to decide rationally whether the string 
conforms to our notion of what a random string ought to look like. What 
we need are statistical tests for randomness. 

Let's tie all this down with a few dramatic examples. Suppose I present 
you with 10,000 digits all of which are equal to O. Most likely, you would 
have grave doubts that they were generated by a random procedure where 
each digit has probability .1 of appearing. Your gut intuition finds the 
pattern of all digits 0 inconsistent with the notion of randomness because 
none of the digits other than 0 turn up in so many trials. Your guess as to 
the probability of randomness in this case (from a subjective probability 
standpoint) would likely be close to O. If the 10,000 digits consisted of the 
pattern 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 repeated in that order over and over until 
10,000 digits were obtained, you would still judge the resulting sequence 
most likely non-random even though each digit occurs the right proportion 
of times. The trouble here is predictability and pattern, suggesting non­
independence in the generating procedure. 

Most sequences are not as extreme as the two examples just given. For 
most sequences, your intuition is not going to be particularly helpful in 
determining randomness. An average person not familiar with what random 
sequences actually look like is usually quite surprised that they frequently 
yield so many adjacent repeated digits. But adjacent repeated digits are not 
unusual in a random sequence since the event "one of 00, 11"",99 appears" 
has probability .1. And if we are examining a very long string of digits 
we should not be surprised if occasionally we find three or four adjacent 
repetitions, because as we know from Chapter 5, rare events occur from 
time to time and have high probability of occurrence if there are enough 
trials. Naively intuitive notions of randomness might find such repetitions 
suspect. 

So we need impartial statistical tests to make decisions for us. In this case, 
it boils down to determining whether the observed sequence is so different 
from what we expect a random sequence to look like that we should reject it 
as random. With 10,000 digits, the expected number of occurrences of each 
digit under the assumption of randomness is (.1)(10,000)=1,000 times. The 
chi-square test is a statistical procedure that rejects a given sequence as 
random if its actual number of expected occurrences deviates significantly 
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from the expected number under the assumption of randomness. This test 
would certainly reject the sequence of 10,000 zeros as random, and could be 
applied to any sequence. The second example above of the repeated pattern 
of the digits 0 through 9 has the right number of expected occurrences but 
fails to have other properties expected from random sequences. Here we 
could use statistical tests for serial correlation, a measure of the relationship 
between the digits of the sequence. In a random sequence, we would not 
expect 1 always to be followed by 2, for example. We could also use tests for 
runs, a run of length n meaning in this case that a particular digit occurs 
exactly n times in succession. As we have observed, a random sequence 
should have runs of length 2 fairly often, and the second example could be 
rejected as random because it has no such runs. 

Statistical tests and statistical decisions are not, by their nature, exact 
enterprises, as we will see in Chapter 15. Many of them are based on the 
simple idea that, if what you observed has very small probability under a 
particular assumption, then you should reject that assumption. A statistical 
test can incorrectly lead to rejection of a hypothesis due to the observation 
of a rare event. There are thus a number of statistical tests that we might 
want a sequence to pass before we are willing to call it random. The usual 
procedure is to pick some of these which together check for all the basic 
properties we feel a truly random sequence should possess. We could use 
several different tests to check the same property, thereby getting added 
confidence in the randomness of the sequence. The sequence has to run the 
gauntlet of these tests and will be called random if it passes all or most of 
them. If the sequence fails one important test, it is rejected as random. 

Even if a sequence of digits has been generated by what we believe is 
an appropriate random procedure, the sequence should still be subjected 
to statistical tests for randomness. This is necessary because a procedure 
could have built in biases even though it may, on the surface, appear to give 
values according to an equally likely distribution. Often adjustments have 
to be made to the original procedure, or mathematical transformations 
have to be applied to the digits, to get them to pass the various statistical 
tests (this was the case with the digits in the Rand book). In other words, 
real-life random procedures like picking cards from a hat, rolling a pair of 
dice, or spinning a roulette wheel are clearly only approximations to the 
mathematical idea of randomness, and sometimes adjustments have to be 
made to get real life more in line with the abstract model. 

The preceding discussion suggests a more sophisticated notion of ran­
domness. A sequence of digits could be called statistically random if it 
passes a battery of statistical tests for randomness. This kind of random­
ness ignores how the digits are actually generated; it only requires sequences 
of them to pass the statistical tests. The concept of statistical randomness 
is of the greatest importance for computers. It allows computer-generated 
deterministic sequences to substitute for actual random sequences because 
the deterministic sequences are statistically random. Statistical random-
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ness is a much more useful idea than just plain randomness-it substitutes 
the extremely appealing and practical guide of statistical testing for the 
usually impossible task of determining how the digits were generated. It is 
operational in nature: if it acts random then it might as well be random. 
Let's now turn to this idea as realized on the computer. 

13.3 Pseudo-random numbers 

For a variety of tasks (some of which will be discussed in Section 13.5) 
it is very important to have access to a large table of random numbers 
when working on a computer. Clearly, it is desirable to have the computer 
itself generate these numbers in some manner. There are, however, certain 
problems associated with a truly random number generator built into the 
computer. One of the major ones is the following: if you are doing a job 
requiring a large bunch of random numbers and you want to reproduce 
your computations later, it will be necessary to store the random numbers. 
Finding the space for this is generally impossible, and even if it could 
be done it would use up huge amounts of memory. This major hurdle was 
cleared by a brilliant solution. Instead of generating actual random numbers 
using a random device, computers generate numbers that arise by iteration 
of certain special functions f. It works something like this: you take an 
initial "seed" value Zl and the function f, the (so-called) random number 
generator, and let 

thereby generating {Zi' 1 ~ i ~ n}, a deterministic (i.e., non-random) se­
quence, where n can be a large value. The function f is chosen so that 
the sequence {Zi} turns out to be statistically random, so it acts just like a 
random sequence does in the sense that it passes certain statistical tests for 
randomness. Different seed values produce different statistically random se­
quences. You don't have to store anything (except the seed value) because 
the computer recalculates the same sequence if given the same seed value. 

The numbers generated by f are called pseudo-random numbers. It is 
rather amazing that such functions f can be found. The sequence gener­
ated is as far from the original notion of random as possible-each term 
is completely determined given the preceding term. Yet the sequence is 
statistically random. The numbers generated by f are usually called ran­
dom numbers even though they are not really random. For most scientific 
purposes, they provide a useful substitute for the real thing. But there are 
also problems with existing random number generators and there is a lot of 
research on finding good, fast ones. Accepting a pseudo-random sequence 
as statistically random only means that the sequence has passed a cer­
tain number of tests we have decided are important. Some well-accepted 
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pseudo-random number generators have recently been observed to have 
subtle correlations and non-random patterns not detected by the statisti­
cal tests they passed (see [2] ). This has led mathematicians to consider 
whether there might not be other, perhaps truly random, ways to generate 
random numbers quickly and efficiently so that the problem of reproducing 
results without storage could somehow be overcome. As of this writing, 
there has been little progress on this question. 

13.4 Random sequences arising from decimal 
expansions 

We already know (Chapter 11) that a uniformly distributed random vari­
able X on the unit interval has a decimal expansion for which the digits 
are independent and, as we saw from the discussion of normal numbers, 
it is a consequence of the Law of Large Numbers that each digit appears 
with (limiting) frequency .1 for almost all values x of X. It is possible to 
conclude from this that the decimal expansion of almost all x in the unit 
interval produces a table of random numbers. In this case, we can say that 
the decimal expansion of x is random. 

This conclusion may be theoretically very pretty but is useless as a way 
to generate random digits. As with normal numbers, if you use the uniform 
distribution to choose a point at random, you will almost certainly pick a 
"good" x, that is, one for which the decimal expansion is random, but for 
a given x there is usually no way to know whether it is good or whether it 
is one of the exceptions (remember, there are loads of exceptions-all the 
repeating and finite decimals, for instance). To make matters worse (as if 
they could be made any worse), there is the problem of how to choose the 
value of x uniformly from the unit interval in the first place. The way we 
usually do that was described earlier, by first getting random digits and 
stringing them together to get approximations. So we have a useless circle: 
getting random digits requires choosing uniformly from the unit interval, 
and to do that you need to have random digits. 

At the moment, it is beyond mathematics to show that, for example, 'If 

has a random decimal expansion (or even that it is normal, as observed 
in Chapter 11-the normality of a number as we have defined it is a less 
stringent requirement than having a random decimal expansion). What we 
can do, however, is test a long, finite piece of the decimal expansion of 
'If for statistical randomness. With 'If, we have a number whose decimal 
expansion has been carried out to more terms than any other number, and 
as far as I am aware the sequence of the digits appears to be statistically 
random. So although we cannot (at present) prove the decimal expansion 
of 'If random, we can get a certain degree of confidence that this is so from 
the statistical analysis of a long, finite piece of this expansion. 
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13.5 The use of random numbers 

Now that we have random numbers, it is time to turn to the question of 
why we need them. One of the most important ways randomness has been 
used throughout history has been to choose people or objects in a way 
supposed to be free of bias or prejudice. The choice of a lottery ticket is 
made using a random device that determines the number of the winning 
ticket. From a pool of possible jurors, the selection of a jury is accomplished 
by picking names randomly from a physical device like a drum or by using 
a random selection obtained by computer (in this case, we are technically 
choosing a random name rather than number). Section 13.6 describes an 
interesting application of random techniques to choose soldiers in wartime. 
In statistical design and practice, randomness plays a critical role. One 
important way in which it is used is in the theory of random sampling 
of populations (in polling, for example). Here is a typical use of random 
numbers to select a random sample in the design of a scientific experiment. 

Suppose we consider a biologist who is planning an experiment to test 
the effects of a tranquilizer drug. She has 100 laboratory mice and wants to 
divide them into two groups, 50 for the drug and the remaining 50 to act 
as a control group which will be given a placebo (sugar pill). The purpose 
of the experiment is to measure the effects of the drug, and only the drug, 
on the mice (by measuring a certain physiological property such as heart 
rate, say); therefore, the experimenter must try to exclude any factors other 
than the drug having a possible influence on her measurements. The mice 
getting the treatment (that is, the drug) should be as similar as possible 
to the mice receiving the placebo. If that is the case, then any difference 
between the two groups can more reasonably be ascribed to the treatment 
than to an extraneous difference between the groups. It would be wrong, 
for example, to take the 50 youngest mice and give them the treatment and 
use the 50 oldest for the control group since age could be a factor affecting 
heart rate, and any difference we measure between the groups may have 
more to do with this difference in age than with the administration of the 
drug. So we come to the question: how should the biologist choose the 
treatment group to eliminate as much as possible the chance for bias? The 
answer is that she should randomly select the mice going into the treatment 
group; this method of choosing is the best way of assuring the homogeneity 
of the two groups. Random selection is very easy using a table of random 
digits. In this case, first label the mice 00, 01, ... , up to 99. Then take 
the table and choose two-digit numbers until you get 50 distinct numbers 
(throwaway any repeated numbers). The numbers you have chosen are 
the numbers corresponding to the mice the biologist should select for her 
treatment group--the mice not selected form the control group. Because 
the mice have been chosen at random, each mouse is just as likely to be in 
the treatment group as the control group, and any tendencies toward bias 
are minimized. 
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Someone may question whether such care to ensure a random selection 
is really necessary. He may argue that the biologist could pretty much get 
a random sample by just reaching into the cage and hauling out the first 
50 mice in her reach. A little thought should convince this skeptic that any 
such selection procedure could easily introduce bias-the mice easily caught 
may be the more placid mice, those with a calm manner and a low heart 
rate. So while superficially it may seem that you are choosing randomly, 
unless you use a truly random scheme to select subjects, other methods 
can have subtle and dangerous pitfalls leading to bias in the experiment. 

Another major area where random numbers are essential is in simulation. 
Suppose we want to toss a fair coin 1000 times and record the data. Instead 
of actually tossing the coin, we can let the computer simulate the experi­
ment as follows. The computer has a random number generator which we 
can use to have it choose the digits 0 and 1 with probability .5 (we will see 
an algorithm, that is, a recipe, for doing this in the next chapter). Each 
random choice of a digit by the computer can be thought of as the toss 
of a fair coin, where 0 stands for head, say, and 1 stands for tail. We can 
then program the computer to make the random choice 1000 times and do 
whatever we want to do with the data, for example, count the frequency of 
the number of O's appearing (corresponding to the number of heads). The 
data obtained should be statistically indistinguishable from actual data ob­
tained from tossing a fair coin because the pseudo-random numbers from 
the computer are statistically random. 

Using the computer's random number generator, programs can be writ­
ten to simulate any process as long as the distribution involved is known. 
To simulate repeated rolls of a pair of dice, set up the generator to choose 
the integers 1 to 6 uniformly, and then generate these by pairs to get a 
roll. Roulette is easily simulated by generating the numbers 1 to 38 uni­
formly, and letting, for example, 37 stand for 0 and 38 for 00. Simulation of 
tossing the needle in the Buffon needle problem of Chapter 11 is not much 
harder. The random number generator has to be set up to give a value X 
uniformly distributed between 0 and D /2, where D is the distance between 
the parallel lines. In addition, we need a value of 0 uniformly distributed 
between 0 and 7r radians. Whenever X < (L/2) sinO, where L is the length 
of the needle, the selection of the pair (X,O) represents a toss of the needle 
intersecting a line. Algorithms performing each of these simulations will be 
given in the next chapter. 

Simulation is now an important part of many disciplines. Rather than 
actually building complicated devices (weapons, engines, aircraft, etc.), the 
mathematical properties of these systems can be abstracted and the result­
ing system subjected to various situations on the computer screen to see 
what to expect in real life. Simulated wars can be fought (always preferable 
to the real thing), where probabilities of actions, estimated from real life, 
determine the outcome. Evolution of populations under various conditions 
on food supply, climate, etc., can be studied using computer simulation. In 
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FIGURE 13.1. Monte Carlo estimate of the area under a curve 

short, any process can in principle be studied by simulation if you get an 
appropriate mathematical model of the process and let it evolve in accor­
dance with the built-in probabilities (models of traffic flow, for example, 
might be related to the Poisson process). 

Closely related to simulation are the Monte Carlo techniques briefly men­
tioned before. Monte Carlo methods use simulation to perform calculations. 
They are frequently based on the Law of Large Numbers, so that the prob­
ability of an event is estimated by finding the relative frequency of the 
number of times the event occurs in a large number of repeated trials. 

For an example, recall that the graph of the equation y = x2 in the x-y 
plane is the type of curve called a parabola (see Fig. 13.1). The curve goes 
through the points (0,0) and (1,1). Consider the unit square of the plane, 
the square with vertices (0,0), (0,1), (1,0), (1,1). The graph of the parabola 
y = x 2 divides the unit square into two parts, the part above and the part 
below the parabola. The problem is to calculate the area of the region of 
the unit square below the parabola. This problem is easily done by ele­
mentary calculus, and the solution is beautifully simple: 1/3. Let's see how 
to estimate this answer using a Monte Carlo method. Choose two random 
numbers independently, X and Y, from the uniform distribution on the 
unit interval. It follows from this that the pair (X, Y) is a point of the unit 
square chosen from the uniform distribution on the unit square, that is, the 
probability that (X, Y) is in any region of the unit square is just the area 
of that region. Now let us keep generating these random pairs indepen­
dently and uniformly, to get the sequence (XI, Yd, (X2' Y2),'" (Xn' Yn), 
where each pair represents a point in the unit square, and the points have 
been chosen uniformly and independently in the square. Define the indica­
tor random variables Zi = 1 or a depending on whether (Xi, Yi) is below 
the parabola or not. The variables Zi are independent and identically dis-
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tributed, and the ratio 

n 
(13.1 ) 

is the relative frequency of the hits below the parabola in the n trials. The 
Law of Large Numbers assures us that this ratio converges to 

EZ1 = P((Xl' Y1 ) lies below the parabola) 
= area of the region of the unit square below the parabola. 

What this means is that the ratio of formula 13.1 for large n should be a 
good approximation to the area of the region below the parabola. How large 
n must be before we can expect the approximation to be within a desired 
degree of accuracy is the same problem mentioned briefly in Section 8.5, 
that of studying the rate at which the Law of Large Numbers gets close to 
its limit. 

From a pictorial point of view, we are saying that if you bombard the unit 
square with lots of independently generated points landing uniformly on 
its surface, the relative frequency (or proportion) of points landing below 
the parabola approximates the ratio of the area of the region below the 
parabola to the area of the entire region. Since the area of the entire region 
(the unit square) is 1 in this case, the relative frequency approximates the 
area of the region below the parabola. 

As a second example of the Monte Carlo method, let's get an estimate 
of the number 7r, the ratio of the circumference of a circle to its diameter. 
Consider the circle with radius 1 (the units can be anything) and center 
at the origin (see Fig. 13.2). The area of this circle is 7r. Notice that the 
upper right quadrant of the circle lies in the unit square. Let us focus on 
the unit square and the quadrant of the circle within it. The idea of the 
procedure is almost the same as in the preceding example: bombard the unit 
square with points uniformly and independently generated. The proportion 
of these points falling within the quadrant is an estimate of the probability 
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that a random point falls within the quadrant. This probability is the area 
of the quadrant, which is known to be 7r / 4. Therefore, an estimate of 7r 

is four times this proportion. You can also estimate 7r using the Buffon 
needle approach as we saw in Chapter 12. This was straightforward if you 
just toss needles, but in using the computer you have to be careful, since in 
the simulation procedure you are required to choose an angle () uniformly 
between 0 and 7r radians, and doing this requires already knowing 7r (see 
Chapter 14 for details). This is bad because you should not need to know 
the value of 7r in order to estimate it. You can get around this by using 
degrees rather than radians, but the Buffon approach to estimating 7r with 
the computer is less elementary than the first way. 

The Monte Carlo method is valuable in providing estimates for problems 
where direct calculations may be difficult or impossible to perform. If we 
wish to calculate the volume formed in space by a number of intersecting 
surfaces, say, it may be far simpler to use a Monte Carlo procedure similar 
to the one just described than to attempt other methods. As we mentioned 
before, there seems to be something strange in using methods depending 
on chance to estimate explicit quantities having nothing to do with chance. 
Yet this is perfectly legitimate as long as we realize the limitations of the 
method. Monte Carlo only gives us estimates, which will in general be 
different every time we perform a run of the procedure. But if the number 
of trials is always taken large enough, the results of different runs of the 
same procedure should be close. A final estimate could be based on an 
average of a number of runs, each with a large number of trials. 

A final important consideration is that Monte Carlo or simulation pro­
cedures are only as good as the random number generator you use with 
them. If the random number generator is poor, don't bet on the results. 

13.6 The 1970 draft lottery 

We end this chapter by briefly discussing the use of lotteries in the selection 
of men for military service, in particular, the 1970 draft lottery in the U.S. 
You can find further details in the article [9]. 

Lotteries have been used for selection purposes throughout history, where 
the randomness of the procedure is supposed to ensure fairness. In the U.S., 
lotteries took place during both world wars for the draft. This involved 
the random selection of capsules, each containing a number, from a large 
bowl in public view. The numbers in the capsules corresponded to numbers 
assigned to men eligible for the draft. The results of the lottery of 1940 were 
studied by statisticians who discovered serious departures from what one 
would expect from a truly random set-up. Apparently, the capsules had 
not been mixed well enough before the drawing. It turns out to be very 
difficult to mix a large number of physical objects sufficiently well so that 
the model of randomness can be applied. 
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In 1970, the lottery was based on birthdays, with each day of the year 
corresponding to a randomly chosen number from 1 to 366 (this included 
leap year). Those men with birthdays corresponding to low numbers would 
be called first. A description of the preparation for the drawing is very 
interesting in light of the results. First the 31 January dates were each 
written on slips of paper and inserted into capsules which were then pushed 
to one side of a large, square wooden box. Then the 29 February dates were 
placed in capsules and put into the empty part of the box and the January 
and February capsules were mixed. These were then pushed to one side of 
the box, and the March capsules were poured into the empty side and then 
mixed with the January and February capsules, and so on. This procedure 
clearly does not treat the capsules in a uniform way since the January 
capsules were mixed with the other capsules 11 times, but the December 
capsules were mixed with the other capsules only one time. At the drawing, 
the first capsule drawn was assigned the number 1, the second the number 
2, etc., until all the capsules had been chosen and assigned a lottery number 
in this way. It was noted at the time that the people picking the capsules 
were seen to choose from the top of the bowl most of the time. 

The results of the 1970 lottery were subject to careful statistical scrutiny 
because of the apparent biases of the 1940 lottery and perhaps partly due 
to the increasing development and recognition of the field of statistics. The 
verdict was not good. The 1970 lottery failed a number of statistical tests 
for data supposedly obtained by random selection. In a plot of the aver­
age selection number versus month, a linear trend was found indicating 
that as the year progressed from January to December, average selection 
numbers decreased. For a further test the lottery numbers from 1 to 366 
were divided into the three groups: 1-122, 123-244, 245-366. It was found 
that the months were not homogeneously distributed over these groups. In 
particular, it was observed that the first four months of the year appeared 
less frequently than the other eight months in the first of these groups, con­
firming results of the other test. Several more tests added further evidence 
for the argument that the drawing could not be considered truly random. 
In addition, the apparent skewness of the results seemed consistent with 
the way the capsules were prepared for the drawing. Since the capsules cor­
responding to months later in the year were mixed in with the others less 
and less, one might expect low numbers to predominate in later months if 
the top of the box tended to contain capsules from the later months. In 
fact, December contained 17 numbers from the first group 1-122, whereas 
January only had 9 numbers from this group. 

Because of these problems the lottery of 1971 was more carefully designed 
(statisticians were actually consulted to help out, which was apparently not 
the case for previous lotteries). There was a physical mixing ofthe birthday 
capsules and then a drawing took place, all in public. But then lottery num­
bers were not assigned to be simply the trial number at which a birthdate 
capsule was chosen, as in the previous lottery. Now another drawing was 
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made from another box containing the numbers 1 to 365 which had also 
been publicly mixed. As each birthdate capsule was chosen from one box, 
a number was chosen from the other box, and this set the lottery number 
for the birthdate capsule drawn. But here is the most important innovation 
from previous lotteries: For both drawings, statistically legitimate random 
permutations provided by the National Bureau of Standards were used. The 
random permutations governed the order in which the capsules containing 
the days of the year and the lottery numbers were put into the boxes be­
fore the physical mixing occurred. In effect, then, the random permutations 
started mixing everything up before the physical mixing took place. The 
physical mixing added more to this randomizing process and also served as 
a public display of what people think of as random. 

13.7 Exercises for Chapter 13 

1. Outpatients arriving for medication at a hospital are going to be part 
of a clinical trial testing a new drug against an old one. Upon arrival 
at the hospital, each patient is placed in either group 1 receiving the 
new medication or group 2 receiving the old one. This is to continue 
until a total of 40 patients have been assigned. Describe a way to 
assign the patients to a group. How would you modify the procedure 
if each group is to have 20 patients? 

2. Describe a procedure using a random number table for choosing dig­
its 0 or 1, each with probability 1/2. Give a similar procedure for 
choosing digits 0, 1, or 2, each with probability 1/3. 

3. Describe the difference between a pseudo-random and a random num­
ber. 

4. About how often would you expect to see a run of three identical 
digits in a random number table? 

5. A large number of points bombard a square of side 3 units in inde­
pendent trials, each point uniformly distributed on the surface of the 
square. Thirty-five percent of the points fall in a certain region R 
of the square, and the other sixty-five percent fall outside R. Give a 
Monte Carlo procedure and estimate for the area of the region R. 



14 
Computers and Probability 

You can hear them sigh and wish to die, 
You can see them wink the other eye, 
At the man who broke the bank at Monte Carlo. 

The Man Who Broke The Bank at Monte Carlo 
popular song, words and music by Fred Gilbert 

14.1 A little bit about computers 

As we have seen in the previous chapter, a modern computer with a good 
random number generator allows you to do simulations and Monte Carlo 
calculations, and in so doing enables you to see many of the fundamental 
laws of probability in action. Lots of the results in probability, such as the 
Law of Large Numbers, require a large number of trials before something 
nice happens. With the computer, we can simulate a large number of trials 
in a very short time, so we should be able to test out our results and even 
perhaps discover new ones by playing around with probability and the 
computer. In this chapter, we want to do a little of this, so some familiarity 
with a personal computer and a programming language will be assumed. 
We are going to write some elementary algorithms for simulation and Monte 
Carlo procedures illustrating examples discussed in preceding chapters. An 
algorithm is just a step-by-step description of the solution of a problem in a 
finite number of steps. We are going to write the algorithm in pseudocode, 
that is, ordinary English. To get these algorithms to produce output on 
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a computer, you will have to translate the pseudocode into a computer 
language you are familiar with. I used a language called QBASIC, a version 
of the well-known programming language BASIC. The execution time of the 
programs derived from the algorithms given below will depend on a variety 
of factors, for example, the number of trials requested and the power of 
your computer. 

All of the algorithms below depend on the computer's ability to generate 
pseudo-random numbers (recall the discussion about generating pseudo­
random numbers in Chapter 13). The instruction "set random seed" used 
in the algorithms means that the random seed determining the sequence of 
pseudo-random numbers to be used is chosen either by you, by computer 
default, or preferably by the computer in a quasi-random way. There is an 
instruction that does this last option, for instance, by letting the time of 
the day at the instant the instruction is processed set the seed. 

The sequence of random numbers produced is usually uniform on the 
unit interval in the sense that a finite decimal is generated. In QBASIC, 
such a decimal is produced by the command "Print RND." At execution, 
this gives a seven-digit decimal (e.g., .7055475), where each of the digits is 
random. 

Many of the algorithms given below need random digits from some finite 
set, but these can always be obtained from the random decimals given by 
the computer by using simple transformations. In QBASIC, another way to 
get a random digit 0 through 9 is to use the expression "INT(lO*RND)." 
This takes the random decimal RND on the unit interval, stretches it to 
a random decimal on the interval 0 to 9.99+, then selects the integer part 
of this decimal. Each digit appears with probability .1. A random digit 
o or 1, each occurring with probability .5, can be obtained in QBASIC 
by setting, for example, X = 0 if RND :::; .5 and X = 1 otherwise. To 
translate the following algorithms into proper programming code, you will 
have to be familiar with the instructions for choosing random numbers 
of the type desired in the programming language you are using. Please 
note that instructions below telling you to choose random digits, but not 
specifying any way to do this, intend the user to choose each of the possible 
digits that can arise with the same probability. For example, if we are told to 
choose one of the digits between 1 and 3, give each of them the probability 
1/3. 

It is also important to mention that in any Monte Carlo procedure you 
will want to know how big the number of repetitions should be to get a 
decent approximation to the quantity sought. As we have said before (see, 

. e.g., Section 8.5) there are methods to answer this, but we won't worry 
about this problem. We will simply take several different values for the 
number of repetitions and see what happens. 
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14.2 Frequency of zeros in a random sequence 

We're ready to write the first algorithm. The user chooses a number of 
trials, N. For the first trial, a random digit between 0 and 9 is generated. If 
the digit is 0, a counter is increased by 1. This procedure is repeated until 
N trials are obtained. The proportion of zeros is obtained by dividing the 
value of the counter by N. For large N, the Law of Large Numbers says 
this relative frequency should be close to .1. By changing the value of X in 
step 5, the algorithm can be modified to work for any of the other digits. 

1. Set random seed 

2. Enter number of trials N 

3. Initialize counter to 0 

4. Choose a random digit X between 0 and 9 

5. If X=O then increase the counter by 1 

6. Repeat steps 4 and 5 until N digits have been processed 

7. Print the proportion of zeros obtained; it is the value 
of the counter divided by N 

I ran this program for five values of N: 50, 100, 1,000, 5,000, and 10,000, 
obtaining relative frequencies of .04, .08, .099, .1062, and .1003, respec­
tively. Notice how the approximation to the limiting value of .1 is poor for 
relatively small values of N and improves for large values. A slight change 
in the algorithm prints out each number generated, giving us a random 
number table. 

14.3 Simulation of tossing a coin 

This algorithm simulates tossing a fair coin. It is very similar to the pre­
ceding recipe except that a random digit 0 or 1 is chosen. Besides giving 
the relative frequency of heads (identified with the digit 0) at each trial, 
"H" or "T" is printed depending on whether heads or tails was obtained 
on that trial. From the Law of Large Numbers, the proportion of heads 
should be close to .5 for large N. 

1. Set random seed 

2. Enter number of trials N 

3. Initialize counter to 0 
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4. Choose a random digit X equal to 0 or 1 

5. If X=O then print "H" and increase the counter by 1 

6. If X=l then print "T" 

7. Repeat steps 4, 5, and 6 until N digits have been 
processed 

8. Print the proportion of "heads"; it is the value 
of the counter divided by N 

For 1,000 tosses I got a relative frequency of .517; for 5,000 tosses, .5144; 
and for 10,000 tosses, .5014 (you might want to suppress the printing of 
the actual tosses for a large number of trials). 

14.4 Simulation of rolling a pair of dice 

To simulate rolling a pair of dice, we generate a pair of random digits 
between 1 and 6. Here we set two counters to store the total number of 
times 7 and 11 appear; these are used to calculate the relative frequencies 
of 7 and 11. 

1. Set random seed 

2. Enter number of trials N 

3. Initialize counter7 and counterll to 0 

4. Choose two random digits X and Y, each between 1 and 6 

5. If X+Y=7 then increase counter7 by 1 

6. If X+Y=ll then increase counterll by 1 

7. Repeat steps 4, 5, and 6 until N pairs of digits have 
been processed 

8. Print the proportion of 7's and 11's; they are obtained 
by dividing counter7 and counterll by N 

From the Law of Large Numbers, the relative frequency of 7 should be close 
to .1666· .. and that of 11 should be close to .0555· . '. For three runs using 
1,000, 5,000, and 10,000 rolls, I got relative frequencies of .149, .164, and 
.1621 for 7; and .065, .053, and .0547 for 11. Notice that for 10,000 rolls the 
proportion for 7 is not as close to the theoretical value of .1666· .. as the 
proportion for 5,000 rolls. Isn't this odd since the Law of Large Numbers 
tells us that with an increasing number of trials the approximation to the 
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theoretical value should be getting better? No, it isn't odd, because the 
theory only tells us that most sample runs will average out in the right 
way in the long run; nothing is said about comparing two different sample 
runs or, even if we know a sample run averages out right, how many trials 
it takes to get close to its limit. 

14.5 Simulation of the Buffon needle tosses 

Let us take a needle of unit length L = 1 and with distance between 
lines D = 2. According to the analysis in the preceding chapter and the 
discussion in Chapter 11, the distance X is chosen uniformly on the unit 
interval and () is chosen uniformly on the interval from 0 to 7r. The needle 
hits a line if the inequality of step 6 is valid. The relative frequency of 
number of times the needle hits a line should be close to 1/7r ~ .3183. 

1. Set random seed 

2. Enter number of trials N 

3. Initialize counter to 0 

4. Choose a random number X uniformly on the unit interval 

5. Choose a random angle () uniformly on the interval 0 to 7r 

6. If X < ~ sin () then increase counter by 1 

7. Repeat steps 4, 5, and 6 until N pairs (X,()) have been 
processed 

8. Print the proportion of times the needle hits the line; 
this is the value of counter divided by N 

I ran this for 500, 1,000, and 10,000 tosses, and I got .302, .334, and .3176, 
respectively, for the estimates. 

14.6 Monte Carlo estimate of 1r using 
bombardment of a circle 

This was explained in Chapter 13. Random numbers chosen uniformly from 
the unit interval are chosen in pairs to get points in the unit square. If the 
inequality of step 5 is valid, the point (X, Y) falls into the upper quadrant 
of the circle with radius 1 and center at the origin. The relative frequency 
of points in the circle is an estimate of 7r 14; this is used to print out an 
estimate of 7r in step 7. 
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1. Set random seed 

2. Enter number of trials N 

3. Initialize counter to 0 

4. Choose two random numbers X and Y, each uniform on the 
unit interval 

5. If X2+Y2 < 1 then increase the counter by 1 

6. Repeat the steps in 4 and 5 until N pairs of random 
numbers have been processed 

7. Print the estimate of ~; this is four times the counter 
divided by N 

This was run for 1,000, 5,000, and 10,000 trials, yielding estimates 3.16, 
3.1648, and 3.12, respectively. 

14.7 Monte Carlo estimate for the broken stick 
problem 

In Section 11.6, we found the probability that a stick broken at random 
at two points produces three pieces forming a triangle. The following algo­
rithm gives a Monte Carlo estimate of this probability. For each of the N 
trials, the stick is broken at two random points, u and v. In the solution of 
the problem, you recall, there were three inequalities required to hold if a 
triangle is possible. These form the condition of step 6, and the counter is 
incremented each time all three inequalities are true. 

1. Set random seed 

2. Enter number of trials N 

3. Initialize counter to 0 

4. Choose random numbers u and v, each uniform on the unit 
interval 

5. Set the larger of u and v equal to Y, the smaller equal 
to X 

6. If X < .5 and Y > .5 and Y-X < .5 then increase the 
counter by 1 

7. Repeat steps 4, 5, and 6 until N random pairs (u,v) have 
been processed 



14.8 Monte Carlo estimate of a binomial probability 163 

8. Print the proportion of times the triangle can be formed; 
this is the value of the counter divided by N 

There were four runs using 500, 1,000, 10,000, and 20,000 trials. The cor­
responding estimates of the true probability .25 were .224, .259, .2475, and 
.2473, respectively. 

14.8 Monte Carlo estimate of a binomial 
probability 

Toss a fair coin 10 times. The probability of obtaining exactly three heads is 
calculated from the binomial distribution (Section 7.2) to be ClO,3 2-10 ~ 
.1172. We estimate this probability by tossing the coin 10 times in N repe­
titions and counting the relative frequency of times exactly three heads are 
obtained. Random digits 0 and 1 are generated, where 1 represents getting 
a head. If the sum of the 10 tosses is 3 for a repetition, then the counter is 
incremented by 1. 

1. Set random seed 

2. Enter number of repetitions N 

3. Initialize counter to 0 

4. Initialize sum to 0 

5. Choose a random digit X equal to 0 or 1 

6. Add the value of X to sum and store the result in sum 

7. Repeat steps 5 and 6 until ten random digits have been 
processed 

8. If sum=3 then increase the counter by 1 

9. Repeat steps 4 through 8 until N repetitions have been 
processed 

10. Print the estimate of the probability of exactly three 
heads in ten tosses of a fair coin; this is the value of 
the counter divided by N 

The estimates were .123, .1142, and .1199 from 1,000, 10,000, and 15,000 
trials, respectively. 

Other binomial probability estimates can be obtained with slight varia­
tions of this algorithm. If, for example, the success probability is .1 for a 
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Bernoulli trial set-up, the above algorithm can be easily modified to esti­
mate the probability of obtaining exactly three successes in ten trials. Let 
success be equivalent to selecting the digit 1 with probability .1. Then step 
5 above should be replaced by: 

5. Choose X equal to 0 or 1 with probabilities .9 and .1 

This can be done by selecting a random digit U equal to 0 through 9, and 
then letting X = 1 when U = 1, say, and X = 0 whenever U is equal to 
any digit other than 1. The binomial distribution gives an exact value of 
the probability to be C lO ,3 (.1)3 (.9)1 ~ .0574···. The estimates from runs 
of 1,000, 10,000, and 15,000 trials were .043, .0654, and .056, respectively. 

14.9 Monte Carlo estimate of the probability of 
winning at craps 

In this program, we simulate N craps games, where N is selected by the 
user. A tally is kept of the number of games won. The probability of winning 
at craps is then estimated by calculating the relative frequency of games 
won. At the start of a game, X + Y gives the initial roll of the dice. If the 
game is won, the counter is increased and a new game starts, if lost a new 
game starts, and if a point is made we repeatedly roll the dice to get score 
U + V until we either get 7 (lose) or the point (win). If the point is won, 
the counter is increased by 1. After the point is lost or won, we start a new 
game. 

1. Set random seed 

2. Enter number N of games to be played 

3. Initialize counter to 0 

4. Choose random digits X and Y, each between 1 and 6 

5. If X+Y=7 or 11, then increase counter by 1 and go to 
step 12 

6. If X+Y=2, 3, or 12 then go to step 12 

7. If X+Y=4, 10, 5, 9, 6, or 8, then set point=X+Y 

8. Choose random digits U and V, each between 1 and 6 

9. If U+V=7 then go to step 12 

10. If U+V=point then increase counter by 1 and go to 
step 12 
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11. If U+V # both 7 and point then go back to step 8 

12. Go back to step 4 (new game) and repeat until N games 
have been played 

13. Print the proportion of games won; this is the value of 
the counter divided by N 

For four runs of 1,000, 5,000, 10,000, and 20,000 games, I got estimates of 
.476, .4806, .4916, and .4867, respectively. As we recall from Chapter 6, the 
exact probability of winning at craps is about .4929. 

14.10 Monte Carlo estimate of the gambler's ruin 
probability 

Now we'll make a Monte Carlo estimate of the gambler's ruin probability 
derived in Chapter 10. Let N be the number of repetitions of the game. The 
gambler's initial capital, i, and total capital a are entered, as well as the 
probability q of the gambler losing $1 (moving one unit to the left). We can 
represent this by selecting one of the numbers -1 and 1 with probabilities 
q and p, respectively. If, say, q = 6/11, we can let X be a random digit 
between 1 through 11 and then set win = -1 when X = 1 through 6 
and win = 1 otherwise. A counter is initialized to 0 at the outset. Each 
repetition starts by initializing a sum counter to i, and adding on the value 
of win at each play of the game until sum = 0 (gambler's ruin) or sum = a 
(adversary's ruin). If the gambler is ruined, then the counter is increased 
by 1. We repeat for N repetitions. 

1. Set random seed 

2. Enter number of repetitions N 

3. Initialize counter to 0 

4. Store the gambler's initial capital i and the total 
capital a 

5. Initialize sum to i 

6. Choose a digit win equal to -lor 1 with probabilities 
q and p, respectively 

7. Add win to sum and store this value in the variable sum 

8. If sum=O then increase counter by 1 and go to step 11 

9. If sum=a then go to step 11 
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10. If sum # both 0 and a, repeat from step 6 

11. Go back to step 5 (new game) and repeat until N 
repetitions have been processed 

12. Print the estimate of the gambler's ruin probability; 
this is the value of the counter divided by N 

A run of 5,000 repetitions for i = 2, a = 5, and q = .5 gave an estimate of 
.598 for the true value of .6, and another run of 5,000 for i = 3, a = 5, and 
q = .8 yielded the estimate .9424 for the true value of .9384. 

14.11 Constructing approximately normal 
random variables 

This exercise shows how we can construct random variables having an 
approximately standard normal distribution by using the Central Limit 
Theorem discussed in Section 12.3. We are going to add up 900 independent 
indicator variables X, each having the values 1 and 0 with probability.5 (so 
you can think of the ith variable as the indicator of head on the ith toss of 
a fair coin). It turns out that the approximation to the normal distribution 
when you have binomial variables may not be very good if you don't have 
a lot of terms to add up; that's why we are taking so many variables in 
this exercise. Now we standardize the sum by subtracting the expectation 
of the sum and dividing by its standard deviation to get a variable Y. 
According to the Central Limit Theorem, Y should have an approximate 
standard normal distribution since the number of summands is large. To 
check this very roughly, we make a Monte Carlo estimate of the probability 
of Y falling in the interval from -1 to 1. If indeed the distribution of Y 
is close to the standard normal, this probability should be close to the 
probability .68 that a standard normal variable Z lies in the same interval. 
The estimate is made by calculating Y N times and increasing a counter 
each time that Y lies in the interval. 

1. Set random seed 

2. Enter number of repetitions N 

3. Initialize counter to 0 

4. Initialize sum to 0 

5. Choose a random digit X equal to 0 or 1 

6. Add X to sum and store this value in sum 
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7. Repeat steps 5 and 6 until 900 digits X have been 
processed 

8. Let Y=(sum-450)/15 

9. If Y > -1 and Y < 1 then increase the counter by 1 

10. Go back to step 4 and repeat until N repetitions have 
been processed 

11. Print the estimate of the probability of Y falling in 
the interval from -1 to 1; this is the value of the 
counter divided by N 

For three runs of 100, 300, and 1,000 trials, the estimates were .62, .6633, 
and .678, respectively. 

You can try doing this exercise where you substitute 50 or 100 for 900 
in step 7. How good is the estimate now? 

In this chapter, I have tried to give you a taste of simulation and Monte 
Carlo procedures. I've also attempted to get across how much fun it is to 
combine the computer with probability ideas. I encourage you to think of 
other investigations into simulation and Monte Carlo estimation to develop 
on your own. A few ideas along these lines are given in the exercises below. 

14.12 Exercises for Chapter 14 

1. (a) Write a simulation for the game of chuck-a-luck (Section 7.3). (b) 
Refine the simulation in (a) to make a Monte Carlo estimate of the 
probability of winning $2 at chuck-a-luck. 

2. Write a simulation for the car-goat game of Chapter 1, and then use 
it to estimate the probability of winning if you switch doors. 

3. Modify the algorithm in section 14.11 to see whether each of the 
events Y > .5 and -.3 < Y < .3 are reasonably close to the values 

P(Z> .5) ::::; .3085 and P( -.3 < Z < .3) ::::; .2358 

for Z a standard normal variable. 

4. Write a simulation of the game of roulette, and then estimate the 
probability of winning by playing black. 

5. Make a Monte Carlo estimate of the area between the curves y = x 2 

and y = x 3 within the unit square (this is the square with lower 
left-hand corner the origin and with length of side 1 unit). 
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6. Rosenkrantz and Guildenstern play the following game: There are 100 
coins numbered from 1 to 100. Coin number k has probability 11k 
of falling heads. A coin is chosen at random and tossed. If the coin 
has an even number, then R. pays G. $1 if heads comes up, otherwise 
G. pays R. $1. If the coin has an odd number, then G. pays R. $1 if 
heads comes up, otherwise R. pays G. $1. Write a simulation of this 
game and use it to estimate the probability of G. winning $1 on a 
single play of the game. 



15 
Statistics: Applying Probability to 
Make Decisions 

Thou shalt not sit; 
With statisticians nor commit; 
A social science. 

W.H. Auden, Under Which Lyre 

15.1 What statistics does 

Whereas probability can be loosely described as the mathematical theory 
of measuring uncertainty, the discipline of statistics can be roughly char­
acterized as the mathematical theory of making decisions in the face of 
uncertainty. In previous chapters, we have already seen some instances of 
statistical problems (for example, deciding whether a finite sequence of 
numbers is random). The main theoretical tool of the statistician is prob­
ability: in order to make rational decisions, it is necessary to measure the 
uncertainty for different possible outcomes. The statistician is primarily 
interested in learning about an entire population of things by studying a 
small sample of those things and then making inferences about the entire 
population from the evidence gathered from the sample. What the statis­
tician does is called inductive inference, reasoning from the particular to 
the general case. As you can see, such an activity is fraught with danger. 

When the statistician makes a decision, she knows the decision may be a 
wrong one; being in the uncertainty business means that the possibility of 
error must play an important role in her procedures and methods. The job 
of the statistician is to devise an optimal way to make these decisions from 
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a rational point of view, using the scientific method. For this reason, the 
statistician is focused on observation. We start off with simple examples 
showing how careful you have to be when trying to interpret raw data, and 
how the inappropriate presentation of numbers can be used, consciously or 
not, to deceive or arrive at dubious conclusions. 

15.2 Lying with statistics? 

A famous quip says there are lies, damn lies, and then there are statistics. 
The implication is that you can support any assertion if you present data 
selectively. There are valid and invalid ways to consider data, and invalid 
ways are often used, consciously or not, to try and support dubious claims. 
To take a few crude examples, suppose it is claimed that 8 out of 10 people 
prefer product A to product B. This may sound impressive until you dis­
cover that 100 people were polled with 8 of them preferring product A, 92 
of them product B. The hucksters merely ignored 90 percent of the data 
that was not to their liking. In another instance, it is claimed that five 
times as many men as women regularly watch a certain television program. 
A look at the data shows that 100 men and 10 women who watch tele­
vision at that hour were polled, with 20 men and 4 women watching the 
program. The interpreters of the data used the raw scores, 20 and 4, as the 
basis of their statement. These raw scores are, however, meaningless; what 
is needed is an estimate of the proportion of men and women who watch 
the program. The proportions of men and women favoring the program are 
20 and 40 percent, respectively. From this perspective, it could be argued 
that twice as many women as men prefer the program. But this conclusion 
is also dubious since so few women were polled. 

More subtle dangers lurking in data often show up in so-called confound­
ing factors'. A well-known study of sex bias in admission to a graduate 
school showed that 44 percent of male applicants were admitted compared 
to only 35 percent of female applicants. This seemed to show bias against 
women. However, admission to the school was made on a department-by­
department basis, and looking at the departments separately there did 
not appear to be any bias. It turned out that many women had applied 
to the harder departments to get into and many men had applied to the 
easier ones. The different preferences of department by men and women 
had suggested a spurious conclusion about sex bias in the overall statisti­
cal summary. This association vanished once researchers controlled for the 
variable of differing departments. 

Descriptive statistics is the art of presenting the data in a clear, infor­
mative way, in charts or tables, graphs, etc., with an eye toward making 
the important points stand out. As we have seen, poor or invalid data 
presentation can be misleading and is often used when there is a strong 
desire to persuade, as in advertising or political agendas. Let's now go to 
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problems where the crude presentation of the data is not the issue; it's 
the more subtle mathematical analysis used in formulating statistical in­
ferences. We'll start making these ideas concrete with a basic problem in 
testing hypotheses. 

15.3 Deciding between two probabilities 

One of the main questions of statistics involves judging whether a proposed 
mathematical model for phenomena is so out of line with direct observa­
tions of the phenomena that it should be rejected in favor of a competing 
model. Suppose, for example, your friend is a famous gambler. He has in 
his possession an unfair coin which has been constructed so that the prob­
ability of falling heads at each independent toss is 3/4 rather than 1/2. 
He presents you with a coin and challenges you to tell whether the coin 
is fair or is the unfair one. You know exactly one of those two situations 
is true, and must decide in favor of one of them on the basis of knowing 
how many heads occurred in 100 (independent) tosses of the coin. Let us 
describe the two possible situations as two hypotheses, Ho for p = 1/2, and 
HI for p = 3/4. Now suppose the coin is tossed and you observe 80 heads 
in the 100 tosses. How should you decide? 

Even someone with no knowledge about calculating with probabilities 
could give a rational argument for deciding in favor of HI in this case. The 
argument could go something like this: under Ho we expect roughly half 
the tosses, around 50, to be heads. But under HI we expect many more 
heads, around 3 out of 4 tosses on average, giving 75 heads. The observed 
value 80 is so far from the expected value of 50 under Ho that we reject 
this hypothesis as too unlikely under the circumstances. What we observed 
was more compatible with HI since 80 is closer to 75 than to 50. 

Similar gut-level thinking which seems intuitively correct is also possible 
if you had observed 42 heads, say. In this case, it appears reasonable to 
decide in favor of Ho because 42 is so much more in the neighborhood of 
the expected value 50 under Ho than in the neighborhood of 75 under the 
competing hypothesis HI. But a full solution of the problem requires us 
to make a decision for all possible observations of numbers of heads in 100 
tosses. A decision algorithm telling us what to do in all possible cases is 
called a test of the hypothesis Ho against the alternative HI' What should 
we do, for instance, if we had observed 63 heads? Here intuition fails and 
we need some hard-nosed general principles to put to work. 

In order to state such principles, we must fully understand what is ex­
pected of us according to the formulation of the problem. Suppose we ob­
serve 0 heads occurring in 100 tosses. This observation might well make us 
seriously doubt the truth of both proposed hypotheses Ho and HI, since 
o heads would be exceedingly unlikely under either of these models. But 
if the ground rules of the problem tell us, as they do here, that we must 
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choose precisely one of the competing alternatives, the more rational choice 
for 0 observed heads is clearly H o, for 0 is closer to an expected value of 
50 than to an expected value of 75. Therefore, if we must choose one of 
the competing alternatives, a reasonable approach to the general solution 
can be formulated as follows: there is a critical value c,O :S c :S 100, such 
that if we observe h heads we should accept Ho whenever h :S c and reject 
Ho whenever h > c. (Rejecting Ho is the same as accepting HI-by tradi­
tion statisticians usually speak in terms of accepting or rejecting H o, called 
the null hypothesis). What we have done here is develop the general idea 
that if we have to make a choice between a relatively small probability of 
heads and a larger one, we should decide in favor of the smaller one when 
we observe a relatively small number of heads and in favor of the larger 
one when we observe a relatively large number. The distinction between 
relatively small and relatively large will be made by determining a cut-off 
point c. 

The natural question to ask at this point is: how do we determine c? The 
answer is that there is no way to determine c uniquely without introducing 
further criteria, some kind of statistical principles to guide us. One such 
principle for determining c is the method of maximum likelihood. It asserts 
that you should choose the alternative that maximizes the probability of the 
event actually observed. That is to say, if you observed h heads, compute 
the probability of obtaining h heads under each of the hypotheses Ho and 
HI and choose the hypothesis giving you the larger probability. Let's see 
what this gives us in the general case in which we observe h heads in the 
100 trials. The probabilities of observing h heads under Ho and under HI 
are, respectively, 

The principle of maximum likelihood has us reject Ho whenever the first 
probability is smaller than the second. This is equivalent to rejecting Ho 
when 

(.5)h(.5)IOO-h < (.75)h(.25)IOO-h. 

By taking logarithms, you get the equivalent inequality 

100(log(.5) -log(.25)) h 
log(.75) -log(.25) < . 

Use a caculator to evaluate the left-hand side; you get approximately 63.l. 
What we have shown is that whenever the number of observed heads h is 
less than or equal to c = 63 we should accept Ho; whenever h exceeds 63, 
we should reject H o. 

But now suppose we had wanted to test Ho : p = 1/2 against the alter­
native HI : p = 1/4 rather than p = 3/4. In this case, intuition suggests 
that a rational test is given by rejecting Ho when we observe too few heads 
in 100 tosses, where a cut-off point can once again be determined according 
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to the maximum likelihood method. In the original problem, the rejection 
region (for Ho) is a "right tail" one; now it will turn out to be a "left tail" 
one ( a "tail" is an interval of values either greater than some constant or 
less than it). To see this, we must compare 

Rejection of Ho occurs this time when 

and this leads to the relation 

lOO(log(.5) -log(.75)) h 
log(.25) -log(.75) > . 

Notice that the direction of the inequality has been reversed; that's because 
the denominator (the bottom expression in the fraction on the left side) is 
negative, and we had to divide by this to get h alone on the right. This 
relation is solved to get h < 36.9, approximately, so that Ho should be 
rejected whenever there are 36 or fewer heads and accepted otherwise. 

15.4 More complicated decisions 

The essential statistical idea of the method of maximum likelihood is this: 
if the observation we saw is more likely to arise under hypothesis A than 
under an alternative hypothesis B, then decide in favor of hypothesis A. 
We may, of course, be making an error: hypothesis B may in fact be true. 
The decision is based on the empirical fact that nature shows us the more 
probable more frequently than the less probable, so we judge what we 
observed to be typical. We can carry the rationale underlying the method 
of maximum likelihood further. The method itself depends only on knowing 
which of the alternative hypotheses gives a larger probability for what we 
observed. We want to refine this now by using the actual values of these 
probabilities to measure our confidence in the decision. For example, there 
is more confidence in the decision to accept hypothesis A the larger the 
probability of the observation is under A and the smaller it is under B. 
In this section, we want to consider applying these ideas to some more 
complicated problems of testing hypotheses. 

Your friend, the gambler, offers you a proposition. He will provide a coin 
which will be tossed in independent trials. Every time the coin comes down 
heads you pay him a dollar; every time it comes down tails he pays you a 
dollar. Before you agree to play, you ask to test the coin for fairness. Your 
friend reluctantly agrees; he can't understand why you don't trust him-he 
claims that his history of always winning such games with others is just 
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chance. You ask him whether he will use the same coin but let you win if 
the coin falls heads and lose if it falls tails. He refuses, maintaining that 
the coin is fair, but because he has always been lucky playing for heads, he 
won't allow you to play for it. But he will allow you to toss the coin 100 
times to check it out. Suppose you do this and get 60 heads. Should you 
play? 

Let p be the probability of the coin falling heads on each toss. To decide 
whether the coin is fair (and therefore whether to play) you can set up the 
null hypothesis Ho : p = 1/2 versus the alternative HI : p > 1/2. If Ho is 
true, the coin is fair and you will play, but if HI is true the coin is biased in 
favor of heads and your friend's fortunes. To test Ho against HI, the same 
intuitive principle as in Section 15.3 qualitatively describes what should 
be done: reject Ho if you observe more than a certain critical number c 
of heads, because the more heads obtained the more likely it is that p is 
larger than 1/2. But you cannot use the method of maximum likelihood as 
in Section 15.1 to determine c because the alternative HI does not uniquely 
specify a distribution to compete with the one specified by Ho. 

Instead, try the following attack. Let h = number of heads observed in the 
100 trials, and calculate P(h ~ 60) under the null hypothesis. This is called 
the p-value of the null hypothesis (the pin p-value has nothing to do with 
the probability p of the coin falling head). The p-value is the probability of 
observing a value at least as large as the value actually observed if the null 
hypothesis is true. One way to think about the p-value is to regard it as a 
measure of how surprised we are at our observation assuming the truth of 
the null hypothesis. If the p-value is very small, we should be very surprised 
at getting such an observation under the null hypothesis and take this as 
evidence supporting the alternative HI since the observed value would be 
unlikely under Ho. On the other hand, if the p-value is large, then we are 
not very surprised at our observation; since there is large probability of 
observing values even larger than the one we saw, our observation does not 
provide evidence for the rejection of the null hypothesis. How small should 
the p-value be before we reject Ho? That is discretionary and depends 
on how strong you want the evidence to be before you decide to reject. 
Traditionally, statisticians have required that p-values be smaller than or 
equal to .05 before they reject Ho. A p-value of .05 means that you will 
observe a measurement at least as large as the one actually recorded only 
5 times out of 100 if Ho is true. The smaller the p-value, the stronger 
the evidence supporting rejection of the null hypothesis, so that a p-value 
of .001 is extremely convincing since, if the null hypothesis were true, we 
would see readings at least as large as the one actually observed only 1 
in 1000 times. In our problem, for example, if you really trust your friend 
you may want rather strong evidence that the coin is biased in his favor 
before you reject the assumption of fairness (the null hypothesis), so you 
may decide to reject only if the p-value is at most .01 or .001. On the 
other hand, if you are very fearful of losing money in a biased game, you 
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might require very little evidence of bias before deciding to reject the null 
hypothesis, so you would take the p-value to be .05 (or even greater). 

How do we actually find the p-value in this problem? We would need to 
calculate 

P(h ;::: 60) = P(h = 60) + P(h = 61) + ... + P(h = 100) 

using the binomial distribution probabilities. The computation is cumber­
some because the binomial coefficients ClOO,3: must be calculated and added 
up for X= 60, 61, etc. There are tables of the binomial distribution which 
could help you out here. You can also find estimates of the binomial terms. 
Another way is to get an approximation by using the Central Limit The­
orem. Let Xi be the indicator functions with values 1 or 0 depending on 
whether the ith toss gives head or tail. If Ho is assumed true, 

Z = _X_1_+_X_2 _+_·_·_· _+_X---,1O-,-0_-_5_0 
5 

(15.1) 

would have an approximately standard normal distribution if 100 is large 
enough for the convergence to the normal to be good (see Chapter 12). 
Unfortunately, however, for a binomial distribution like this, the approx­
imation using the normal distribution may not be so good with only 100 
observations (see also Section 14.11). It would be better to take 1000 ob­
servations, say. But let's pretend that the approximation is better than it 
is for the sake of illustration. The sum of the X's is just h, so P(h ;::: 60) 
is by formula 15.1 equivalent to P(Z > 2). From a table of the normal 
distribution, we see this probability, the p-valtie, is between .02 and .03. 
If this value is used as an approximation to the p-value of the binomial 
distribution, you have reasonable evidence to reject Ho and refuse to play. 
As noted, there is a problem because the sample size 100 is small for the 
approximation to be reliable-after all, if the binomial probability differs 
from the normal probability by as little as .03, it could change our deci­
sion from rejection to acceptance of Ho. But the idea of using the normal 
approximation is a good one provided the approximation is good enough, 
and this will be so provided the sample size is sufficiently large. 

A similar approach can be taken if the form of the alternative hypothesis 
were HI : P < 1/2 or HI : P :f. 1/2. In the former case, rejection of 
the null hypothesis should occur if too few heads are observed (a left-tail 
rejection region). The p-value should now be calculated as P(h :::; a), where 
a is the observed number of heads, and, as before, this probability can be 
approximated (again poorly, with only 100 observations) using the standard 
normal distribution. In the latter case, rejection of the null hypothesis 
should occur if either too many or too few heads are observed (a two-tail 
rejection region). In this case, we should consider P(h ;::: a) and P(h :::; a) 
where a is the observed number of heads, and let the p-value be twice the 
smaller of these. What you are doing here is using the smaller number to 
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define a rejection region for one tail and then using the same number to 
define a rejection region for the other tail. The total probability of rejecting 
Ho is then the p-value. 

To illustrate, suppose you want to decide whether a coin is fair or not fair. 
Unlike the previous problem involving your gambler friend, in which the 
alternative to the null hypothesis was that the coin is biased in a particular 
direction, now you want to reject the null hypothesis if you have evidence 
of bias in either direction. Accordingly, we set Hl : P i= 1/2. If 60 heads 
are observed, the p-value is twice the right-tail p-value obtained before, 
namely, some value between .04 and .06. In this case, the evidence against 
the null hypothesis is less convincing than before since the p-value is rather 
large. This is not surprising on intuitive grounds; if you don't know the 
direction of the possible bias, there are more kinds of evidence that can 
turn up supporting H 1 . Therefore, any particular piece of evidence should 
have less weight than in the one-tail situation to keep the total weight of 
evidence the same. 

15.5 How many fish in the lake, and other 
problems of estimation 

We want to estimate the number of fish in a lake. To do this we catch 1000 
fish, tag them, and release them back into the lake. After a day or two, we 
get another catch of 1000 fish and an examination finds that 200 of these 
are tagged. What's a reasonable estimate of the fish population in the lake? 

One approach to this problem harks back to random bombardment of 
an area by an independent, uniformly distributed set of points. This was 
discussed in Chapters 13 and 14 with reference to Monte Carlo estimation 
techniques. The main idea was that the ratio of the number of points in 
any region relative to the number of points in another region should be 
roughly the same as the respective ratio of the areas of the two regions. 
So if we toss N points onto a unit square and i points fall into a region 
of unknown area x, then x may be estimated by i/N, where the estimate 
becomes better the larger N is. 

Now suppose the unit square represents the lake and the 1000 tagged 
fish play the role of the bombarding points. Instead of measuring mass by 
area, let the mass of any region be measured by the number of fish in it. 
The entire lake has an unknown number of fish, N. A few days after the 
tagged fish are released, go to a subset S of the unit square (a part of the 
lake) and count the number of points in it (count the 200 tagged fish), and 
also the total mass of S (total of 1000 fish in this part of the lake). The 
conclusion is that the proportion 200/1000 of tagged fish in S should be 
approximately equal to 1000/ N, the proportion of tagged fish in the whole 
lake under the assumption that the tagged fish have uniformly dispersed in 
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the lake. This gives an estimate of 5000 fish in the lake. Of course, for this 
approach to work, the fish in the lake will have to be modelled reasonably 
well by the uniform, independent distribution of points in a plane. We must 
assume that the tagged fish will mix well, spreading uniformly through the 
water, and the fish population will not change appreciably between the two 
catches. Our estimate is a single number, called a point estimate. A more 
useful kind of estimate is an interval estimate, or confidence interval, which 
we'll talk about later. 

Another way to look at the problem involves considering the probability 
p(200, N) that a catch of 1000 fish in a lake having N fish yields exactly 200 
tagged fish from a total of 1000 tagged fish. The total number of ways of 
choosing 1000 fish from the N fish in the lake is CN,lOOO. Now think of what 
we actually caught-we got 200 tagged fish from a total of 1000 tagged fish, 
which can be done in C1000,200 ways, and then 800 untagged fish from a 
total of N -1000 untagged fish, and this can be done in CN - lOOO,800 ways. 
Using the ideas of uniform probabilities on finite sample spaces, we get 

p(200, N) = C1000,200 . C N - 1000,800. 

CN,lOOO 

(If we wrote these probabilities down for all possible values of caught tagged 
fish from 0 to 1000, we would get an example of what is called a hypergeo­
metric distribution.) At this point, we can invoke the principle of maximum 
likelihood again. We observe that p(200, N) is a function of N, and that 
a reasonable estimate of N would be the value of N making p(200, N) as 
large as possible. It is not very hard to find the value of N maximizing 
the expression on the right-hand side of the above relation, but we will 
spare you the details here. The answer comes out the same as before: use 
5000 fish as your estimate. The same restrictions on the fish in the lake for 
this model to apply are the same as for the previous model. That the two 
methods agree should cause no surprise since we are using much the same 
reasoning. The assumption of well mixing of the fish population takes the 
mathematical form of imposing a uniform distribution in both approaches. 

The "tagged catch" method has been used to take a census of fish and 
animal populations. On the other hand, the census of people in the United 
States has historically been non-statistical in nature-the attempt has been 
to count each and every person. The trouble is that when a population is 
so large and complex, counting becomes a formidable task. It has been 
maintained that, for one reason or another, a substantial number of peo­
ple are not getting counted. Such errors have serious consequences since 
the census determines the amount of political power a region possesses. Is 
it possible that a statistical type of census might not be cheaper, easier, 
and more accurate than the current method? Roughly, this could be done 
by randomly selecting a number of regions of different kinds (e.g., urban, 
suburban, rural) and then counting as accurately as possible the people in 
these regions. The data obtained from the random samples would then be 
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used to provide appropriate estimates. 
An important, general problem in statistical estimation goes like this: we 

are given a random variable X with some unknown probability distribution. 
We want to estimate some of the basic parameters of this distribution, like 
the expectation of X and the variance of X. First let's see how to estimate 
EX = J-t. The standard way to do this is to take a random sample from 
the distribution of X; that is, we plan to observe n independent variables 
Xl, X 2 , .•. ,Xn all with the same distribution as X. (The question of how 
to actually obtain a random sample can pose daunting problems in its own 
right, but for the moment we won't discuss this.) We then consider the 
random variable 

X= X I +X2 +",+Xn 
n ' 

the sample mean. This random variable is an example of what statisticians 
call a statistic, namely, a function of the observations not depending on 
any unknown parameters-when we plug in the value of the observations 
we must get a number. This certainly happens with X, which is simply 
the average value of the observations. A statistic is used when you want to 
estimate a parameter; in this case, X will be used to estimate the unknown 
value of J-t. Often a statistic used to estimate a parameter is called an 
estimator. 

Here's a simple example related to Section 15.3. You recall that we con­
sidered a situation in which a coin was tossed 100 times and the problem 
was to make a decision between two hypotheses: whether the coin is fair or 
whether p, the probability of head, equals 3/4. Let us now change the point 
of view: instead of testing a hypothesis, suppose we only want to estimate 
p. The observations consist in tossing the coin 100 times and letting Xi be 
the usual indicator variables for the tosses, with value 1 or 0 depending on 
whether we see head or tail on toss i. Notice that J-t = EXi = p, and X is 
just the relative frequency of heads in the 100 tosses. If 63 heads come up, 
then we are saying that .63 gives you a point estimate of p. 

The rationale for using X as an estimator of J-t is rooted in our old friend, 
the Law of Large Numbers. It should be clear that our present notation X 
is exactly the same thing as Snln (statisticians, by tradition, use certain 
notations as standard). As you recall (from Section 8.5), we observed that 
ESnin = J-t = EXI , where Sn is the sum of n independent, identically 
distributed random variables. Therefore EX = J-t, and the Law of Large 
Numbers assures us that the sample mean will be concentrated around J-t 
as closely as we want provided n, the number of observations, is made large 
enough. In fact, if the variance of the Xi is 0"2, a finite number, then by 
formula 8.16, we have that the variance of X is 0"2 In, and therefore X 
converges to the unknown J-t in probability. (This is just a restatement of 
the (Weak) Law of Large Numbers.) 

We note above that the estimator X has the property that EX = J-t; 
that is, the expected value of the estimator X is J-t, the parameter we are 



15.5 How many fish in the lake, and other problems of estimation 179 

trying to estimate. In general, it seems reasonable to require any statistic 
T that estimates some parameter >. of a distribution to have the property 
ET = >., that is, it seems reasonable to require a "good" estimator to 
have expected value precisely the quantity we're trying to estimate. Such 
estimators are called unbiased. An unbiased estimator has a distribution 
whose average value is the parameter being estimated. Now if we have 
a sequence of unbiased estimators Tn of >. such that the variance of Tn 
converges to 0, we have the extremely pleasant situation of the estimators 
converging to >. in probability-this is what is happening with X and /-L 
above. When this happens, we say that the sequence of unbiased estimators 
is consistent. A consistent sequence of unbiased estimators not only has the 
property that each estimator in the sequence has expectation equal to the 
parameter being estimated, but as you go out further in the sequence the 
distribution of the estimators cluster more and more closely around the 
unknown parameter with probability approaching 1. So for a large sample 
size, the estimate is very likely giving you a good approximation to the 
parameter. 

Now suppose we want an unbiased estimate of the variance u 2 of X, 
which we assume is a finite number. If we know the value of the expected 
value /-L, then we can reason as follows: the variance is E(X - /-L)2, and if 
we set Y = (X - /-L)2 then the problem is reduced to finding an unbiased 
estimate of EY. But we have just solved this by taking Y. Therefore, an 
unbiased estimator of u 2 is 

T = (Xl - /-L)2 + (X2 - /-L)2 + ... + (Xn - /-L)2 
n 

In addition, T considered for each possible sample size n turns out to give 
a consistent sequence of estimators of u2 • 

But what happens if we don't know the value of /-L and want to estimate 
u2? We cannot use T since it would depend upon the unknown parameter 
/-L and would not be a statistic. Since /-L is unknown, let's try to substitute 
the estimate X for /-L in T and see what happens. We get 

( -)2 ( - 2 - 2 TI = Xl - X + X2 - X) + ... + (Xn - X) 
n 

TI is certainly an estimator since it only depends upon the observations, 
but is it unbiased? We can find out by a tedious computation which I omit; 
essentially you just have to expand the right-hand side of the above relation 
for TI and take expectations to get lots of terms like EXl and EXiXj for 
i =I- j. The first expectation is u2 + /-L2 and the second (by independence) is 
/-L2• Then you have to add up lots of stuff. What you get when you are done 
is u 2 • (n-1)/n, so that TI is not unbiased. It is, however, very easy to get an 
unbiased estimator for the variance: use 8 2 = TI . n / ( n - 1); that is, replace 
the n in the denominator in the definition of TI by n - 1. The estimator 8 2 

is called the sample variance; as n becomes large, the difference between 
TI and S2 becomes negligible. 
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15.6 Polls and confidence intervals 

One of the results of a poll of 1154 adults printed in the New York Times 
of February 16, 1993 (see [7]) claimed that 56 percent of those sampled 
thought it would be necessary to cut back government programs that ben­
efit people like themselves in order to reduce the budget deficit. In a small 
box near the article, it explains that "in theory, in 19 cases out of 20 the 
results based on such samples will differ by no more than three percentage 
points in either direction from what would have been obtained by seeking 
out all American adults." What we'd like to do now is learn a little about 
what polls can tell us and what the quoted remark means. 

Suppose the sample consists of n individuals, each of whom is asked a 
question requiring a "yes" or "no" answer. Define the n indicator variables 
Xi equal to 1 or 0 depending on whether the ith individual gives a "yes" 
or "no" response. Then X is an unbiased estimator of EX1 = p, where 
p can be interpreted as the probability that a respondent answers "yes" 
to the question. The value p can be viewed as the proportion of voters 
who would have answered "yes" had we polled the entire population, so 
essentially our problem is to get a decent estimate of p from the sample. 
For the problem above, we already know .56 is an unbiased point estimate. 
But point estimates have an intrinsic problem: they pinpoint a single value 
in an infinite set of possibilities. Every time you take a sample, you will 
almost certainly get different values for the estimator, so the chances that 
your estimate agrees with the true value of p are null. We want to introduce 
the idea of an interval estimate of p. What this does is replace the attempt 
to hit p exactly on the head using a point estimate with an interval estimate 
which you believe, with a certain degree of confidence, contains the true 
value of p. To be more precise, consider formula 12.1 and divide the top 
and bottom of the fraction by n. You get 

W= X-p 
Jp(l:P) 

but haven't changed the value of the fraction, which still has an approxi­
mate standard normal distribution for large n. So we have 

P( -1.96 < W < 1.96) ~ .95 (15.2) 

and by substituting into this relation the right-hand side of the previous 
relation and then doing a little algebraic rearranging, we get 

P ( X - 1.96 VP(l;: p) < p < X + 1.96 VP(l;: P)) ~ .95. 

What we have done is sandwich p between two quantities. Notice that these 
sandwiching quantities depend upon p, which means these quantities are 
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not statistics. This is not good for us since we want p to be sandwiched by 
numbers after we make our observations. To fix this up, we will replace p 
and 1 - p by the estimators X and 1 - X to get 

( j X(1 - X) j X(1 - X)) p X - 1.96 n < p < X + 1.96 n ~ .95. 

We are assuming here that the replacement does not significantly alter the 
probability of the event, and this is true if n is reasonably large. Now p is 
sandwiched between two statistics, and the random interval 

Ix ~ (X - 1.00 j X(l : X), X + 1.96 j X(l : X) ) (15.3) 

contains p with probability around .95. Another way to say this is: p will 
be contained in Ix about 95 out of 100 times we calculate the sample mean 
from observations based on a random sample. 

Now suppose we take n observations and substitute the values of nand 
the sample mean into formula 15.3 to get numbers a, b and therefore an 
interval I = (a, b). This interval is called an approximately 95 percent 
confidence interval for p. Because of common misconceptions, it's important 
to emphasize what precisely we are claiming about the interval I. In the 
classical theory, which we are discussing here, the unknown parameter p is 
a number, not a random variable, so p is either in I or outside it, and it 
is meaningless to speak of the probability of p lying in I (the Bayesians, 
on the other hand, consider p a random variable-see Section 15.7). The 
expression 95 percent confidence interval refers to the procedure through 
which I was produced. This procedure produces intervals containing p 95 
percent of the time. In that sense, you have 95 percent confidence that 
I contains p. If we want more confidence, 98 percent, say, then we must 
consult the standard normal tables and find an analog to formula 15.2, 
which is 

P( -2.33 < W < 2.33) ~ .98 

from which a 98 percent confidence interval is constructed just as above in 
the 95 percent case. This interval is obtained by replacing 1.96 by 2.33 in 
formula 15.3. For given values of n and the sample mean, the 98 percent 
confidence interval is larger than the 95 percent one. This is to be expected; 
more confidence has to be paid for by the loss of ability to localize p (unless 
you take more observations and increase the value of n). The extreme case 
of this is the 100 percent confidence interval-this is the entire line, and 
offers no information whatsoever about the location of p. 

Let's return to the discussion of the 95 percent confidence interval. The 
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quantity 

D = 1.96 J X(1 :: X) (15.4) 

defines the interval by giving the deviation from the estimator X. Is there 
a way to control how large D can get? An easy calculus argument shows 
that the product x(1 - x) for 0 ::; x ::; 1 has a maximum value when x = .5 
and the maximum value is .25. Apply this result to the product X(I- X), 
using the fact that the proportion X is between 0 and 1, and replace 1.96 
by 2 in formula 15.4 to conclude 

D ::; 2 (.5)1f = If· (15.5) 

This shows that the confidence interval defined by D can be made as small 
as desired provided only that a sufficiently large number of observations be 
made. If n = 1154, as in the New York Times article, from formula 15.5 
we see that the deviation from the sample mean is at most I/V1154:::::: .03. 
Now let's go back to the quotation from the article given at the beginning 
of this section. The phrasing " ... in 19 cases out of 20 the results based 
on such samples will differ by no more than three percentage points ... " 
indicates a 95 percent confidence interval, where the upper bound .03 can 
be taken for D because of the sample size 1154. If this upper bound is used 
with the estimate .56 for the sample mean, we get the confidence interval 
(.53, .59). 

It's interesting to observe the connection between confidence intervals 
and hypothesis testing. The confidence interval just obtained can be used 
to test the hypothesis Ho : p = .56 against the alternative Hl : p =I- .56. 
It works like this: if the null hypothesis is true, X should fall outside the 
confidence interval only 5 percent of the time, so any reading outside of the 
confidence interval will have p-value smaller than .05. This should lead to 
rejection of Ho if .05 is deemed a small enough level to warrant rejection. If 
a smaller level is desired, find a confidence interval with larger confidence 
coefficient. 

15.7 Random sampling 

The mathematical techniques of the statistician require that random sam­
ples be taken from the population under study. You can see from the pre­
ceding sections that underlying our basic ideas were the two great theorems 
of probability, the Law of Large Numbers and the Central Limit Theorem, 
and both of these are about independent and identically distributed random 
variables. This means that each observation is supposed to be a random 
variable with the same distribution as the basic variable under study, and 
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the observations are independent. So, as we saw in Chapter 12, if I am 
studying the height, X, of adult American males, I should not expect to 
get a reasonable estimate of this quantity by selecting observations Y of 
males living, say, on the west coast. The normal distribution of X describing 
the entire population may look very different from the normal distribution 
of Y describing the subpopulation. What I must essentially do is consider 
the entire adult American male population as items on a huge list; the 
ith observation Xi will be the result of choosing one of these items from 
the list at random, that is, using a uniform distribution. We have already 
seen (in Chapter 13) how to use a random number table to make a ran­
dom selection from a population. The procedure described there works for 
a relatively small homogeneous population; for extremely large and more 
complex populations, more sophisticated techniques are necessary. A form 
of stratified sampling is used, for instance, when the population includes all 
American adult males. Under this procedure, the United States is broken 
up into regions, and within each region areas of similar population sizes 
are grouped. Then a random sample of these areas is selected. Once the 
area is chosen, there are further stratifications and random choices down 
the line. For example, in a given area we may want to choose individuals 
from various geographical parts of the area or from a variety of socioe­
conomic backgrounds. Once the sample individuals are actually selected, 
another problem surfaces-how to actually collect the data. A study may 
be seriously biased, for example, by ignoring those individuals who do not 
respond for a variety of reasons, perhaps because they are not at home 
when the data collector arrives. There are statistical devices for eliminat­
ing bias that may enter due to such situations. Random sampling, you can 
see, must be a carefully thought out procedure to make sure the data we 
collect can validly be used in our statistical theory. 

A famous case of bad sampling is the Literary Digest magazine poll in 
1936 in which the Digest predicted an easy victory for Alf Landon over 
Franklin D. Roosevelt in the presidential election. It turned out that Roo­
sevelt won a landslide victory over Landon. The Digest, it appears, had 
selected its sample from telephone books and club membership lists which 
biased the sample in favor of the rich. Because it was a Depression year, 
and the vote of the poor was mostly for Roosevelt, the bias in the sample 
led the Digest to its error. In 1948, a similar instance of bad sampling took 
place when three major polls predicted the victory of Thomas Dewey over 
Harry Truman in the presidential election. Again, the sample was biased in 
favor of the rich as well as having other problems. A lot of people thought 
Truman didn't have a chance on account of these faulty polls. There is a 
photograph of a victorious Truman, grinning broadly and holding aloft a 
newspaper with a banner headline proclaiming his defeat. The theory of 
sampling had to learn from a lot of bad experience. 
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15.8 Some concluding remarks 

In this chapter, you have seen a few examples illustrating three basic sta­
tistical activities: hypothesis testing, and point and interval estimation. I 
have tried to get across the flavor of some of the standard classical statis­
tical ideas. Many important names are connected with this theory-some 
pioneers were J. Neyman, E.S. Pearson, and "Student," the statistician 
W.S. Gossett, who used a pseudonym because he was an employee of the 
Guinness Brewery (the brewery did not want to advertise to its competi­
tors that the use of statistical reasoning could actually lead to a better 
product). Before ending this chapter let me briefly mention a few other 
important approaches to statistical theory. 

Much of what we did in this chapter was based on finding an approx­
imately normal distribution for a rather large sample, and much of the 
classical theory was developed for normal or approximately normal distri­
butions. More recently, the theory of non-parametric statistics has been 
quickly developing. This subject deals with distributions whose basic form 
need not be normal; its results remain true whatever the distribution, so 
the methods are called distribution-free or non-parametric. Non-parametric 
theory is well developed and powerful. 

Another idea was given an impetus during the Second World War. A 
refinement of the classical theory of hypothesis testing was developed at 
this time by the statistician Abraham Wald as a direct result of the attempt 
to save time and money during wartime. In the classical theory, the sample 
size n is decided upon in advance. Then n observations are taken and a 
decision is made to accept or reject Ho based on this information. The 
method of sequential analysis given by Wald does not decide on a fixed 
sample size in advance. The experimenter takes observations and after each 
observation a decision is made based on the observations up to that point 
either to accept or reject Ho or else to take another observation. In this 
method n, the sample size, is not a constant but a random variable. 

The situation can be modelled by a gambler's ruin set-up (Chapter 10). 
After each play, the gambler is in one of three states: either he is ruined and 
the game is over, or he ruins his opponent and the game is over, or he plays 
again. The experimenter using sequential analysis is also in one. of three 
states after each observation: either Ho is accepted, or it is rejected, or 
another observation is taken. So the experimenter can be thought of as the 
gambler, an observation as a play of the game, and acceptance or rejection 
of Ho as either gambler's ruin or the opponent's ruin. Continuing the game 
is equivalent to postponing the decision about Ho until more observations 
are taken. Using the methods and ways of thinking in the gambler's ruin 
model allows the statistician to calculate important quantities, such as the 
expected number of observations needed. The importance of the method 
of sequential analysis is that under appropriate conditions sequential tests 
are more cost efficient than classical tests: you can get the same accuracy 
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as the classical tests with considerably fewer observations on the average. 
A viewpoint of statistics philosophically very different from the classical 

school is the Bayesian approach. The Bayesians take their name and start­
ing point from Bayes's formula (Chapter 4). You recall that Bayes's formula 
could be interpreted as a method whereby an initial probability P(A) of 
an event A could be updated by means of additional information B to give 
the conditional probability P(A/ B). Now the classical non-Bayesian ap­
proach to the statistical problem involving, say, the probability p of a coin 
falling head is that p is some constant which is unknown to the statisti­
cian. On the other hand, the Bayesians regard p as a random variable with 
some given prior distribution [corresponding to P(A) in Bayes's theorem]. 
The information in the sample is used to obtain what is called a poste­
rior distribution for p. The posterior distribution is essentially given by the 
conditional probability P(A/ B) in Bayes's theorem. Bayesian statisticians 
then work with the posterior distribution to draw inferences. There are 
many problems for which the Bayesian approach is more satisfying than 
the non-Bayesian one, but the non-Bayesians often counter that the use of 
subjective probability in determining priors is invalid. Their perspective is 
that parameters should be unknown constants, not random variables, and 
the data at the time of the experiment should be all, with any prior in­
formation built into the statement of the problem. Most likely, an optimal 
theory should have elements from both points of view. 

There can be almost a religious fervor in the split between the two 
camps, so it is reassuring to note that the results of both Bayesians and 
non-Bayesians generally complement each other rather than lead to funda­
mentally different answers. Perhaps the strength of the emotions churned 
up is displayed most tellingly by the Bayesian wit who claimed that non­
Bayesians may have a rear end, but, as everybody knows, they have no 
posterior! 

15.9 Exercises for Chapter 15 

1. Consider 100 Bernoulli trials with success probability p. Using the 
method of maximum likelihood, describe a test of the hypothesis Ho : 
p = 1/3 against the alternative HI : p = 2/3. 

2. Suppose a binomial probability p could only be one of N fixed possible 
values. Describe a procedure depending on the method of maximum 
likelihood for deciding which of the competing values to accept as the 
true value of p. 

3. A pair of dice is rolled 6000 times and the frequency of 7 is observed 
to be 900. Let p be the probability that these dice roll 7 on any trial, 
and let Ho : p = 1/6 and HI : p =f. 1/6. Use the normal approxima­
tion to the binomial distribution to test Ho against HI. (Hint: the 
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percentages of total area lying within 1, 2, and 3 standard deviations 
of the standard normal distribution are approximately 68, 95, and 
99.8, respectively.) 

4. Groucho is running for the post of King of Fredonia. His advisers 
sample 1000 voters and discover that 460 plan to vote for Groucho. 
Find a 95 percent confidence interval for the proportion of all voters 
voting for Groucho. Are the results encouraging for the election? Now 
do this exercise in case 480 of the 1000 voters plan to vote for him. 

5. Eight-hundred fish are caught in a lake, tagged, and then released 
back into the lake. After a while 400 fish are caught and 250 of them 
are found tagged. Estimate the number of fish in the lake. What are 
your assumptions? 

6. In 6000 rolls of a pair of dice, the frequencies of 2, 3, 7, 11, and 12 
are 170, 360, 1150, 340, and 160, respectively. Give point estimates 
for the probabilities that a single roll with these dice produce (a) 7, 
(b) 7 or 11, (c) 2, 3, or 12, (d) 2 or 12, (e) none of the five numbers. 



16 
Roaming the Number Line with a 
Markov Chain: Dependence 

Time present and time past 
Are both perhaps present in time future, 
And time future contained in time past. 

T.S. Eliot, Burnt Norton 

16.1 A picnic in Alphaville? 

In Alphaville, it has been observed that whether a day is wet or dry depends 
only on the knowledge of whether the preceding day was wet or dry. Data 
accumulated over a period of years indicates transitions between wet and 
dry days are approximately in accordance with the following probability 
description: 

TODAY 
DRY 
WET 

TOMORROW 
DRY WET 
.6 .4 
.2 .8 

The table indicates, for instance, that the conditional probability of a dry 
day tomorrow given that today was dry is .6, the conditional probability 
of a dry day tomorow given that today was wet is .2, etc. Suppose we are 
planning a picnic for Sunday and today is Friday. What is the probability 
that Sunday will be dry given that it is dry today? 

We are going to solve this problem using the conditional probability ideas 
introduced in Chapter 3. Now, however, we want to look at the problem 
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from a somewhat different point of view involving random variables. Let 
us suppose that for each non-negative integer n we have a random variable 
Xn which is either 0 or 1. We interpret Xn as the state of the weather 
(0 for a dry day, 1 for a wet day) on the nth day after the initial day O. 
In our problem, day 0 is the particular dry Friday before the picnic. Since 
Sunday is the second day after day 0, in terms of the random variables X 
we are being asked to calculate P(X2 = 0/ Xo = 0). Let us consider the 
paths from Saturday to Sunday; this is simply the list of all possible values 
of the variables Xl and X 2 . There are four such paths: (0,0), (0,1), (1,0), 
(1,1), where the first coordinate in the pair denotes the value of Xl and 
the second the value of X 2 • In the following descriptions, we are going to 
express a set like {Xl = 0 and X 2 = O} as {Xl = 0,X2 = O}; that is, for 
notational convenience we will replace the word "and" by a comma. Note 
that the conditional probability of (0,0) given Xo = 0 can be written 

P(XI = 0,X2 = O/Xo = 0) = (16.1) 

P(XI = O/Xo = 0) P(X2 = O/Xo = O,Xl = 0). 

To check formula 16.1 use the definition of conditional probability in terms 
of intersection (Chapter 3) to express the left-hand side as 

P(Xo = O,Xl = 0,X2 = 0) 
P(Xo = 0) 

(16.2) 

On the other hand, each term on the right-hand side can be expressed in 
the same fashion to get 

P(Xo = 0, Xl = 0) P(Xo = 0, Xl = 0,X2 = 0) 
P(XO = 0) P(XO = 0, Xl = 0) 

which, after cancellation, reduces to formula 16.2, proving the two sides 
equal in formula 16.1. Now let's look at the second term on the right of 
formula 16.1, that is, 

P(X2 = O/XO = 0, Xl = 0). (16.3) 

In words, this can be expressed as the conditional probability that Sunday 
is dry, given that Friday and Saturday are both dry. But according to the 
description of the problem, only Saturday's weather affects the weather on 
Sunday; Friday's weather is independent of it. Another way to say this is 
that 

P(X2 = O/XO = 0, Xl = 0) = P(X2 = O/Xl = 0). (16.4) 

The right-hand side of formula 16.4 is .6 from the table since it does not 
matter which day is actually today: the table gives the conditional proba­
bility of the next day's weather, given today's weather. From formula 16.4 
we can simplify formula 16.1 to get 

P(XI = 0,X2 = O/Xo = 0) = (16.5) 

P(XI = 0/ Xo = 0) P(X2 = 0/ Xl = 0). 
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Similarly, by considering paths such that Xl = 1, the same reasoning shows 

P(Xl = 1,X2 = O/Xo = 0) = (16.6) 

P(Xl = l/Xo = 0)P(X2 = O/Xl = 1). 

Now add up the left-hand sides of formulas 16.5 and 16.6; these are con­
ditional probabilities of disjoint events given Xo = 0, so the sum of the 
probabilities is the conditional probability of the union set given Xo = 0, 
namely, 

P(X2 = 0/ Xo = 0), 

exactly what we're looking for. This must equal the sum of the right-hand 
sides of formulas 16.5 and 16.6 which can be calculated by the table to be 
(.6)(.6) + (.4)(.2) = .44 . The odds for a dry picnic day are a little less than 
even. We have solved the problem, but let's examine the structure of the 
random variables Xn a little further. 

From our description, it should be clear that the value of any X n , n > 0, 
depends only on the value of Xn - lo the immediate predecessor of X n . 

Up to now we have mostly talked about independent random variables. 
The variables Xn are not independent and not surprisingly we call them 
dependent. But the Xn have a relatively mild form of dependence: instead 
of Xn depending on the whole past history of the process, that is, on the 
values of each Xi for i ~ n -1, Xn depends only on the value of Xn - l . A 
sequence of random variables Xn such that the conditional distribution of 
each variable given the past only depends upon the value of the immediately 
preceding variable is called a Markov chain or Markov process. The value 
of Xn is frequently thought of as the state of a moving particle at time 
n. The intuitive idea is that the evolution of the Markov chain describes 
the position of the particle at unit time intervals. The word chain is used 
primarily when the state space (the set of all states) is discrete. The Markov 
chain we have been dealing with in the problem above has another very 
pleasant property: it is homogeneous in time, which means probabilities 
like 

P(Xn = 0/ Xn - l = 0) 

do not depend on the time n ; they only depend on yesterday's state (in this 
case 0) and today's state (in this case also 0) with only one day's difference 
between the days. Similarly, a probability like 

P(Xn+k = 0/ Xn - l = 0) 

will not depend on the value of n for a homogeneous process, but only 
depends upon the k+ 1 unit difference between the future time and the given 
time. All the Markov chains considered in this chapter will be homogeneous, 
so we will assume this property in the following without further mention. 

We can think of a Markov chain as taking values in a state space; for 
us this space will be discrete and can be represented by some subset of 
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integers. In the problem just considered, the state space consists of the 
integers 0 and 1. The one-step transition probability from state u to state 
v is defined by 

Pu,v = P(Xn = v/Xn- 1 = u) 

and by a generalization of the arguments given above, we can see without 
too much trouble that if so, Sl,· .. ,Sn is a sequence of states, then 

This is the conditional probability of the chain traversing the path 

given that it starts at so. The Markov chain can therefore be thought of as 
starting out at some state at time 0; this is the value of Xo. From there it 
jumps to another state, and this is the value of Xl, and so forth. 

One of the important questions about Markov chains is to describe the 
long-term behavior of the system. To be more precise, suppose we have 
a given distribution for Xo, that is, we know what the probabilities are 
for finding ourselves in each state at the initial time O. After the chain 
jumps once, the new positions are described by the distribution of Xl, 
and so on; after n jumps, the distribution of Xn describes our position. 
Of great interest is what happens to the distributions of Xn as n gets 
very large; in particular, will these distributions converge in some sense to 
a fixed distribution? If this happens, we have a long-term settling down 
of the process to a stable or stationary distribution. Under rather broad 
conditions, it can be proved that a stationary distribution exists no matter 
what the initial distribution of Xo is. A similar problem is to look at a fixed 
state s and study what happens to the probabilities P(Xn = s/Xo = s) 
when n gets very large-is there also settling down for a single state? 
Again, under appropriate conditions, there will be. We will come back to 
these issues later, but now we want to look at another question and solve it 
for an important class of Markov chains. This problem can be phrased as 
follows: given that Xo = s, what is the probability of the Markov chain X 
ever returning to s? We are going to solve this problem for one-dimensional 
random walks, introduced in Chapter 10 in connection with the gambler's 
ruin problem. 

16.2 One-dimensional random walks 

A very important example of a Markov chain is obtained by considering 
the partial sums 
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where the X variables are independent and identically distributed. That 
Sn is a Markov chain is pretty easy to see intuitively. Let's assume the X's 
are discrete. You want to see that 

(16.7) 

only depends upon Sn-l and Sn; that is, the probability does not depend 
on any of the values Si for i ~ n - 2. Formula 16.7 is equivalent to 

(16.8) 

because Sn - Sn-l = Xn by definition. Now the given information in terms 
of Sl through Sn-l just depends on the values of Xl through X n- l ; since 
Xn is independent of Xl through X n- l , the given part offormula 16.8 isn't 
really providing new information about X n . So the probability in formula 
16.8 is simply P(Xn = Sn - Sn-l), which clearly does not depend on the 
states S for i ~ n - 2, and the Sn is a Markov chain as claimed. 

When the X variables take integer values, the Markov chain Sn is called 
a random walk; it is one-dimensional because its states are integers on 
the line. If we are more specific and require that the X variables only 
take the values 1 or -1 with probabilities p and q, we get what is called 
Bernoulli random walk; this is the kind of random walk we considered in 
Section 10.1. We think of So as describing the position of a particle at some 
given initial state, some integer the random walk starts out from. Then the 
particle jumps to Sl = So + Xl, which means it jumped to one of the 
adjacent integers, so that Sl is one more or one less than So. The particle 
continues jumping in this way as the Markov chain S evolves in time. As 
n increases, after n steps the particle can be in an ever larger number 
of possible positions given by the possible values of Sn. The transition 
probabilities of the chain are given by Pu,u+1 = p, Pu,u-l = q, and Pu,v = 0 
if v is different from u + 1 and u - 1. 

The Bernoulli random walk is unrestricted: starting from any state there 
will eventually be a path leading as far away from the state as you might 
wish. By altering this random walk in a simple way, we will get the ran­
dom walk used to model the gambler's ruin problem. We set So = i with 
probability 1; this represents the gambler's initial fortune. Let a > i be 
the total fortune of the gambler and her adversary. Define the transition 
probabilities of the gambler's ruin chain as follows: if 0 < i < a, then 
Pu,u+1 = p, Pu,u-l = q, just as with the Bernoulli random walk. But then 
we put Po,o = Pa,a = 1; this means that once the chain (or the particle) 
enters either state 0 or state a it cannot leave-there is probability 1 of it 
jumping to itself. Such states are called absorbing states-in the gambler's 
ruin chain the two absorbing states at 0 and a express the end of the game 
with either the gambler or her opponent being ruined. The chain has the 
finite state space of the integers from 0 to a. In Chapter 10, we learned 
quite a bit about the long-term behavior of the gambler'S ruin chain Sn. 
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We proved that with probability 1 the chain will end up at one of the ab­
sorbing states 0 or a, and we found the probabilities of ending up at each. 
The probability of the gambler's ruin given in formulas 10.6 and 10.8 can 
be described in the terminology of the gambler's ruin Markov chain Sn as 

P(Sn = 0 for some n > O/So = i). (16.9) 

16.3 The probability of ever returning "home" 

To give a little flavor of the subject, we are going to study some prob­
lems about recurrence for the Bernoulli random walk. Suppose we start 
off with So = 0 with probability 1; that is, the particle whose movements 
are governed by the chain is initially placed at 0, which we can think of 
as "home." There is nothing intrinsically special about 0 here; any other 
state would do as well. What we would like is to find the probability of the 
particle ever returning to o. Recall that for a Bernoulli random walk there 
are paths getting as far away from the starting point as you might wish 
provided you wait long enough. How many of these paths escape forever 
by never coming back to the starting point? We will give an answer to this 
question by using what we know about the gambler'S ruin chain as a tool. 

Consider the Bernoulli random walk with p = q = .5. For this random 
walk, we can write 

P(Sn = 0 for some n > 0 ISo = 0) 

= .5 P(Sn = 0 for some n > 1 /SI = -1) 

+.5 P(Sn = 0 for some n > 1 /SI = 1). (16.10) 

Formula 16.10 says something intuitively obvious, but you may not realize 
it at first just by looking at the formula. The probability of ever returning 
to 0, given that you start from 0 (left-hand side of the equation), is simply 
the probability of jumping in the first step to -1 and then returning to 
o at some time in the future from -1, or jumping to 1 in the first step 
and then returning to 0 at some time in the future from 1. The equality of 
the two sides of formula 16.10 can of course be proved rigorously by using 
the conditional probability formulas and the Markov chain property. (The 
Markov chain property implies that the event {Sn = 0 for some n > I}, 
which depends upon the future of the chain after time 1, is independent of 
the past, given the present at time I-this fact is needed to prove formula 
16.10.) Now let's focus on 

P(Sn = 0 for some n > 1 /S1 = 1). (16.11) 

Because of the homogeneity property in time, formula 16.11 is the same as 

P(Sn = 0 for some n > 0 ISo = 1), (16.12) 
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so formula 16.12 gives the conditional probability of the Bernoulli random 
walk ever reaching 0, given that it starts at 1. We are going to evaluate 
this probability by means of a little trick. Consider an integer a > 1, and 
consider the gambler's ruin chain with p = q = .5. The essence of the 
trick is to realize that the Bernoulli Markov chain starting at 1 has the 
same transition probabilities as the gambler's ruin chain with total fortune 
a starting at 1 until the Bernoulli chain hits either 0 or a for the first time. 
Because of this we can make certain correspondences about probabilities 
relative to the two chains. For example, 

P(the Bernoulli walk hits 0 sometime before hitting a/So = 1) 

= P(the gambler's ruin walk ends in ruin (hits 0 before a)/So = 1) 
1 

= 1 - ~' (16.13) 

where the extreme right side of formula 16.13 is given by formula 10.8 with 
i = 1. Now the left-hand side of formula 16.13 always converges to the 
probability of formula 16.12 as a tends to infinity, that is, as a gets larger 
and larger. To convince yourself of this, just think of any path from 1 that 
returns to O. It must have hit some finite maximal state before the return. 
If a is taken sufficiently large, this maximal state of the path is smaller than 
a, and the path will therefore be counted in calculating the left-hand side 
of formula 16.13. So as a tends to infinity, all such paths will eventually be 
counted on the left of formula 16.13, and these paths are precisely the ones 
that have to be counted in calculating the probability in formula 16.12. On 
the other hand, as a tends to infinity, the right-hand side offormula 16.13 
converges to 1, so that we have shown the probability in formulas 16.11 or 
16.12 is equal to 1. Because the Bernoulli random walk with p = q = .5 is 
symmetric, we can conclude that replacing So = 1 with So = -1 in formula 
16.11 also must give a value of 1, and then from formula 16.10 we see that 
the left-hand side is 1. So using a comparison to a gambler's ruin chain, we 
have proved that the Bernoulli random walk with p = q = .5 starting off at 
o will return to 0 with probability 1. 

Now let's see if we can use the line of reasoning above to figure out 
what happens for general values of p and q. Assume p f q, so we have all 
possibilities except for the one just studied. This general Bernoulli walk 
gives rise to 

P(Sn = 0 for some n > 0 ISo = 0) 

= qP(Sn = 0 for some n > 1 /SI = -1) 

+pP(Sn = 0 for some n > 1 /SI = 1), (16.14) 

the analog of formula 16.10. Once again, we concentrate on formula 16.12, 
and evaluate it by comparing it to a gambler's ruin walk with the same 
probabilities p and q as the Bernoulli walk. This gives the same first equality 
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of formula 16.13. Since p i- q, the extreme right-hand side of this formula 
must now be replaced by 

(16.15) 

which comes from formula 10.6 with i = 1. Again, we want to let a tend to 
infinity to see what happens. At this point, formula 16.15 has to be handled 
carefully. If p > q, the fraction (q/p)a converges to 0 as a gets large, and the 
expression of formula 16.15 converges to q/p. Using the same reasoning as 
before, formula 16.13 now allows us to conclude that the value of formula 
16.12 is q/p. In other words, if the Bernoulli walk has a drift to the right 
(Le., p > q), then, starting at 1 there is positive probability 1-q/p of never 
hitting O. This result makes intuitive sense since the larger the value of p, 
the more likely it should be to escape from O. But what happens if the drift 
is to the left, that is, q > p? In this case, the expression of formula 16.15 
"explodes" as a tends to infinity, namely, the fraction (q/p)a gets larger and 
larger (Le., tends to infinity), and the expression can't be evaluated. What 
to do? Since we want to get back to the nice situation of the larger number 
in the fraction on the bottom so the ath power of the fraction tends to 0 
as before, we rely on the following device: interchange the roles of gambler 
and adversary. To do this, we calculate the probability of the adversary's 
ruin. To put the adversary in the boots of the gambler simply means that 
we must change our point of view (if we have been imagining the gambler 
to be a stand-in for ourselves, we now use the adversary as that stand-in). 
How do we then calculate the probability of the adversary's ruin when the 
gambler has $1? Well, we go back to formula 10.6. Since the adversary is 
now the gambler of the formula, to use the formula we must interchange p 
and q in the formula and put in (a - 1) for i. This gives us 

(16.16) 

This is the probability of the adversary's ruin when the gambler has $1, so 
that 1 - w is the probability of the gambler's ruin when she has $1. If we 
use a little algebra (a constant refrain in this book), formula 16.16 shows 

(16.17) 

What we want is the limiting probability of the gambler's ruin when the 
gambler has $1 and a is tending to infinity. Formula 16.15, as we saw, 
exploded as a got larger and larger. The beauty offormula 16.17 is that we 
can easily see what happens as a gets larger and larger. Since p/q < 1, the 
second terms on the top and bottom of the ratio in formula 16.17 tend to 
o as a tends to infinity, and so 1 - w converges to 1. 
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The same reasoning as in the case p > q (that is, go back to formulas 
16.13 and 16.12 once more) proves formula 16.12 equal to 1. So if the 
Bernoulli walk has a drift to the left, then starting at 1 there is probability 
1 of eventually hitting 0; that is, the probability of escape from 0 is O. 
To finish off the problem, formula 16.14 must be evaluated. There are two 
cases, p > q and q > p. In the case where p > q, the second term on 
the right-hand side of formula 16.14 is p (q/p) = q. To evaluate the first 
term on the right-hand side in this case, use symmetry as follows: the chain 
starting from -1 has the same probability of return to 0 as a chain starting 
from 1 with transition probabilities q of moving one step to the right and 
p of moving one step to the left. We have just seen that this probability is 
1. So formula 16.14 evaluates to q + q = 2q in the case p > q. Turning to 
the case q > p, now the first term of formula 16.14 by symmetry is equal 
to q (p/q) = p and the second term is equal to p, so in this case formula 
16.14 evaluates to 2p. All of the above results can be put together to give 
the following statement. 

Let a Bernoulli random walk have probabilities p and q of mov­
ing one unit to the right and one unit to the left. Then the 
conditional probability of ever returning to 0 given that you 
start at 0 is equal to 2m, where m is the minimum of p and 
q. This probability is 1 when p = q = .5; otherwise there is a 
positive probability 1 - 2m of escape from O. 

In the case p = q = .5, the particle returns to 0 with certainty, and it 
can be shown that the particle returns to 0 infinitely often with certainty. 
Yet it turns out that as n increases, the probability P(Sn = 0/ So = 0) of 
the particle being in state 0 at time n given that the particle started at 
state 0 converges to O. So although the particle is certain to return to 0 
at some time, the probability that the particle will be there at any fixed 
large time is very small. This is not too surprising when you think about 
it: the particle starting from 0 spreads out and eventually is able to visit 
any state no matter how far away from 0 that state is. So for large n the 
number of states that could be occupied is very large and the probability 
of being in anyone of these is small. The particle is thus spreading itself 
thinner and thinner over the state space as time evolves. The probability 
of the particle being at 0 (or at any other state, for that matter) at any 
fixed time n therefore converges to o. 

16.4 About the gambler recouping her losses 

The results of the preceding section have interesting consequences for the 
theory of gambling. A Bernoulli random walk can model the non-realistic 
situation of a never-ending game involving a casino with infinite capital 
which allows a gambler to amass as much debt as she incurs. We assume 
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the usual situation for the gambler: she is playing an unfavorable game 
(p < q). She starts with $1, say, and the play continues even if she falls into 
debt. Suppose she starts to lose (the Bernoulli walk is at some negative 
integer at some time). What can we say about the gambler recouping her 
losses? 

Suppose the gambler is $1 in debt; that is, the Markov chain Sk repre­
senting her fortune at time k is sitting at -1. The gambler will recoup her 
losses if Sn = 1 at some time after k. Because of the time homogeneity of 
the Markov chain, we might as well think of So = -1 (the gambler is $1 in 
debt at time 0) and the gambler recouping her losses at some time n > 0, 
that is, Sn = 1. The Markov chain can only get from -1 to 1 by getting to 
o at some time and then at some later time getting to 1 from O. It follows 
from the preceding section that the probability of the gambler getting to 0 
at some time, given that she starts at -1, is p/q. Once at 0, she gets to 1 
eventually with another probability p/q. What happens after she gets to 0 
for the first time is independent of what happened before she hit O. It will 
follow that her probability of ever recouping her losses, given that she is $1 
in debt, is (p/q)2. In similar fashion, we can see that the probability of the 
gambler recouping her losses if she is $k in debt is (p/q)k, which shows that 
the gambler's chance of ever recouping her losses decreases exponentially 
to 0 according to the power of her debt. The deeper in debt the gambler 
finds herself, the more unlikely it will be that she will ever recoup. 

The above description is for a gambler playing a game unfavorable to 
her. What happens if she plays a fair game? Consider the Bernoulli random 
walk for the case p = q = .5. The walk is certain to return to any starting 
point (as we know from the preceding section). We want to make a useful 
observation for this random walk, namely, with certainty it will attain any 
fixed state, given that it starts from any fixed state. To see this, it is 
sufficient (because of symmetry) to show that you can get anywhere with 
probability 1 from O. So let a be any fixed state. There is certainly a path 
(with positive probability) reaching a from O. By exercise 3 at the end of the 
chapter, the chain must therefore attain 0 with probability 1, starting from 
a. By symmetry, we can shift and conclude that the chain must therefore 
attain the state -a with probability 1, starting from O. Since -a can be 
any state, we have proved what we want. 

Now let's assume, as before, that the random walk models the gambler's 
game, which is fair this time. As before, we suppose the gambler starts 
with $1 and plays until she is $1 in debt. But now the random walk sitting 
at -1 is certain to get back to 1, which in gambling terminology says the 
gambler is certain to recoup her losses. Let us ask ourselves an interesting 
question: how long will it take her, on the average, to do this? To see what 
we are being asked to calculate here, we look at all paths (-1,81,"',1) 
beginning with -1 and stopping at the first time the walk gets to 1. Let 
N be the time of first entry into 1; that is, for each such path we have just 
described, N is one less than the number of terms in the path. Now, N is a 
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random variable and we can take its expectation (for each positive integer 
k, compute the probability that N = k, multiply by k, and then add up 
over all possible k). It can be shown (but we won't do it here) that N has 
infinite expectation for the game we are discussing now. What we mean by 
this is that the sum defined by the expectation does not converge; it gets 
arbitrarily large as more and more terms are added up. So although the 
gambler is certain to recoup her losses, it will take her infinitely long, on 
average, to do so! The practical consequences of this statement mean the 
gambler can expect a lot of plays before losses can be recouped and the 
likelihood of sinking more deeply into debt before recouping. So even if the 
gambler is playing a fair game, if she is in debt she should have a lot of 
patience and expect to be playing a long time before breaking even. 

The discussion above makes the following surprising fact plausible: sup­
pose the gambler is playing a fair game of the Bernoulli type. It is much 
more likely for the gambler to stay in a winning state or a losing state for 
long periods of time than to have frequent swings of luck. For example, the 
probability is .2 that the gambler will either keep winning or keep losing for 
almost 98 percent of the time. We can think of this as the Markov chain's 
reluctance to cross the origin 0 from one side to the other. This is in line 
with what we have already seen: that the losing gambler should not hope 
to recoup her losses quickly and may have to go deeply into debt before the 
certain recoup takes place. Conversely, if the gambler is lucky enough to be 
in the lead, she is likely to remain in the lead for awhile. So this last fact 
is finally a bit of good news for the gambler if she is playing a fair game 
and if she finds herself in the lead. Of course, a real gambler is typically 
playing an unfavorable game. So, as we have seen above, the reluctance of 
the Markov chain Sn to cross from one side of the origin 0 to the other side 
now becomes even greater, with the chain spending most of its time on the 
negative debt side with large probability. 

16.5 The dying out of family names 

In this section, we look at an important class of Markov chains called 
bmnching processes. A colorful problem to describe this type of process 
is the question of the dying out of family names. We consider a father 
who has U sons, where U is a random variable taking on the values 0, 1",' 
with some probability distribution. In turn, each of his sons can themselves 
have sons whose number is given by the same probability distribution as 
that of U. Let the father represent the Oth generation, and define the nth 
generation as the generation of sons following the (n - 1 )st generation. Let 
Xn be the size of the nth generation (for instance, the size of the second 
generation is the number of grandsons of the original father). If Xn is ever 
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0, then Xm = 0 for all m > n. If Xn = i > 0, then 

The size of the (n + l)th generation only depends on the size of the nth 
generation, so Xn is a Markov chain; it has as its state space the set of non­
negative integers, and, as with the gambler's ruin chain, 0 is an absorbing 
state. 

We are interested in the event {Xn = 0 for some n > O}, that is, the 
event that the line of sons is eventually extinct and the family name ulti­
mately dies out. To exclude unimportant cases, assume P(U = 0) is strictly 
between 0 and 1. Then it is possible to prove that extinction happens with 
certainty if EU ::; 1, but if EU > 1 there is a positive probability of the 
family name continuing forever. You can find these facts proved in [3J, for 
example. 

The branching process model applies to many situations. In physics, it 
can be used in considering particles that can generate a number of other 
particles when undergoing bombardment. The physicist may be interested 
in studying the rate at which the number of particles increases. For ge­
neticists, the model applies to genes; the number of descendants in each 
generation in which the gene is found is the state of the process. The gene 
may mutate, or not appear in a descendant for other reasons. Using the 
theory, the probability of long-term survival of the gene can be estimated. 

16.6 The number of parties waiting for a taxi 

Another class of important Markov chains is obtained from queueing pro­
cesses, which study problems concerning the wait for service in various 
situations. The individuals doing the waiting can be customers at a bank, 
programs in a computer waiting to be executed, patients in a doctor's of­
fice, etc.; we refer to these individuals as customers no matter what they 
are. Customers arrive for service and are either serviced immediately or 
form a waiting line, or queue, for the available server. There are a number 
of obvious questions of interest in such problems. One of these is: after a 
sufficient amount of time has passed, is there anything we can say about 
the length of the queue on average? We might also be interested in the 
expected waiting time for a customer. Many different queueing models can 
be set up by further specifications, for example, by giving the distribution 
of the arrival times of the customers, the number of servers, and the dis­
tribution of the serving period for the servers. Let's illustrate with a very 
simple example. 

Assume there is a taxi stand at which taxis arrive at fixed time intervals. 
If no one is waiting, the taxi leaves immediately; otherwise it picks up the 
first party waiting and departs (a party means any group arriving together 
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who can all fit into one taxi). Between taxi arrivals, parties arrive and 
form a queuej we assume the number of parties arriving in such a period 
between taxi arrivals is given by a random variable U with some fixed 
distribution. Let Xn be the number of parties in the queue in the nth 
time period, that is, between the departures of the (n - 1 )st and nth taxis. 
Then Xn is a Markov chain. To see this, suppose we know X n- 1 = aj then 
Xn = U + a-I if a ~ 1 and = U if a = O. So if we know the value of 
X n- 1 , the distribution of Xn can be explicitly calculated in terms of the 
distribution of U. Knowing the distant past history of the process, that is, 
the values of the X's for the periods less than n - 1, does not give any 
further information about X n . The X process is therefore a Markov chain 
with state space the integers 0,1,2, .... The size of the queue for large n, 
namely, the value of Xn for large n, turns out, not surprisingly, to depend 
crucially on EU, the expected number of parties arriving in a time period. 
Since each taxi can only serve a single party, it is intuitively clear that if 
EU > 1 the queue size is going to get abitrarily large as time goes by. What 
is not so obvious is that if EU < 1 the queue size will approach a steady 
state as time increases. What this means is that there exists a distribution 
v on the state space such that 

lim P(Xn = a) = v(a) 
n-+oo 

for each non-negative integer a. This stationary or steady-state distribution 
depends upon the distribution of U. In contrast to the above two cases, the 
single remaining case in which EU = 1 gives a chain that neither gets large 
without bound nor settles down to a fixed distributionj instead, the chain 
roams allover the state space, returning to each state infinitely often with 
probability 1. This is a highly unstable queueing process. If we wait long 
enough, the size of the queue will eventually be any non-negative integer, 
and yet, for any fixed state a the probability of the chain being in a will 
tend to 0 as time increases. This kind of behavior has similarities to the 
Bernoulli random walk with p = q = .5. 

16.7 Stationary distributions 

In the last section, we mentioned a stationary or steady-state distribution 
v which sometimes exists for a Markov chain. This distribution has the 
property that, if the chain starts off with this distribution, at the end of 
one transition the chain has the same distribution. More precisely, suppose 
the chain has initial probability v, that is, P(Xo = ai) = v(ai) for each 
state ai in the state space. Then v is a stationary distribution if, for all 
states ai, 

v(al)P(X1 = adXo = al) +v(a2)P(X1 = adXo = a2) + ... 
= P(XI = ai) = v(ai). (16.18) 
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You can think of it this way: if a particle is initially located at state a with 
stationary probability v(a), then after the particle undergoes one transition 
the probability is still v(a) that the particle is located at a. It then seems 
reasonable to suppose that if the particle is initially located at a with 
probability v(a), then after the particle undergoes any finite number of 
transitions the probability is still v(a) that the particle is located at a. 
This can be proved rigorously, essentially by observing the truth of formula 
16.18 if Xl and Xo are replaced by X n +1 and X n , respectively. 

Not all Markov chains have stationary distributions (for instance, no ran­
dom walk does-see the exercises at the end of this chapter). The existence 
of a stationary distribution for a Markov chain is a very important property 
of that chain since one can prove a lot of nice things about such chains. 
How could we go about finding out whether a chain has such a distribu­
tion? One way is simply to assume a stationary distribution exists and try 
to find it by means of formula 16.18. As an example, consider the chain 
given in Section 16.1, where the state space consists of the two integers 0 
and 1, and the one-step transitions are given by the table. If we let 

Pi,j = P(XI = j/Xo = i), 

and we assume there is a stationary v, then formula 16.18 is equivalent to 
the two equations 

v(O) = v(O).6 + v(1).2 and v(l) = v(O).4 + v(1).8. 

Moreover, we know that v is a probability, that is, v(O) + v(l) = 1. These 
three equations have a unique common solution v(O) = 1/3, v(l) = 2/3. 

16.8 Applications to genetics 

We are going to assume a model of random mating. Let's say there are 
three genotypes in a population, described by the pairs of genes AA, Aa, aa, 
occurring in the ratio u : 2v : w. Two individuals are taken at random from 
the population and mated. Each individual contributes one of its pair of 
genes with probability .5 independently of its mate to form the genotype 
of its offspring in what we can call the first generation. The problem is to 
find the probability distribution of the genotypes in this first generation. 

To do this, it is convenient to think of the individual genes A and a 
floating around in a container and joining up at random to form a genotype. 
We can find the ratio of A to a genes as follows. Assume the numbers u, 2v, 
and w give the exact numbers of each genotype pair. If we think of splitting 
the pair, we would get 2u + 2v A genes, and 2w + 2v a genes. So the ratio 
of A to a genes is u + v: w + v, and now if we suppose the ratio u: 2v : w 
is standardized with u + 2v + w = 1, then we can put P = u + v as the 
probability of the A gene in our pool, and q = w + v as the probability 
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of the a gene, where p + q = 1. Under random mating, the genes would 
join independently: the genotype AA occurs when the male and female 
contribute the A gene; this occurs with probability p2. The genotype Aa 
occurs when either the male contributes the A gene and the female the 
a gene, or the other way around; the probability is 2pq. The genotype aa 
occurs when both parents contribute the a gene; this probability is q2. So 
now we see the genotypes AA, Aa, and aa in the first generation occur in 
the ratio p2 : 2pq : q2. Now let's see what happens in the second generation. 
Repeating the argument above to determine the ratio of A to a genes from 
the ratio of the genotypes, we obtain P2 = p2 + pq as the probability of the 
A gene in the second generation and q2 = q2 + pq as the probability of the 
a gene in the second generation. So for the second generation, we have: 

P(AA) = (p2 + pq)2 = (p(p + q))2 = p2, and 

P(aa) = (q2 + pq)2 = (q(q + p))2 = q2. 

These are precisely the same probabilities for AA and for aa for the first 
generation, and it follows without further computation that the probability 
for Aa must be the same as for the first generation as well. Therefore, we 
have shown that the distribution of the genotypes is the same in the first 
and second generations, and it is clear that the distribution remains the 
same for all generations n ~ 1. In fact, let's see that we have a Markov chain 
with a stationary distribution. Let Xn = 0, 1, or 2 depending on whether a 
genotype of the nth generation is AA, Aa, or aa, respectively. The initial or 
Oth generation, Xo, has the initial distribution given by the ratio u : 2v : w. 
The Markov property holds because the distribution of the genotypes at 
any generation n clearly determines the distribution of the genotypes at the 
succeeding generation n + 1, so the distant past (knowledge of distributions 
before generation n) is irrelevant. But our computations show that under 
random mating the distributions of Xn are stationary for n ~ 1. This state­
ment is known as the Hardy-Weinberg law. The stationarity shows stability 
of the genotype distribution as time evolves. In practice, the gene frequen­
cies p and q are affected by random fluctuations as the process evolves, so 
the actual distributions will deviate from the theoretical stationary one as 
time goes on. In fact, if the population is bounded in size, one can show 
that eventually one gene should die out, leaving one of the types AA or aa. 
But this too is a theoretical result based on a simplified model; in reality, 
mutations and other biological effects make the situation more complex. 

16.9 Exercises for Chapter 16 

1. A famous billionaire always plays red at roulette, betting $1000 at 
each game. Suppose he lost $5000 by losing each of the first five games. 
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Assuming he is allowed to go into debt as much as is necessary and 
keeps playing, estimate the probability of his ever recouping his losses. 

2. Consider the random walk with p and q the probabilities of moving 
one step to the right and left, respectively. (a) Given that Xo = 0, 
find the probability that X 4 = O. (b) Given that Xo = 0, show that 
Xn = 0 has probability 0 if n is an odd number. 

3. Consider any Markov chain with state space the integers. Suppose it is 
known that the chain, starting from 0, returns to 0 with probability 1. 
Let a be a state that can be reached from 0, that is, there exists a time 
n such that P(Xn = a/ Xo = 0) > o. Frame an intuitive argument 
showing that, starting at a, the chain must eventually reach 0 with 
probability 1. Try to make your argument rigorous by translating 
your intuitions into careful mathematical statements. 

4. Can a random walk have a stationary distribution? (Hint: if such a 
distribution v exists, there must exist a state a with v(a) a maximum 
value, i.e., for any other state b, v(b) ~ v(a). What does this say about 
the adjacent neighbors of a?) 

5. A Markov chain is defined as follows: the state space is the set of non­
negative integers 0,1,2, etc. The one-step movement of the chain can 
be described in words by saying that a particle starting at any integer 
moves one integer to the right with probability .5 or else hops to 0 
with probability .5. The one-step transition probabilities are given by 
the relations 

.. _ { P(Xn+1 = j / Xn = i) =.5 if j = 0 or j = i + 1, 
P"] - 0 otherwise. 

Does this chain have a stationary distribution v? If so, find it. 



17 
The Brownian Motion, and Other 
Processes in Continuous Time 

They have given an amusing explanation of certainty; for after 
demonstrating that all their paths are certain, they no longer 
describe as certain the one that leads to heaven, without any 
danger of not reaching it, but the one that gets us to heaven 
without any danger of diverging from that path. 

Blaise Pascal, Pensees 

17.1 Processes in continuous time 

As we have seen, a sequence of random variables can describe how some 
process evolves in time. For example, the gambler's accumulated winnings 
at time n, that is, after the nth play of a game of chance, is given by 
the random variable Sn = Xl + ... + X n, where the X's are independent 
random variables representing the gambler's winnings at each play of the 
game. For convenience, we can think of the subscript n of any such sequence 
of random variables as denoting the nth moment of time, and the value of 
the random variable Sn as the measurement made at that moment. The 
sequence therefore represents a "picture" of the evolution of the process at 
the times 1, 2 , .... 

For many physical processes, however, the natural parameter of interest 
is continuous, not discrete, time. Let's represent the measurement at time 
t by a random variable X t for all t on some interval, say 0 :s: t. If we 
watch the evolution of the process in time, we get a fixed curve in a t-x 
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FIGURE 17.1. Part of a sample path of a stochastic process 

plane where the observed measurement at time t is plotted at x (see Fig. 
17.1). Such a curve is called a sample path or realization of the process. We 
have already briefly discussed such processes at the end of Chapter 9, with 
reference to the Poisson process. When time is discrete, sample paths are 
just sample sequences, so a typical sample path of the process representing 
your accumulated winnings if you playa game of chance repeatedly is just 
the sequence of these winnings on any particular evening. We have been 
referring to such paths in discrete time throughout this book, but first 
started using the term path when we studied random walk in Chapter 16. 
In continuous time, a typical path is a curve and the set of all possible 
curves representing sample paths gives the totality of possible observations 
for the process evolving in time. 

In Chapter 9, X t was a Poisson process that measured the total number 
of vehicles passing by a cafe up until time t, where time 0 is some fixed des­
ignated initial time. What would a typical sample path for such a Poisson 
process look like? Well, let's say that at the moment we start measuring 
time while sipping a cappuccino at the cafe there are no vehicles in sight, 
so the curve starts out at the level 0 and continues there until a first vehicle 
passes at time ti' At this point, the curve jumps to level 1 and continues at 
this level until at time t2 the next vehicle passes, at which instant the curve 
jumps to level 2 and continues at that level for awhile, and so forth. Each 
time a vehicle arrives, the curve jumps one unit higher and continues at 
that level until the next vehicle arrives. The curve generated in this way is 
called a step-function (see Fig. 17.2). For any time s that is not an instant 
in which a vehicle arrives, the value of X s , namely, the height of the curve 
above the t-axis at the point s, is precisely the number of vehicles that have 
passed the cafe up to the instant s. If s is equal to one of the instants at 
which a vehicle arrives, there is a little ambiguity about what Xs should 
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o t 

FIGURE 17.2. Part of a typical sample path for the Poisson process 

be-should it be the smaller value before the jump took place or the larger 
value after the jump? This is not a very serious problem; just define the 
function to be either value at such points. Usually, the value taken is the 
larger value, and then the sample path is what we call a right-continuous 
function. 

What we want to be able to do for a general process in continuous time 
is find probabilities of events defined in terms of the random variables of 
the process. For example, consider the Poisson process and the event that 
there are at least 35 vehicles within the first 6 hours of observation. This is 
really a statement about the sample paths: we look at all possible sample 
paths which attain the height 35 and record the first instant this height is 
attained. If this instant is less than 6 hours (or 360 minutes, or whatever 
units we are using for measuring time), this path belongs to the event, or 
set, we are interested in. To discuss the probability of this event, then, we 
need to have a probability mass on the path space, the set of all possible 
sample paths. Given an event, namely, a statement about a set of sample 
paths, we want to be able to compute the probability of this event using 
the probability mass. For the Poisson process, this probability mass can be 
constructed from the assumptions (a), (b), and (c) discussed in Chapter 9. 
For other processes, a variety of assumptions are made which determine an 
appropriate probability mass. Without such a mass, we technically have no 
well-defined process and can make no meaningful probability statements. 
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17.2 A few computations for the Poisson process 

For the Poisson process, as we have noted above, the mass (that is, prob­
ability) of sample paths satisfying various conditions can be calculated by 
the methods of Chapter 9. For example, in the problem above we wish to 
find the mass of the set of paths representing that at least 35 vehicles are 
seen in the first 6 hours of observation. Let X t be the number of vehicles 
observed over the interval from time 0 up until the instant t. It makes sense 
to suppose no cars have been observed at the initial instant, that is, Xo = 0 
with probability 1. Assume the density.>. = 5 as in Chapter 9. According 
to formula 9.2, the probability of at most 34 vehicles passing in a 6-hour 
interval [i.e., P(X6 ::; 34)] is given by adding up the probabilities that there 
are 0 vehicles, 1 vehicle, etc., up to 34 vehicles, that is, 

(30)0 (30)1 (30)34 e-30 __ + e-30 __ + ... + e-30 __ = u. 
O! 1! 34! 

The probability of at least 35 vehicles in this interval is then given by 
1 - U, and this is a measure of those paths representing the event that at 
least 35 vehicles are observed in the given interval. How about the measure 
of those paths representing the event of at least 35 vehicles seen in the first 
6 hours of observation and also at least 35, vehicles in the next 6 hours 
of observation? Assuming the same Poisson process describes the traffic 
on the road throughout the 12 hour period, we can get the probability by 
using two of the basic properties of the Poisson process: the independence 
of the increments of the process over non-overlapping intervals and the 
dependence of the distribution of Poisson events in an interval only upon 
the length of the interval, not its endpoints. In terms of the process Xt, we 
have 

P(X6 > 35 and X 12 - X6 > 35) P(X6 > 35) P(X12 - X6 > 35) 

P(X6 > 35)2 = (1- u)2. 

17.3 The Brownian motion process 

Robert Brown was an English botanist who, in 1827, discovered the ran­
dom movement of small particles suspended in a fluid. The movement, 
called Brownian motion, is due to a large number of collisions the particles 
sustain from the molecules of the fluid. Einstein (and others) worked on a 
physical theory to explain the Brownian motion. As usual, the physics of 
the situation used a lot of mathematics in very loose ways and then math­
ematicians entered the picture to try and make a reasonable mathematical 
model of the process. Norbert Wiener was the first to arrive at a rigorous 
description, and in his honor the Brownian motion process is often called 
the Wiener process. 



17.3 The Brownian motion process 207 

Let's see what the ideal Brownian particle does. Rather than handle three 
dimensions, we are going to look at only a single dimension; that is, we are 
going to see how the particle's x position is changing if its position in three 
dimensions were plotted in a standard x-y-z coordinate system in space. 
Since the movements in the three dimensions are independent of each other 
and identically distributed, studying what's happening in the x direction 
is all that's necessary to get a complete probabilistic description of the 
movement of the particle. Now let some initial time t = 0 be designated, 
and let us represent the position X t of a Brownian particle moving on the 
x axis. Here are the basic assumptions for the Wiener process, sometimes 
called the standard Brownian motion: 

a. For any n ~ 3 times tl < t2 < ... < tn, the random variables 

are independent (this is often called the assumption of independent 
increments; the Poisson process also has this property). 

b. For any s < t, the random variable X t - Xs has a normal distribution 
with expectation 0 and variance K(t - s), where K > 0 is some 
fixed constant (another way to say this is that the differences, or 
increments, are normal with mean 0 and variance proportional to the 
time difference). 

Usually the particle is considered as having started at time 0 from 
the origin, that is, 

c. Xo = 0 with probability 1. 

Using these conditions, a probability mass, called Wiener measure, can be 
set up on the path space such that the typical Wiener path is continuous 
(Le., the points of the curve for t very close to s are also very close), 
but is extremely "jagged." Mathematically, this means the path does not 
turn smoothly anywhere-the tangent to the curve, which represents the 
velocity of a particle moving on the curve and is expressed by what is called 
in calculus the derivative of the function giving the curve, does not exist. 
We can think of the curve as being very pointy, as though it is always 
changing direction. This is perhaps not very surprising when you think 
of the physical Brownian movement with a particle constantly undergoing 
random bombardment. It is impossible to draw an adequate picture of a 
Brownian path; the real path is much less smooth than any picture could 
be. 

That a typical Brownian path has tangents nowhere is very interesting 
in light of the mathematics of the eighteenth and nineteenth centuries. 
Most mathematicians of that era believed all continuous curves had to 
have well-defined tangents, and there were repeated attempts to prove this. 
Finally, in the middle of the nineteenth century, the German mathematician 
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Karl Weierstrass gave an example of a continuous curve without tangents 
anywhere. This example must have appeared as an aberration to most of his 
contemporaries, the type of example mathematicians often call pathological 
to indicate its unusual and unexpected nature. But from the point of view of 
Brownian paths (which, of course, were unknown at the time) the situation 
is just the opposite: the typical Brownian path has no tangents, and the 
totality of paths with tangents are the anomalies, having probability O. 

17.4 A few computations for Brownian motion 

We can find the Wiener measure of various events by using the assumptions 
for the Brownian motion process just as we used the assumptions for the 
Poisson process in the preceding section to calculate probabilities. We are 
going to consider some easy examples. Let X t be the position of the Brow­
nian motion at time t. We can ask what the Wiener measure is for the set 
of paths with X4 > 2, say. According to our assumptions, X4 = X4 - Xo 
is normally distributed with expectation 0 and variance 4K, where K is 
the constant for the Brownian motion given in (b) above. So this problem 
can easily be solved by using the methods of Chapter 12: find the probabil­
ity that a normal random variable with given mean and variance exceeds 
a certain value. Now let's compute a conditional probability. Suppose we 
want to find 

P(X4 > 2/ Xl = 3), 

that is, the probability that the Brownian motion exceeds 2 at time t = 4, 
given that at time t = 1 it was at level 3. The above probability is equal to 

P(X4 - Xl> -l/XI - Xo = 3) = P(X4 - Xl> -1) 

by the assumption of independent increments for Brownian motion [prop­
erty (a) above]. Finally, by property (b), the distribution of the random 
variable U = X4 - Xl is normal with mean 0 and variance 3K, so the 
methods of Chapter 12 easily lead to a solution of this problem also. From 
the foregoing, we see something very interesting about Brownian motion. 
If s is a fixed time and a is any position value with Xs = a, the process 
Ut = Xt - a for t 2": s is a Brownian motion just like Xt for t 2": O. [Another 
way to say this is that if we relabel the t-x axis of the Brownian motion 
X t by shifting so that the point (s, a) becomes the origin of a transformed 
coordinate system t'-x', then Ut , is a Brownian motion with the same pa­
rameters as X t .] It is also intuitively reasonable and indeed true that the 
Ut process for t > s is independent of the X t process for t ::; s. This follows 
from the assumption that the Brownian motion has independent incre­
ments, as follows. Suppose we want to know P(Ut > c/ Xs = a, Xw = b), 
say, where w < sand t > s. This is the same as 

P(Xt - Xs > c/Xs = a,Xw = b) = 
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P(Xt - Xs > c/ Xs - Xw = a - b, Xw - Xo = b) = P(Xt - Xs > c) 

by the independent increment assumption, so the right-hand side only de­
pends upon Xs and not upon the position of Xw. This essentially shows 
the Brownian motion process is a Markov process (the future only depends 
upon the most recent past), about which we'll say more later. 

The Wiener measure of more complicated events frequently requires the 
use of calculus methods. For example, suppose we wished to calculate the 
Wiener measure of all paths such that Xl > 0 and X2 < o. A typical path 
of this type would have Xl = a > 0 and X2 = b < 0 for some numbers 
a and b. If we had a way to assign an "infinitesimal probability" to each 
single path of this type, we could then "add up" all these "probabilities" 
over all possibilities for a and b to get a probability for the union set. Using 
calculus, such problems can be solved since the Wiener measure defines 
such infinitesimal probabilities and the ideas of calculus let us handle such 
objects. 

Descriptions of events in continuous time can get much more complicated 
than in discrete time. Take the event that simply says the Brownian motion 
stays above the 0 level for all times t between 0 and 1, that is, X t > 0, 0 ~ 
t ~ 1. This event depends on all times on the unit interval, and this is a 
continuum of time values. Such events depending on a continuum of times 
can lead to complications that don't exist in the discrete case, but there are 
techniques for handling events of this type. This is fortunate, since this kind 
of event is often of great interest. We give a final computation in this section 
involving an event defined in terms of a continuum of times but where things 
turn out simple enough so that we can arrive at an answer easily. We want 
to consider the event E = "the Brownian particle travels on an increasing 
path everywhere on the time interval 0 to 1." What this means is that the 
curve Xt is always increasing on the unit interval. We show that this event 
has probability 0, that is, the sample paths corresponding to this event have 
Wiener measure 0, so that the typical Brownian particle is almost surely 
going to dip down in this interval. To see the truth of this is relatively 
easy. Let N be any fixed positive integer, and divide the unit interval into 
subintervals by choosing any instants 0 < tl < t2 < ... < tN < 1. Then if 
E is true, it must be the case that each of the conditions 

X t1 > 0,Xt2 - Xh > 0,··· ,XtN - X tN _ 1 > 0 

are satisfied. But these events are independent, so the probability of their 
joint occurrence is the product of the probabilities of the separate occur­
rences. Now take, for example, X t2 - X t1 • This is a normally distributed 
random variable with mean 0, so 

P(Xt2 - Xh > 0) = .5. 

Similarly, each ofthe other random variables to the left ofthe ">" symbol 
are normal with mean 0, so each probability is .5. It follows that the event 
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described by the joint occurrence of the N inequalities above is (.5)N. 
From our laws of probability, we must have P(E) :::; (.5)N [if F is the 
event corresponding to the fulfillment of each of the above inequalities, 
then E c F, so P(E) :::; P(F)J. But the number N of instants we chose 
was arbitrary, so that P(E), being less than or equal to the Nth power of 
.5 for any N, no matter how large, must be equal to O. This proves that the 
set of Brownian paths which are always increasing on the unit interval has 
probability O. Now, there was nothing special in our use of the unit interval 
here; the argument we just used about choosing N instants could have been 
made had we been given any interval. So what we have really seen is that 
the Brownian particle can never keep increasing on any interval, and the 
typical Brownian path is very irregular, always changing direction. This 
ties in with the property (already mentioned) that the Brownian paths 
have no tangents anywhere. For if such a path increased everywhere on an 
interval, the existence of tangents to the path could be shown to exist at 
(most) points of the path over the interval where the path increases. 

17.5 Brownian motion as a limit of random walks 

You may have been struck by a similarity of the Brownian motion process 
to the random walk processes discussed in Chapter 16. In the random walk 
situation, time is discrete, as is the distance jumped by a particle, but in 
both cases we have a particle starting out at 0 and performing random 
movements where the position of the particle at any time, n or t, is given 
by Sn or X t . We would like to present an intuitive approach showing how 
Brownian motion can be derived by thinking of it as a limit of random 
walks. Our exposition essentially follows the ideas of Kac [20J. 

Think back to the random walk with p = q = .5 (often called the sym­
metric random walk). In this case, a particle starting out at 0 moves a unit 
to the right or a unit to the left in unit time with probability .5 such that 
the displacements are independent. What we want to do now is think of 
the same situation, except that the two units, jump distance and time, will 
be thought of as very small. Let the unit of time be T and suppose that 
at each such unit of time the particle instantaneously moves a distance ~ 
units from where it is either to the right or to the left with probability .5. 
More precisely, define the random variable UiT to be the displacement at 
the ith step, where 

UiT = ~ or - ~ each with probability .5. 

The sequence of displacements UiT are assumed independent. Suppose 
the particle starts off at O. The position of the particle at time t is roughly 
given by 

(17.1) 



17.5 Brownian motion as a limit of random walks 211 

where m is the integer part of the quotient tiT. Formula 17.1 is the sum 
of independent, identically distributed random variables, and is essentially 
just another way of writing our old friend 

from previous chapters. The variables U satisfy: 

It follows from Section 8.8.2 that the variance of X mT in formula 17.1 is 
the sum of the variances of the U random variables, that is, !:l.2m. 

So far T and !:l. have been fixed constants which we have assumed to 
be small, but now suppose we let both T and !:l. tend to 0, so the time 
interval between displacements is shrinking to 0 as well as the size of the 
displacement. In addition, since the time t is a fixed value, the number of 
displacements m must increase. The trick to get something worthwhile out 
of all this is to let T and !:l. go to 0 in a special way: it is required that 

!:l.2 
- ---+ K, a constant, and mT ---+ t, 

T 
(17.2) 

where the arrows denote convergence, that is, the left side of the relations 
get closer and closer to the right side as T and !:l. are converging to O. If 
formula 17.2 is true, then the variance of the sum in formula 17.1 can be 
written 

!:l.2 
!:l.2m = - . Tm ---+ Kt. 

T 

The Central Limit Theorem (see Chapter 12) shows that the sum on the 
right-hand side of formula 17.1 when divided by the standard deviation 
!:l...;m has a distribution which tends to the standard normal distribution. 
Since !:l. 2m converges to K t, this will be equivalent to the distribution 
of the right-hand side tending to the normal distribution with mean 0 
and variance Kt. The left-hand side of formula 17.1 tends to the random 
variable X t • The X t process will turn out to be Brownian motion. 

To see this, we want to check that the X t process just constructed satisfies 
the assumptions (a), (b), and (c) given above for Brownian motion. We have 
just seen that the distribution of X t = X t - 0 = X t - Xo is what it should 
be according to the definition in (b) above: it is normal with expectation 
o and variance K t. But instead of starting from 0 at initial time 0, we 
could have started from 0 at any time s. Then we could have represented 
the difference X t - Xs as a sum of U's just as in formula 17.1 and applied 
exactly the same argument as before, where t - s now plays the role of t 
above. This leads to the general statement of (b) in the definition above. 
The statement (a) of the definition follows from the interpretation of the 
random variable X t as the sum of independent U variables. We can argue 
like this: Suppose three times r, s, and t are given with r < s < t. The 
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random variable Xs - Xr can be written as a sum of U's as in formula 
17.1, and the random variable X t - Xs can be similarly represented as 
a sum of U's. But the U's in the first representation are independent of 
the U's in the second representation because the time intervals from r to 
s and from s to t are non-overlapping. Therefore, Xs - Xr and X t - Xs 
are independent. The same argument works for any finite number of times 
tI,' .. ,tn, and this shows (a) in the definition above is satisfied. Since we 
started with P(Xo = 0) = 1, the process X t is a Brownian motion as 
claimed. 

The above argument shows how the Brownian motion process can be 
thought of as a limit of a bunch of random walks where the unit displace­
ment and unit time both shrink to O. To get Brownian motion though, the 
shrinking couldn't have been in any arbitrary manner. We had to impose 
the conditions of formula 17.2 in order to get the variance of the sum in 
formula 17.1 tending to the finite, positive number Kt. Without formula 
17.2 there is no guarantee that ~ 2m has a finite limit or any limit at all. 
Then we wouldn't have been able to use the Central Limit Theorem. 

From the relation ~2 17' --+ K, we can see why the Brownian paths don't 
have tangents, or to say it another way, particles moving on these paths 
don't have finite velocities. Both ~ and 7' are tending to 0, but ~2 is about 
K times 7'. This implies that for very small ~ and 7', ~ is much larger than 
7', so ~/7' is getting arbitrarily large, tending to infinity. But ~ represents 
the distance the Brownian particle moves in time 7', so the ratio ~/7' is 
distance divided by time, and this is the velocity of the particle. So the 
limiting value of the velocity does not exist as a finite number, and the 
Brownian paths have no tangents. 

Since Brownian motion is the limit of random walks, and these random 
walks are Markov chains, we might expect that the Markov property carries 
over to Brownian motion. Recall from Chapter 16 that the essential feature 
of the Markov property is independence of the present (and future) from 
the "distant" past; that is, the conditional probability of a present or future 
event on the past just depends on the situation at the last given time, the 
present. For Brownian motion, this would say something like 

P(Xtn lies in I I Xt. = UI, X t2 = U2, ... ,Xtn _ 1 = Un-I) 

only depends upon Un-I, where I is any fixed interval and h < t2 < ... < 
tn. To see the truth of this, note that this probability is the same as 

P(Xtn - X tn _ 1 lies in 1- un-I/Xh = UI,Xt2 = U2,'" ,Xtn_ 1 = Un-I), 
(17.3) 

where 1- Un-I is the interval obtained by taking the set of all numbers of 
the form x - Un-I for all x in I. But by property (a) of the definition of 
Brownian motion, Xtn -Xtn _ 1 is independent of X h -Xo = X h and X t2 -
X h , and so is independent of the sum Xtl + X t2 - X h = X t2 . Therefore, 
Xtn -Xtn _ 1 is independent of both X h and X t2 . By continuing in this way 



17.6 Exercises for Chapter 17 213 

we can show that Xtn - Xtn _ l is independent of Xtl , X t2 , ... ,Xtn _ l • What 
this means is that the probability of formula 17.3 is equal to 

which just depends upon Un-I, the position ofthe particle at the last given 
time. This proves the Markov property for Brownian motion. 

The Poisson process is also a Markov process (if we set Xo = 0 with prob­
ability 1); the argument, as in the above proof for Brownian motion, de­
pends on the fact that the Poisson process also has independent increments 
with the distribution of the increment only depending upon the amount of 
the time difference. Independent increment processes are continuous time 
analogs of random walks and inherit a lot of the nice properties of these 
walks, like the Markov property. 

17.6 Exercises for Chapter 17 

The processes X in the exercises below are standard Brownian motion 
processes. 

1. Find the probability of the event: 

2. Assume K = 1 in condition (b) for the Brownian motion. Express 
the following probability in terms of normally distributed random 
variable(s) (give the mean and variance): 

P(X.75 > X.40 + 1, X. 25 < -2). 

3. Given an interval I, can there be a substantial number of Brownian 
paths remaining constant throughout the interval? Try to calculate 
the probability of a Brownian path remaining constant on I. 

4. Assuming K = 1 (see exercise 2), express the probability 

P(O < Xs < 1/X4 = 2, -10 < X2 < 10) 

in terms of normally distributed random variable(s). 

5. Let a be any fixed level. Show that for all times t = T sufficiently 
large, P(XT < a) ~ .5. (Hint: write the event in terms of a standard 
normal variable.) 

6. Let a > 0 be any fixed level. We are interested in the event: the 
Brownian particle X(t) stays between 0 and a forever, i.e., 0::; X t < a 
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for all t ~ O. Using the preceding exercise, give a heuristic (that is, 
intuitive) argument showing the probability of this event is O. (Hint: 
for all times T, 

P(O ::; X t < a for all t ::; T) ::; P(O ::; X T < a), 

and take T large as in exercise 5.) 



Answers to Exercises 

CHAPTER 1 
1. (a) Can be described as the set of all triples of the form (D, 01, C2) 

where D stands for the number rolled on the die, and 01 and C2 
stand for H or T (for heads or tails). There are 24 possible outcomes. 
(b) 1/8, 1/4, 1/2. 

2. Assume the car is behind the door labelled 1 and the goats behind 
the doors labelled 2, 3, and 4. If you switch, you can only win if your 
initial choice is one of the doors 2, 3, or 4. Each of these choices has 
probability 1/4. Assume we choose door 2. Notice that whatever the 
host does, you wind up with two choices, one of which will win the 
car, and the other will win the goat. Thus, half of the probability 
1/4, namely, 1/8, should correspond to the event of winning the car 
when you choose door 2. Since the same argument works for each of 
the other doors, the answer is 3/8. If you don't switch, the only way 
you can win the car is if your initial choice is door 1, so the answer 
is 1/4. 

3. The wording implies that we are to consider all possible times, so 
there are a continuum of instants in the interval between 6 and 7 
AM. The sample space is therefore continuous. 

4. There are 13 possible times the alarm can go off. The sample space 
can therefore be represented by the 13 outcomes corresponding to the 
times 6:00, 6:05, 6:10, etc., up to 7:00. Because the sample space has 
a finite number of outcomes, it is discrete. 
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5. The alarm will disturb my dream if it rings at one of the five times 
6:20, 6:25, 6:30, 6:35, or 6:40. The probability is 5/13. 

CHAPTER 2 

1. Since everyone in the elevator was born in January, there are a total 
of 31 days to consider. Max knows his birthday, so we look at the 
seven other people. The first can have a birthday chosen in 30 ways 
(it must be different from Max's birthday), the second in 29 ways, 
etc., giving the probability that all birthdays are different by 

(30)(29) ... (24) 
v = (31)7 . 

The probability that at least two have the same birthday is 1 - v. 

2. 720 ways. 

3. If we put a man in the first seat there are three choices. Then the 
next seat must have a woman, and there are three choices. The next 
seat must have a man and there are two choices, and the next a 
woman and there are two choices. The final two seats must have the 
remaining man and the remaining woman, so there is only one choice. 
The total number of ways if we start with a man in the first seat is 
therefore 36. If we start with a woman in the first seat we get another 
36, for a total of 72 ways. 

4. This is useful in studying sequences of heads and tails (see the discus­
sion of the binomial distribution in Chapter 7). Assume the H's are 
labelled HI, H2, H3, H4, and the T's Tl, T2, T3. The total number 
of ordered arrangements of these seven symbols is 7·6 ... = 5040. But 
if you want distinguishable patterns, observe that since the H's and 
T's cannot be distinguished among themselves, any distinguishable 
pattern is equivalent to 24 ordered arrangements by shuffling the H's 
in all possible ways, and six ordered arrangements by shuffling the 
T's. Therefore, we must divide 5040 by 24·6 to get 35 distinguishable 
patterns. 

5. Since there are fewer numbers to choose from, there are fewer out­
comes, so the chances that the number you chose is selected is greater. 
The number of outcomes is 

40·39·38·37·36·35 
720 

3,838,380, 

and the probability is therefore 1/3,838,380. 
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CHAPTER 3 

1. (a) The first die is odd and the second die is even, 1/4. 
(b) The first die is odd and the second is even, or else the first die is 
even and the second odd, 1/2. 
(c) The first die is even, 1/2. 
(d) The first die is even and the second odd, 1/4. 

2. 1/18, 1/9, 1/8. 

3. 11/16, 11/15, 1/11. 

4. 3/11, 5/22, 1/2, 1/2. 

5. The left-hand side of the relation can be written 

P(A) p(AnB) p(AnBnC) 
P(A) P(A n B) . 

Cancellation gives the right-hand side of the relation. 

CHAPTER 4 

1. The initial information gives you a uniform distribution for the nine 
possibilities of the composition of the urn (we are using a sample space 
with ordered pairs). Without further information, the probability of 
the urn containing a green ball and a red ball is 2/9 (first ball red, sec­
ond green, and first ball green, second red). But once we choose a ball 
and note that it is green, the urn must contain a green ball. The other 
ball is equally likely to be either of the three colors, and the sample 
space can be represented by the unordered pairs {G, G}, {G, R}, and 
{G,B}, each with probability 1/3. The probability that the second 
ball chosen is red is the probability that the composition of the urn 
is {G, R}, which is 1/3, multiplied by the conditional probability of 
choosing the red ball, given this urn composition, and this is 1/2. So 
the answer for red is 1/6, and the symmetry of the situation (or a 
direct computation) gives the same answer for black. Using comple­
mentary events, we see the probability of the second ball being green 
must be 2/3 = 1-1/3. This can be seen directly: green can be chosen 
under each of the three possible compositions. In the two cases where 
green is paired with another color, each of these cases contributes 
1/6 to the total probability. In the case where there are two green 
balls, you choose a green ball with probability 1, so in this case, 1/3, 
the probability of {G, G} contributes to the total probability, giving 
2/3 = 1/6 + 1/6 + 1/3. 
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2. P(A n B) = 1/6, and P(B) = 1/2, so the answer to (a) is 1/3. For 
(b) we have 

P(A/B) P(B) 
P(B/A) = P(A/B) P(B) + P(A/Bc) P(BC) , 

and this gives 1/6 on top and 11/36 on the bottom, giving the value 
6/11. 

3. Use of Bayes's formula gives (.10)(.8) = .08 on the top, and .08 + 
(.60)(.2) = .20 on the bottom, to give a belief probability of .4. 

4. The top of Bayes's formula has (.40)(.5) = .20, and the bottom has 
.20 + (.10)(.5) = .25, so the probability is .8. 

5. In Bayes's formula (problem 2) let B = winning the car, and A = 
switching doors. The formula gives 2/3· 1/2 on top (probability of 
switching is equal to 1/2), and 2/3 . 1/2 + 1/3 . 1/2 = 1/2 on the 
bottom. So the answer is 2/3. 

CHAPTER 5 

1. The sample space can be described by the four pairs 

(H, H), (H, T), (T, H), (T, T), 

where the first and second entries describe whether heads or tails 
fallon the first (fair) coin and the second (biased) coin, respectively. 
The probabilities for each of the outcomes are 1/6, 1/3, 1/6, 1/3, 
respectively. The probability of at least one head is 2/3, and the 
probability of at least one tail is 5/6. 

2. (a) (.999)100. 
(b) o. (c) 1- (.999)1,000,000. 

3. Does the model of repeated independent trials apply to this real-life 
problem? If you think so, then ask about the expected waiting time 
until you win. In Section 7.4 we will see that the expected waiting 
time until the first success in repeated Bernoulli trials is the reciprocal 
of p, the probability of success. For the lottery discussed in Chapter 
2, this would require about 25,827,165 plays. If you play once a day 
every day of the year, this gives you an expected wait of about 70,759 
years! 

4. If you don't switch, the probability of winning a goat is 2/3, and if 
you switch the probability is 1/3, so by independence the probability 
of winning two goats by the strategy indicated is 2/9. The probability 
of winning two cars by this strategy is also 2/9. 
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5. (a) The colors of the lights as Ringo approaches can be described 
by a triple of the form (G1, G2, G3), where G1, G2, and G3 are the 
colors of the first, second, and third lights, respectively. In general, 
we would have a sample space of eight outcomes, where we could put 
each of the two possible colors in for G1, G2, and G3. But in this case 
we only have four outcomes with positive probability: 

(Ci,Ci,Ci),(Ci,ll,ll),(ll,Ci,ll),(ll,ll,Ci) 

each with probability 1/4. (b) 1/2, 1/2, 1/2; 1/4, 1/4, 1/4; O. If the 
three events were independent, then the probability of F n S n T 
would be 1/8, not o. 

CHAPTER 6 

1. Using .51 as the approximate probability of losing at a single game 
of craps, and assuming independence of the games at each day, gives 
the probability of winning at least one game equal to 1- (.51)4. 

2. There are three ways for my opponent to win if the game were con­
tinued, given the present score: she could win the next point; I could 
win the next point, and she could win the succeeding one; I could 
win the next two points and she could win the succeeding one. The 
probability of my opponent winning is therefore 1/3 + 2/3 ·1/3 + 2/3· 
2/3 ·1/3 = 19/27. According to Pascal's principle, she should receive 
(19/27) . $100 ~ $70.37 and I should receive $29.63. 

3. 35:1; 1:7. 

4. The game will end when you select a black ball if and only if you 
selected a black ball initially, and the probability of this event is 1/5. 
The second event means that the black ball was initially selected and 
the following two selections resulted in red balls. The probability is, 
by independence, 1/5· (4/5)2 = 16/125 = .128. 

5. We consider sequences of plays that start immediately after Anna's 
winning play. The event whose probability we seek occurs if there 
are i consecutive plays resulting in red balls different from the red 7, 
followed by a play in which the red 7 appears, where i = 0,1,2···. 
We have to add up the probabilities of each of these possible events 
as i varies, and this gives the infinite series 

1/38 + (17/38)(1/38) + (17/38)2(1/38) + ... = 1/21. 

6. No. The sample space can be represented by six ordered triples (a, b, c), 
where a is the number of the card, b is the color observed, and c is 



220 Answers to Exercises 

the color not seen. Using a uniform distribution, the probability of 
observing a red color is .5, and the conditional probability of the red­
red card given this observation is 2/3. The odds against the red-black 
card are 2 to 1. 

CHAPTER 7 

1. Use the binomial distribution model with success identified with rolling 
7 and failure rolling anything else. Then the probability of success is 
1/6, and there are 100 trials, so 

P(X = 5) = C100,5 (1/6)5 (5/6)95 

and P(X < 98) = 1- (P(X = 98) + P(X = 99) + P(X = 100)) = 
1 - 4950 (1/6)98 (5/6)2 - 100 (1/6)99 (5/6) - (1/6)100. 

2. The probability that the number you bet on appears at least once is 
1 - (5/6)3 = Q. Then the conditional probabilities that the number 
bet on appears 1, 2, and 3 times are 

(3·1/6 (5/6)2)/Q, (3· (1/6)2 5/6)/Q, and (1/6)3/Q, 

respectively, giving approximate values of .824, .164, and .012. (No­
tice these numbers add up to 1, as they must.) The expectation is 
calculated by multiplying each of the conditional probabilities by 1, 
2, and 3, respectively, and then adding up. This gives an approximate 
expectation of $1.19. 

3. The expected payoff to you of the game is 

The expected payoff should be equal to the entrance fee to play the 
game in a fair game, so the entrance fee should be $N. 

4. Use the Bernoulli trial set-up with success interpreted as rolling 7, 
failure for anything else. The probability of success is 1/6, so the 
expected number of trials before success appears is the reciprocal of 
the success probability, 6. In the game, you win if there is at least one 
7 in three rolls, and the probability is 1- (5/6)3. Your expected loss 
is -3· (5/6)3. If P is your payoff if you win, to make the game fair 
P (1- (5/6)3) - 3 . (5/6)3 = O. Solving for P, we get an approximate 
value of $4.14. 

5. We'll solve this problem by a direct computational approach, but in 
exercise 4 of Chapter 8 a slicker approach will be given which requires 
no computation. We consider a sample space whose outcomes are 
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all possible choices of two cards from the deck. The sample space 
can either consist of the ordered choices or the unordered ones; you 
will of course get the same answer (if you do the problem correctly) 
whichever sample space you choose. Since order is not important in 
this problem, just the hand one obtains, let's take the unordered 
choices. Then the sample space contains G52,2 outcomes. The number 
of ways of choosing exactly one black card is G26,1 • G26,1, where the 
first term is the number of ways of choosing one black card from 26 
possibilities, and the second term is the number of ways of choosing 
one red card from 26 possibilities. The number of ways of choosing 
two black cards is G26,2. The expected number of black cards is then 

which, if you substitute numbers and work it out, comes out to be 1. 
To find the expected number of hearts, observe that exactly one heart 
is obtained by choosing the heart in G13 ,1 ways, and the non-heart 
in G39,1 ways. Exactly two hearts can be chosen in G13,2 ways. This 
gives the expected number of hearts to be 

1 . G13,1 G39,1 + 2. G13,2 

G52,2 G52,2 ' 

which works out to be 1/2. 

6. When the balls are replaced, the choices are independent (we assume 
the balls are mixed after each replacement). We can use a binomial 
distribution, where we interpret a red ball as success for each of three 
trials, and with success probability .6. The expected number of red 
balls is then 

1· (3)(.6)(.4)2 + 2· (3)(.6)2(.4) + 3. (.6)3, 

or 1.8 [in Section 8.2 we will see that a binomial variable always 
has expected value = number of trials multiplied by the success 
probability-this translates here into 3· (.6) = 1.8]. Now suppose 
we choose without replacement. Then the probabilities of 1,2, and 3 
red balls are given by 

G6 ,1 • G4,2 G6,2· G4,1 G6 ,3 

GlO,3 GlO,3' GlO,3· 

These are examples of probabilities from a hypergeometric distribu­
tion. You can calculate the expected number ofred balls obtained by 
choosing without replacement by mUltiplying the probabilities above 
by 1, 2, and 3, respectively, and adding up. We get 1.8, the same as 
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the expected number choosing with replacement. Is this just a coinci­
dence? The answer is no! The following interesting fact can be proved: 
if you have r red balls and b black balls in an urn, and you make s 
drawings from the urn, where s must, of course, be at most equal to 
the total number of balls r + b, then the expected number of red balls 
selected in the s drawings is the same whether you choose with re­
placement or without replacement. The proof consists in finding the 
expected value of a hypergeometric distribution and recognizing it as 
the same number obtained in the case of choosing with replacement. 

CHAPTER 8 

1. The neatest way to do this is to let X be the first integer picked 
and Y be the number rolled by the die, and then use the formula: 
E(X + Y) = EX + EY. Here EX = 2/3, and EY is the sum of the 
integers 1 through 6 divided by 6, which is 3.5, and so E(X + Y) ~ 
.67 + 3.50 = 4.17. An alternative way is to consider the sum X + Y 
as a random variable U, say, whose distribution we will derive. If 
o is the first integer picked, then U takes on the values 1 through 
6, each with probability (1/3)(1/6) = 1/18. If 1 is the first number 
picked, then U takes on the values 2 through 7, each with probability 
(2/3)(1/6) = 2/18. The distribution of U can be given by the list: 
2, 3, 4, 5, and 6 occur with probability 3/18 = 1/6; 1 occurs with 
probability 1/18, and 7 with probability 2/18. EU is computed by 
taking each value, multiplying by the probability of this value, and 
adding up. We obtain 20/6 + 1/18 + 14/18 ~ 4.17. 

2. Let X, Y, and Z be 1 or 0 depending on whether the first, second, or 
third comes up heads or tails, respectively. Then EX = 1/2, EY = 
2/3, and EZ = 3/4. The expected total number of heads is therefore 
1/2 + 2/3 + 3/4 ~ 1.92. 

3. Think of rolling 7 as a success, anything else a failure. We can use 
a binomial distribution model with probability of success = 1/6. Let 
Tl be the time until the first success, T2 the time starting right after 
the first success until the second success, etc. The expected time until 
the tenth success is given by the expectation of 

The variables T all have the same distribution as waiting time vari­
ables until the first success; this is true because after any success the 
process "starts afresh," that is, it is independent of the past. Since 
the expectation of each T is the reciprocal of the success probability, 
each T has expectation 6, so the expected time until the tenth success 
is 60 rolls of the dice. 
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4. Use the hint: if you choose two cards, then the number of black cards 
plus the number of red cards you hold = 2, that is B + R = 2. 
By symmetry, Band R have the same distribution: there are 26 
black cards and 26 red ones. Therefore, Band R must have the same 
expectations. Then using the relation EB + ER = E(B + R) = E2, 
we get 

EB + ER = 2, or 2EB = 2, so EB = ER = 1. 

A similar argument works with the expected number of hearts. Let 
H, D, C, and S stand, respectively, for the number of hearts, dia­
monds, clubs, and spades chosen when you select two cards at ran­
dom. We must have H + D + C + S = 2. As before, the symmetry 
(each suit has the same number of cards) implies each variable has 
the same distribution and therefore the same expectation. This leads 
to EH + ED + EC + ES = 2, or 4EH = 2, from which follows 
EH = ED = EC = ES = 1/2. 

5. ( a) Use the relative frequency of appearances of black in a large num­
ber of plays at roulette, (b) relative frequency of rolling snake eyes 
in a large number of throws of a pair of dice, (c) relative frequency 
of winning at least $1 in a large number of plays at chuck-a-luck, 
(d) relative frequency of winning in a large number of plays at the 
car-goat game if your strategy is always to switch. 

6. By the strong Law of Large Numbers, for all n sufficiently large we 
must have the relation 

P (: - .01 > -.001) > .99, 

where Sn is our total winnings after n games. A little algebra shows 
the event in question is equivalent to Sn > (.01- .001)n = .009nj that 
is, the total winnings will eventually exceed $.009n with probability 
exceeding .99. So (b) is always true. On the other hand, it also follows 
in a similar manner that the relation Sn < (.01 + .001)n will be 
true for all n sufficiently large with probability exceeding .99. This 
means that the total winnings will be less than .02n < n dollars 
with probability exceeding .99 (and with probability tending to 1 as 
n increases beyond all bounds). This means that (a) will always be 
false for all sufficiently large n. 

CHAPTER 9 

1. (a) e-5 56 /6!. (b) 1 - (1 - e-5 )1O. (c) (1 - C 5 )1O. 

(d) 10· (1- 37/2 e-5 )(37/2 e-5 )9. 
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2 .. 5 e-1 . 

3. e-30/ 4 • 

4. e-20 2030/30!. 

5. The probability of the insect laying r eggs of which exactly k survive 
is 

P(r eggs laid) . P(k of the r eggs survive/r eggs laid), 

where the second probability is based on the binomial model, so we 
get 

e-5 5r /r! . Cr,kpkqr-k. 

The answer is obtained by adding up all of these terms for all the 
possible values of r, namely, r = k, k + 1,···. 
(b) We need to calculate probabilities conditioned on our knowledge 
of the event A = at most 3 eggs were laid. We have 

P(A) = e-5 + 5e-5 + (25/2)e- 5 + (125/6)e-5 = Q. 

The probability we seek is then 

CHAP'I'ER _10 

1. We estimate your probability q of losing $1 at .51, and p, the proba­
bility of winning $1 at .49 (see Chapter 6). Formula 10.6 gives us the 
approximate value 

(1.04)3 - (1.04)6 ~ 54 
1- (1.04)6 . 

of your ruin. Since the game is unfavorable for you, the best strategy 
you can use, i.e., the one to reduce your ruin probability as much as 
possible, is to play at $3 stakes, the largest possible. A calculation 
shows this reduces the ruin probability to almost .5. 

2. Here q = 20/38,p = 18/38, and the formula gives 

(10/9)3 - (10/9)6 ~ 58 
1 - {1O/9)6 ~.. 
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3. This is a fair game, so we use formula 10.8, and at $1 stakes we 
obtain a ruin probability of 1 - i/2i = 1/2. If the stakes are changed 
allowing the boldest play, that is betting $i at each play, the formula 
becomes 1 - 1/2 = 1/2, so there is no change in ruin probability. If 
p is changed to .499, the game is unfavorable and the best strategy 
is now bold play: betting at $i stakes. If p is changed to .501, then 
the game is favorable, and the best strategy is timid play: bet at the 
lowest possible stakes allowable. 

4. Ginger can be ruined after the first play with probability 4/5. She 
can be ruined at the third play by winning, losing, and losing again: 
this probability is (4/5)(4/25). She can be ruined at the fifth play 
by oscillating between 5 and 10 and then losing, with probability 
(4/5)(4/25)2. The general pattern is that we can oscillate between 5 
and 10 any fixed number of times before being ruined. Each of these 
oscillations followed by ruin defines a disjoint sequence of events, so 
that the total probability of ruin is obtained by adding the following 
infinite series: 

4/5 + (4/5)(4/25) + (4/5)(4/25)2 + (4/5)(4/25)3 + .... 

This is a geometric series with ratio 4/25 and initial term 4/5. The 
sum of the series is therefore 20/21. Use of formula 10.6 gives 

where the exponents 1 and 3 used in the formula are due to the $5 
stakes. 

5. If s = 1, we have the classical game. If s > 1, then we can win more 
than we can lose at a single play and intuitively it should become 
easier to win the game. This would increase the gambler's win prob­
ability and decrease his ruin probability. To make this intuitive argu­
ment a little more rigorous, note that any sequence of plays leading 
to the gambler winning in the classical game corresponds to another 
sequence of plays leading to the gambler winning in the revised game. 
The second sequence is an initial piece of the first sequence in general 
because every time we win a play we move more units to the right 
so the game ends faster. Since there are fewer steps to win, there are 
fewer probabilities to multiply together, and the sequence of plays 
in the revised game would have a higher probability. By adding all 
the probabilities corresponding to these sequences we would get the 
(total) probability of winning in the classical game, and by the corre­
spondence this would not be greater than the probability of winning 
in the revised game. It follows that the probability of ruin in the re­
vised game is not greater than the probability of ruin in the classical 
game. 
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CHAPTER 11 

1. For Felix and Alice to be on the same bus they would both have to 
arrive during one of the four 15-minute intervals preceding the last 
four bus departures. The probability that each will arrive in a given 
15-minute interval is 1/4; that both will arrive is 1/16. The answer is 
therefore 4/16 = 1/4. 

2. Let's say the stick is of unit length and goes from left endpoint A 
to right endpoint B. By elementary algebra we see that the stick is 
broken in two pieces such that one piece is more than twice as long 
as the other if the point of breakage is anywhere up to 1/3 of the 
way from A to B or 1/3 of the way from B to A. The probability of 
falling into this region is 2/3. 

3. Given any point Q in a circle, it uniquely defines a chord for which 
Q is the midpoint by drawing the line OQ from the center 0 of the 
circle to Q, and then drawing the chord to be perpendicular to OQ 
through Q. Let us think of choosing the point Q uniformly in the 
circle (whose radius we can assume is 1) and constructing the chord. 
From elementary geometry we see that the chord will exceed the side 
of the inscribed triangle if Q lies on the radius a distance less than 
1/2 unit from O. So if Q is selected from a circle of radius 1/2 with 
center 0, it gives rise to a chord at least as large as a side, but outside 
this circle the chord does not have this property. The probability is 
therefore the ratio of the areas of the two circles: 1/4. 

4. It's best to draw a picture before doing this problem. In analogy 
with the first solution for the triangle, we select a point Q at random 
on a radius and then draw the chord through Q perpendicular to the 
radius. The length of the chord exceeds a side of the square if and only 
if Q lies inside the square. Assuming the radius of the circle is 1, Q is 
inside the square if it lies within .;2/2 ~ .71 of the center, and this 
is the probability sought. In analogy with our second solution for the 
triangle, draw a tangent to the circle at a vertex V of the square, and 
consider all chords of the circle having V as an endpoint. Any such 
chord makes an angle between 0 and 180 degrees with the tangent. 
The chord is larger than the side of the square if the chord falls into 
the square, and this occurs if the chord falls within a gO-degree arc. 
The probability is 1/2. 

5. Yes. The assertion of normality is a statement about the behavior of 
the tail part of the infinite decimal, that is, about all digits exclud­
ing at most a finite set of them. Multiplying a normal number by a 
positive power of 10 just shifts the decimal point a finite number of 
places to the right. The decimal part of this number just omits a finite 
number of digits from wand must be normal. On the other hand, if 
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w is not normal, omitting a finite number of digits by multiplying by 
a power of 10 produces a decimal that is also not normal. 

6. (a) 0, (b) .16, (c) .19. 

CHAPTER 12 
1. The event 130 < 2X < 136 is equivalent to the event 65 < X < 68. 

Subtracting the mean from X and dividing by the standard deviation 
gives the equivalent event -1 < (X - 67)/2 < .5, or equvalently, 
-1 < Z < .5 for a standard normal Z. 

2. The standardization of Sn is 

Sn - n/2 
(1/2) y'n: 

The above standardization will be approximately standard normal 
for large n by the Central Limit Theorem. So if we put 

Sn - n/2 
(1/2) v'n ~ Z, 

we can write (algebra!) 

Rn= ~~~+ v;. 
It follows that the probability of the event Rn < x will have probabil­
ity very close to the event Z < 2x - v'n for n sufficiently large. Since 
the right-hand side of this inequality becomes smaller than any fixed 
negative number as n increases, the probability of this event shrinks 
to 0 as n gets large. 

3. Sn is the sum of independent variables Xi, which are 1 or -Ion the 
ith play of the game with probabilities p and q, respectively. Then Xi 
has expectation p - q and variance 1- (p - q)2 and Sn has expectation 
n(p - q) and variance n(1 - (p - q)2). It follows that 

Sn - n(p - q) 
v'n Jl - (p - q)2 

has approximately the standard normal distribution for n sufficiently 
large. 

4. We can certainly find x > 0 so large that the standard normal Z 
satisfies P(Z < x) > 1 - c. If we put in for Z the approximation 
given above and do a little algebra, we get 

P(Sn < n(p - q) + v'n. K) > 1 - 10, 

where K is the constant given by Jl - (p - q)2 . x. 
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5. Since the game is unfavorable for the gambler, p - q < O. According 
to the hint, this means as n increases Sn becomes more and more 
negative with probability at least 1 - c. 

6. The random variable U is also standard normal. We can see this from 
the following equalities: P(U < x) = P( -z < x) = P(z > -x) = 
P(z < x). First think of x as positive; then the last equality is clear 
from symmetry. If you then think of x as negative, again symmetry 
shows the last equality. Since U and Z have the same cumulative 
distribution function (so their probability distributions agree on half 
infinite intervals of the form {w: w < x}, it will follow that U and Z 
have the same distribution (their distributions agree on all intervals). 

CHAPTER 13 

1. One way to assign patients to a group randomly is to choose a random 
number as each patient enters. If the number is even, the patient 
goes into the treatment group with the new drug; if the number is 
odd, he goes into the group using the old drug. This method has 
the disadvantage that the groups may have very different numbers 
of patients. To assure that each group gets 20 patients, each of 40 
prospective participants is assigned a number 00 to 39. We will choose 
random numbers from a table, and decide in advance that the first 20 
numbers chosen from the set 00 to 39 will go into the treatment group 
with the new drug, say, and the remaining patients will go into the 
other group. In the table of random numbers, we choose pairs, and 
only select those in the range 00 to 39, ignoring all others. Stop when 
20 numbers have been selected; the patients assigned these numbers 
go into the group treated by the new drug. 

2. Select a random digit; if it is even, select 0, and if odd, select 1. 
Another way: select a random digit. If it is 0 through 4, select 0, 
otherwise select 1. Each of these methods chooses each of the digits 0 
and 1 with probability 1/2. To choose 0, 1, or 2 with probability 1/3, 
one way would be to select a random digit 0 through 8 (ignore 9). If 
it is 0, 1, or 2, select 0; if it is 3, 4, or 5, select 1. Otherwise select 2. 

3. A random number is one that has been produced by a chance mech­
anism, so it has used chance as an intrinsic part of its definition. 
A pseudo-random number is deterministic; it does not use random 
mechanisms for its generation. It has, however, been constructed such 
that its statistical properties are very similar to those of random num­
bers. 

4. About 10 times in 1000. 
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5. The total area of the square is 9 square units. The Monte Carlo 
principle assumes that the relative frequency of points in R is roughly 
proportional to the relative areas of R and the square. This would 
give us the value (.35)(9) = 3.15 square units as the estimate for the 
area of R. 

CHAPTER 14 

(We only sketch the idea for these problems instead of giving full algo­
rithms. By studying the examples of Chapter 14, you should be able to 
convert our sketchy descriptions into proper algorithms.) 

1. (a) Enter the number you bet on. Generate three independent rolls 
of a die. Count how many times the number bet on came up on the 
dice. Pay the gambler this amount. (b) Repeat the game many times. 
Count the number of times the gambler wins $2 in the game. Divide 
this number by n, the total number of repetitions of the game, to 
get the relative frequency of winning $2. This is an estimate of the 
probability. 

2. Identify the digits 1, 2, and 3 with car, goat, goat, respectively. Choose 
one of the digits, X, at random (player's initial choice). If X = 1, then 
the player wins if she doesn't switch and loses if she switches. If X = 2 
or X = 3, then the player loses if she doesn't switch and wins if she 
switches. To estimate the probability of winning if she switches, use 
a counter to count for each play of a large number, n, of games, the 
number of times she wins when switching. Divide the counter by n 
to get the relative frequency of wins when switching; this estimates 
the desired probability. 

3. Only the instructions 9 and 11 need to be changed. In 9, if we replace 
"Y > -1 and Y < I" with "Y > .5" and adjust 11 in an obvious way, 
we estimate P(Y > .5). If we replace with the event -.3 < Y < .3, 
and adjust 11, we estimate the probability of this event. In each case, 
we can compare with a table for the standard normal distribution to 
see how close the distribution of Y is to the limiting one. 

4. To simulate roulette, first identify 38 random numbers, let's say the 
integers 1 to 38, with the outcomes of a roulette wheel. For example, 
1 to 18 could represent the black numbers, 19 to 36 the red ones, and 
37 and 38 the 0 and 00 values. Now choose one of the 38 numbers 
randomly to determine the roulette outcome. To estimate the proba­
bility of winning by playing black, repeat the game a large number, n, 
of times and count the number of times one of the numbers from 1 to 
18 turns up (we are using the representation above; your method may 



230 Answers to Exercises 

be different). Divide the value of the count by n to get the relative 
frequency of black winning. This is an estimate of the probability. 

5. We want to choose a point uniformly distributed on the square. To 
do this, choose two values X and Y independently and uniformly 
on the interval from 0 to 1. The point (X, Y) then represents a point 
randomly chosen on the square. The point lies between the two curves 
if and only if the inequalities X 3 < Y and Y < X 2 are both satisfied. 
Choose a large number, n, of random points in this way, and define a 
counter to count the frequency of points satisfying both inequalities. 
This frequency divided by n is the relative frequency of points chosen 
at random from the square that fall between the two curves. This 
ratio should be close to the ratio of the desired area to 1, the total 
area of the square. So the estimate of the desired area is obtained by 
obtaining the relative frequency of points falling in this area. 

6. We choose 100 numbers to represent the 100 coins; the easiest way is 
to let 01 to 99 represent the coins 1 to 99 and let 00 represent coin 
100. If X is one of the numbers chosen at random, then if X = k, a 
number 1 to k is chosen at random (if k = 00 we make the obvious 
adjustment). Let 1 represent heads, and the other k - 1 numbers 
tails. If k is even and 1 is chosen, then a counter G (initialized to 0) 
is increased by 1. If k is odd, then G is increased by 1 if 1 does not 
turn up. Repeat the playa large number, n, of times. G counts the 
number of times Guildenstern wins $1. Divide the value of G by n to 
get the relative frequency. This is an estimate of the probability of 
Guildenstern's winning $1 in a single play. 

CHAPTER 15 

1. Let h be the number of successes in the 100 trials. The test is based 
on the inequality 

(.33)h(.67)100-h < (.67)h(.33)100-h. 

The principle of maximum likelihood tells us to choose p = 2/3 ~ .67 
whenever this inequality is satisfied, and p = 1/3 when the reverse 
inequality is satisfied. A calculation shows the above inequality is 
satisfied for h > 50. 

2. Let n be a large number of trials, and let h be the total number 
of successes. Compute the value of exactly h successes under each 
of the competing N probabilities. Estimate p to be the probability 
giving a maximum value among the N competing probabilities (if the 
maximum value is not unique, choose among the probabilities giving 
this value randomly, or repeat the experiment until there is a unique 
maximum). 
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3. If Ho is true, the random variable 

Sn/n -1/6 
v/(1/6)· (5/6) . (l/n) 

is approximately standard normal. Put in the numbers in the above 
(900 for Sn and 6000 for n). We obtain approximately -3.5. The 
probability of a standard normal variable Z taking on a value that 
far from 0 is less than .002, a value small enough that we would in 
general be inclined to reject Ho, concluding that the dice are not fair. 

4. We obtain the confidence interval.46±1.96 v/(.46)(.54)/1000 ::::::; .46± 
.03. If Groucho needs at least 50 percent of the vote to win, this 
result is not too encouraging. Since the true proportion of voters is 
included in the confidence interval 95 percent of the time such an 
interval is computed, and the computed interval here is (.43, .49) 
which excludes the minimum value of .50, there is cause for concern 
for Groucho's supporters. If 480 rather than 460 plan to vote for 
Groucho, the interval becomes (.45, .51), better news for Groucho 
because the interval now covers the critical value .50. Of course, the 
true value of the parameter can still be < .50. 

5. The assumptions are the same as in Section 15.4. The ratio of tagged 
fish to total fish caught in the lake after the initial tagging is 250/400. 
We assume that this ratio between tagged and untagged fish holds in 
the entire lake. Therefore, 800/x = 250/400, where x represents the 
total number of fish in the lake. We get the estimate x = 1280 fish in 
the lake. 

6. We give relative frequencies of numbers or sets of numbers coming 
up as estimates for the corresponding probabilities. (a) .19, (b) .25, 
(c) .12, (d) .06, (e) .64. 

CHAPTER 16 

1. p = 18/38, q = 20/38, so the probability is (9/10)5. 

2. We must return to 0 in 4 steps. So if a and b are the number of steps 
to the right and to the left, respectively, then a = b and a + b = 4. 
This means there are two steps to the right and two steps to the 
left. There are six paths possible, so the answer to (a) is 6p2q2. The 
answer to (b) follows from the relations a = b and a + b = n, which 
must hold if the walk starts at 0 and is again at 0 at step n. This 
implies 2a = n, and n must therefore be even. 
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3. Suppose there exists a set of paths S (with positive probability) from 
a that never return to 0 (that is, 0 is not an entry in the sequence 
defining a path). Consider the shortest path, T, from 0 to a with 
positive probability. Such a path exists by assumption. If we traverse 
T followed by a path of S, we have produced a path from 0 that never 
returns to O. The set of such paths has positive probability because 

P(Xn never returns to 0 / Xo = 0) 

~ P(T/Xo = 0)· P(S/Xn = a) > 0, 

so the chain can escape from 0 with at least this much probability, 
contradicting the assumption of the chain returning to 0 with prob­
ability 1. 

4. Assume a stationary distribution exists and let i be a state where v(i) 
is a maximum. We must have the relation v( i -l)p + v( i + l)q = v( i). 
The left-hand side of this relation is an average of two values, and 
an average is always less than one of the values averaged unless the 
values and the average are all equal. Since neither v( i -1) nor v( i + 1) 
can be larger than v(i), these three values must all be equal. So the 
neighbors of v( i) also have the maximum value. By continuing this 
argument, we see that all states must have the maximum value, which 
is impossible since there are an infinite number of states, and the sum 
of the v values must be 1. 

5. For any state i > 0, we have (v(i - 1)).5 = v(i). We also have 

(v(O) + v(l) + v(2) + ... ) .5 = v(O). 

Moreover, the sum of all the v values is 1, so the relation above shows 
v(O) = .5; then from the first relation we get for all i, v(i) = 2- i -1, 
and this is a stationary distribution for the chain. 

CHAPTER 17 

1. The event can be written 

XlO > O,X21 - XlO < 0,X25 - X 21 > O. 

The three conditions defining this event are independent, and each 
of the variables X lO, X 21 - X lO, and X 25 - X 21 are normal with 
expectation O. The probability of each of these variables exceeding 0 
is therefore 1/2, and the event has probability 1/8. 

2. The answer is 

P(X.75 - X.40 > 1)P(X.25 < -2), 
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where X. 75 - X.40 is normal with mean 0 and variance equal to .35, 
and X. 25 is normal with mean 0 and variance equal to .25. The answer 
can be written as a product because the variables are independent. 

3. Since a typical Brownian path is an erratic creature, constantly chang­
ing direction, intuition suggests the answer is ''no.'' To see this more 
rigorously, let a and b be the left and right endpoints of I. Since the 
path is constant throughout the interval, we will have Xa = Xb or, 
equivalently, Xb - Xa = O. But Xb - Xa is normal, so the probability 
that it takes on any single value is O. It follows that the probability 
of the path remaining constant on I is O. 

4. The probability can be written 

P(-2 < Xs -X4 < -1/ X4 = 2,-10 < X2 < 10). 

The variable Xs - X4 is independent of the conditioning events, so 
the answer is P(-2 < XS-X4 < -1), where XS-X4 is normal with 
mean 0 and variance 4. 

5. Assume K = 1 and standardize X T to get a standard normal variable 
XT/v'T = Z. Then the event X T < a is equivalent to the event 
Z < a/v'T. For large enough T, a/v'T is close to 0, so 

P(Z < a/VT) ~ P(Z < 0) = 1/2. 

The approximation becomes better the larger T becomes. 

6. The variable X T has mean 0, so P(XT < 0) = 1/2. In the preceding 
exercise, we have seen that P(XT < a) ~ 1/2 for large T. Since 

P(O :::; X T < a) = P(XT < a) - P(XT < 0), 

we see that the left-hand side of this relation tends to 0 as T increases. 
Now use the hint. 

On the following several pages you will find a short list of books and 
articles about probability and related areas. This list is not meant to be 
complete in any way; it is only a small selection of works I believe may 
draw the reader further into the subject. Some of the references have been 
cited in this book. Most of them are fairly accessible to those with modest 
mathematical backgrounds. Next to a number of the entries I have included 
brief comments as a rough guide to the reader. 
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