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In this paper we present versions of the Almost Sure Central Limit Theorem for both scalar and multi-dimensional Elephant
Random Walk based in the Almost Sure Central Limit for Martingales. In addition, convergence to even moments of
Gaussian distribution also will be discussed.
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1. Introduction
Roughly speaking, the Almost Sure Central Limit
Theorem (ASCLT) asserts that, given a sequence of
independent and identically distributed random variables;
(Yn), we have the weak convergence of certain sequence
of Probability measures associated to the partial sums
Cn := Y1 + · · ·Yn into a Gaussian measure for almost
every trajectory (or sample path). In practice, what
it is observed from a discrete time stochastic process
is a sequence of real numbers: a sample path, hence
the ASCLT provides us a tool that induces Probability
measures for every trajectory which in almost every case
(i.e., with Probability one) posses certain asymptotic
behaviour. In other words, the Probability of observing a
sample path such that, referenced convergence is observed
is one. Its first version was proved by Brossamler [6] and
Schatte [10] and in its present form by Lacey and Phillipp
[9].

Formally, one of the simplest forms of this theorem
is as follows:

Let (Yn) be a sequence of independent and
identically distributed square integrable random variables,
such that, for all n ≥ 1, E[Yn] = 0 and E[Y 2

n ] = 1,
then the probability of the event where the sequence of
Probability measures

1

log n

n∑
k=1

1

k
δCk/

√
k (1)

converges weakly to the standard Gaussian law is one (i.e.,

almost surely or a.s. for short).
Here, δ(x) is the Dirac mass at point x. We may see

that, by observing a single trajectory of process (Cn), we
may conclude the weak convergence of measures given by
(1).

2. The scalar ERW
The elephant random walk (proposed in [11]); denoted by
(Sn) behaves as follow:

1. At time n = 0 the elephant is at the origin; i.e., S0 =
0.

2. At time n = 1, the elephant decides to move one unit
right with probability q ∈ (0, 1) or one unit left with
probability 1 − q. If X1 represents such movement,
then S1 = X1 has the Rademacher distribution with
parameter q. In general, let Xn be the movement of
the elephant at time n.

3. At any time n ≥ 2, the elephant chooses uniformly
at random some point in the past; let us say 1 ≤ k ≤
n − 1. Then, its following movement; Xn, will be
equal to Xk (the movement made at chosen time k)
with probability p ∈ [0, 1] and equal to −Xk with
probability 1−p. Parameter p is know as the memory
parameter of the ERW.

4. Hence, the position of the elephant at time n ≥ 1 is
given by

Sn = Sn−1 +Xn. (2)
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In order to introduce the martingale approach for the
ERW, let (Fn) be the increasing sequence of σ-algebras
Fn = σ (X1, . . . , Xn); i.e. Fn represents the elephant’s
knowledge up to time n. Then, it may be easily found
[2,7] that conditional expected movement and position of
the elephant at any time are; respectively, given by

E [Xn+1|Fn] = (2p− 1)
Sn

n
a.s. (3)

and

E [Sn+1|Fn] = γnSn a.s., where γn =
n+ 2p− 1

n
.

(4)
Main results of this sections will be supported by

results on real martingales. Hence, let us consider the
discrete time scalar martingale [2] (Mn), given for n ≥ 0,
by Mn = anSn, where a1 = 1 and, for n ≥ 2

an =

n−1∏
k=1

γ−1k =
Γ(n)Γ(2p)

Γ(n+ 2p− 1)
, (5)

where Γ stands for the Euler Gamma function.
The study of asymptotic properties of the scalar ERW

is usually done in 3 regimes:

1. If p ∈ [0, 3/4) then we are in the diffusive regime.

2. If p = 3/4 then the regime is the critical one, and

3. If p ∈ (3/4, 1] then the regime is called
superdiffusive.

This paper deals only with diffusive an critical
regimes in both scalar and multi-dimensional framework.

2.1. The diffusive regime. In this subsection, the
diffusive regime for the scalar ERW will be explored; in
other words, we will consider that p ∈ [0, 3/4).

Our first result deals with a version of the ASCLT for
the position of the ERW

If memory parameter lies in [0, 3/4), then we
have the following almost sure convergence of empirical
measures

1

log n

n∑
k=1

1

k
δSk/

√
k =⇒ N

(
0,

1

3− 4p

)
a.s. (6)

In a complementary way, we provide the
almost sure convergence to the even moments of the
Gaussian(0, 1

3−4p ) distribution.
If memory parameter lies in [0, 3/4), then the

following almost sure convergence holds

1

log n

n∑
k=1

S2r
k

kr+1
→ (2r)!

2r(3− 4p)rr!
a.s. (7)

We may find out that, if r = 1 in Theorem 2.1 then
we have the Quadratic Strong Law obtained in Theorem
3.2 of [2].

2.2. The critical regime. We will investigate now,
analogue results to the ones presented in previous section
for the critical regime; i.e., when memory parameter p =
3/4.

Firstly, we present the corresponding version of the
Almost Sure Central Limit Theorem

If memory parameter is equal to 3/4, then we have
the almost sure convergence

1

log log n

n∑
k=2

1

k log k
δSk/

√
k log k =⇒ N (0, 1) (8)

We also have the almost sure convergence to the even
moments of the Standard Gaussian distribution

If p = 3/4, then

1

log log n

n∑
k=2

S2r
k

(k log k)r+1
→ (2r)!

2rr!
a.s. (9)

Again, we observe that, if r = 1 in Theorem 2.4 then
we have the Quadratic Strong Law obtained in Theorem
3.5 of [2].

3. The Multi-dimensonal Elephant Random
Walk (MERW)

Let us deal with the multi-dimensional version of the
ERW. In this framework, we will consider that the state
space of the MERW is ZD. The behavior of the MERW is
as follows:

1. At time n = 0 the elephant is at the origin; i.e., S0 =
0.

2. At time n = 1, the elephant decides to move one unit
in any of the 2D directions defined by the axes with
identical probability (1/2D).

3. For any time n ≥ 1, let Xn be the movement of the
elephant at time n ≥ 0. Hence, at any time n ≥ 2, the
elephant chooses uniformly at random some point in
the past; let us say 1 ≤ k ≤ n−1. Then, its following
movement; Xn, will be equal to Xk (the movement
made at chosen time k) with probability p ∈ [0, 1]
and equal to any other of the 2D − 1 directions with
identical probability (1− p)/(2D − 1).

4. Hence, the position of the elephant at time n ≥ 1 is
given by

Sn = Sn−1 +Xn. (10)
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5. At any time n ≥ 1; with k as earlier, the step of the
elephant is given by

Xn+1 = AnXk. (11)

where

An =



ID with probability p

−ID with probability 1−p
2D−1

JD with probability 1−p
2D−1

−JD with probability 1−p
2D−1

...
JD−1
D with probability 1−p

2D−1
−JD−1

D with probability 1−p
2D−1

,

where ID is the identity matrix of order D and

JD =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . . . . . . . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 .

As can be seen, there exist; naturally, some
complications arose by the change in dimension:

1. The number of directions in which the elephant may
move at any time is 2D.

2. Once the point in the past has been chosen; let us say
k, its relation with next step is more complicated than
in its scalar version.

3. Critical value associated with memory parameter is
now

pD =
2D + 1

4D
,

which is equal to 3/4 if D = 1.

4. However, conditional expected movements
and positions have similar expression to the
corresponding ones in the scalar case [2]:

E [Xn+1|Fn] =
a

n
Sn a.s. (12)

and
E [Sn+1|Fn] = ηnSn a.s.. (13)

where a = 2Dp−1
2D−1 and ηn = 1 + a

n .

In this section we will exploit the theory for
multi-dimensional martingales given that, process (Mn)
defined by Mn = bnSn where b0 = 1, b1 = 1 and, for
n ≥ 2,

bn =

n−1∏
k=1

η−1k =
Γ(n)Γ(a+ 1)

Γ(n+ a)
, (14)

is a discrete time martingale in RD [2].

3.1. The diffusive regime. Let us consider now
the multi-dimensional diffusive regime and provide the
ASCLT for the position of the elephant as well as the
corresponding convergence to even moments of Gaussian
distribution.

If memory parameter lies in [0, pD), then we have the
following almost sure convergence of empirical measures

1

log n

n∑
k=1

1

k
δSk/

√
k =⇒ N

(
0,

1

D(1− 2a)
ID

)
(15)

In addition, we have the following almost sure
convergence.

If p ∈ [0, pD) then, for any u ∈ RD and r ∈ N we
have that

lim
n→∞

1

log n

n∑
k=1

1

kr+1

(
utSkS

t
ku
)r

=
‖u‖2r (2r)!

(2|1− 2a|D)rr!
a.s.

(16)
We observe that almost sure limit in (16) corresponds

to the moment of order 2r of the N
(

0, ‖u‖2
|1−2a|D

)
distribution.

3.2. The critical regime. We explore now, the critical
regime p = pD by providing the corresponding version
of the ASCLT and the almost sure convergence to even
moments of Gaussian distribution.

If memory parameter is equal to the critical value pD
then, we have the following ASCLT:

1

log log n

n∑
k=1

1

k log k
δSk/

√
k log k =⇒ N

(
0,

1

D
ID

)
a.s.

(17)

Corresponding result for almost sure convergence of
moments is as follows:

If p = pD then, for any u ∈ RD and r ∈ N we have
that

lim
n→∞

1

log log n

n∑
k=1

(
1

k log k

)r+1 (
utSkS

t
ku
)r

=
‖u‖2r (2r)!

(2D)rr!
a.s.

(18)

4. Conclusion
Thanks to martingale theory, in particular, results related
to the Almost Sure Central Limit Theorem, it was
possible to obtain versions of this theorem concerning
with the position of the Elephant random walk in both
scalar and multi-dimensional framework, as well as the
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almost sure convergence to the even moments of Gaussian
distribution. Such results lead us; by observing a single
path of the ERW, to dilucidate the mean value of any
even power of the ERW (properly scaled) and to be
able of making asymptotic statistical conclusions for this
stochastic process.

In the spirit of paper due to Berkes and Csáki [5], we
observe that variances in (6), (8), (15) and (17) coincide
with those in Central Limit Theorems provided by Bercu
[2], Bercu and Laulin [4], and related with asymptotic
normality proposed by Coletti et al. [7]. Hence, ASCLT
provided in this paper may be considered as their almost
sure versions. In addition, as was said at the Introduction,
this situation leads us to conjecture that results of Berkes
and Csáki may hold for the Martingale framework.

The superdiffusive regime was not considered in
this paper, however, we may find references where
it is concluded that limiting distribution of the ERW
in the scalar case is not Gaussian [2] [8]. In
the multi-dimensional framework it was demonstrated
the almost sure convergence as well as the mean
square convergence of the Multi-dimensional ERW to a
non-degenerate random vector [4], but to the best of our
knowledge it is not possible to find results on the weak
convergence of the Multi-dimensional ERW.
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